University of Alabama in Huntsville

LOUIS

Theses UAH Electronic Theses and Dissertations

2019

Temporal querying of faces in videos using bitmap index

Buddha Raj Shrestha

Follow this and additional works at: https://louis.uah.edu/uah-theses

Recommended Citation
Shrestha, Buddha Raj, "Temporal querying of faces in videos using bitmap index" (2019). Theses. 641.
https://louis.uah.edu/uah-theses/641

This Thesis is brought to you for free and open access by the UAH Electronic Theses and Dissertations at LOUIS. It
has been accepted for inclusion in Theses by an authorized administrator of LOUIS.


https://louis.uah.edu/
https://louis.uah.edu/uah-theses
https://louis.uah.edu/uah-etd
https://louis.uah.edu/uah-theses?utm_source=louis.uah.edu%2Fuah-theses%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/uah-theses/641?utm_source=louis.uah.edu%2Fuah-theses%2F641&utm_medium=PDF&utm_campaign=PDFCoverPages

TEMPORAL QUERYING OF FACES IN VIDEOS USING
BITMAP INDEX

by

BUDDHA RAJ SHRESTHA

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
The Department olfr'l Computer Science
The School of écl)'aduate Studies
The University of A(ifa'bama in Huntsville

HUNTSVILLE, ALABAMA

2019



In presenting this thesis in partial fulfillment of the requirements for a master’s
degree from The University of Alabama in Huntsville, I agree that the Library of this
University shall make it freely available for inspection. I further agree that permission
for extensive copying for scholarly purposes may be granted by my advisor or, in
his/her absence, by the Chair of the Department or the Dean of the School of Graduate
Studies. It is also understood that due recognition shall be given to me and to The
University of Alabama in Huntsville in any scholarly use which may be made of any
material in this thesis.

@wéé“‘w 04/05/2019

Buddha Raj Shrestha (date)

ii



THESIS APPROVAL FORM

Submitted by Buddha Raj Shrestha in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science in Computer Science and accepted
on behalf of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama
in Huntsville, certify that we have advised and/or supervised the candidate of the
work described in this thesis. We further certify that we have reviewed the thesis
manuscript and approve it in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science in Computer Science.

3 A

XL sl L /S /1014

A1 ‘{/‘ /10l Committee Chair

Dn.“Ramazan Aygun (Date)

(rray——— #/572¢/7

Dr. Haeyong Chung (Date)
/}TN\J/ 4/5/2019

Dr. Tathagata A(ulcher;;'ee (Date)

é@;r(r«zwf ,@w%@we% Jy-5-2e1

Department Chair

Dr. Heggere 8. Rangagttath (Date)
&\A j()(/\) M b & College Dean
Dr. Sundar C’hmstopher (Date)

m u‘\-m\ \c\ Graduate Dean

. David Berkowitz DXte

iii



ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree  Master of Science College/Dept. Science/Computer Science

in Computer Science

Name of Candidate ~ Buddha Raj Shrestha

Title Temporal Querying of Faces in Videos Using Bitmap Index

Bitmap indexing has recently been used for big data systems especially for
column-based retrieval. In this paper, we study bitmap indexing for temporal querying
of faces that appear in videos. Although bitmap index is suitable for finding records
that satisfy a condition, its application to databases having temporal context is not
straightforward. We consider temporal operators such as next and eventually, as well
as queries for co-appearance. After recognizing faces and indexing them, our method
can be used to filter and extract intervals of appearance and can also be used to
compute additional conditions using bitwise operations. We have applied our method
on a sample video database to show how bitmap index can be used for temporal

querying of faces for retrieving relevant intervals and videos.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In just the last ten years, there has been a tremendous increase in the number
of videos published and viewed each and every day. With more than 3 billion videos
being uploaded per day [1] on YouTube alone, the interest in querying information
from those videos in order to capture the desired content is increasing day by day.
Generally, videos contain a great deal of content in the form of raw data and features
that make the task of arranging the data in proper structure more difficult. Hence,
implementing the ability to classify video-related data represents a burgeoning and
exciting research area [2]. In order to manage this task on a large scale, we need to
develop a proper and efficient indexing structure, along with simplistic bridging from
high-level retrieval query to actual computation.

Among the categorizing options for video content, face searching in videos is
gaining popularity—particularly due to the rise of social media. To be able to identify
the same face with a high degree of accuracy is useful for a wide range of applications,

such as analyzing a large number of videos where a particular person appears, fast



forwarding to jump to a section where a specific person appears, or even locating and
tracking suspects in crime scenes from surveillance videos.

Even though modern face-recognition algorithms (3] [4] [5] have proven to
achieve near-human accuracy in various image datasets, querying and retrieval of
peoples faces from video content remains quite challenging, due to the large volume of
content present in the videos and the time required to process and categorize all that

information.

1.2 Research Problem

The increased use of video based multimedia applications in the past few years
has created a demand for a strong video database support which includes efficient
query processing capabilities. Since video datasets could have unstructured nature
with a heavy variation in size and complexity, it generates a key problem in the query
processing stage that presents a lot of research challenges 6].

In traditional database systems, the nature and structure of data are pre-defined,
which utilizes relational algebra algorithms to select the ‘optimal’ execution plan. This
is not feasible in the case of video data, so we require to find a structure that could
properly reflect the data with an efficient query processing step. In our research, we
hypothesize that transforming the video data in the form of bitmaps can be used for
temporal querying.

One of the challenges of multimedia applications is user satisfaction [7]. Despite
the potential power of an algorithm, if users are not satisfied with its functionality

for any reason, it will receive little attention. Herein, we focus on retrieving faces



from a video database based on its temporal context. We apply operators such as
co-appearance, next, eventually, etc. for videos. Our goal is to answer questions such
as "Does Person A and Person B appear together?”, ”Does Person A appear right
after Person B?”, or "Does Person A appear some time after person B appears?”. The
main challenge for implementing these queries is the use of a bitmap index which has

a bit assigned as 1 for a specific record for a specific condition.

1.3 Our Approach

In this thesis, we present a novel video-retrieval technique for video databases,
which utilizes bitmap indexing for mapping faces present in video clips or intervals
in order to provide simple and efficient temporal querying. This bitmap indexing
approach is particularly suitable for column-based retrieval [8]. Specifically, the
primary contribution of this work is a new retrieval approach to incorporate multiple
conditions to video queries focusing mainly on human faces, such as (a) locating videos
and intervals where multiple faces appear together, (b) identifying instances where a
person appears temporally directly after another person, and (¢) determining if an
individual appears sometime later after the appearance of another person.

In a variety of video-searching applications, the process of temporal querying
becomes more complex if it requires the inclusion of more query elements (i.e., faces).
Since our technique employs images as the required addition query element, and the
database contains the mappings of faces in videos with their corresponding timeline
in the form of bitmaps, the videos in which the faces of interest appear can be

filtered out, after which the temporal regions can be identified with respect to given



conditions using bitwise operations. Importantly, this technique is generalizable to
various video-retrieval applications, since it can handle multiple query elements without
increasing computational complexity.

We propose an indexing scheme targeting only on faces, where we create a
bitmap for each occurrence of a face in a video. Using these bitmaps we intend on using
bit manipulation strategies for computing the query components and eventually return
the query results. Once the framework is implemented, we will perform experiments
on real datasets and compare the efficiency with other strategies to validate that the

proposed approach results in a generalized and efficient solution.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 covers brief
background on bitmaps and similarity search and provides research studies that are
related to this thesis. Chapter 3 presents how the dataset is built, the methodology
that was used to create the indexing structure and detailed steps on computing the
query elements. Chapter 4 provides the results and analysis of the experiments based
on accuracy and efficiency of the system. Finally in Chapter 5 we conclude the thesis

with possible future directions that could be explored.



CHAPTER 2

BACKGROUND

Since videos generally have lots of content, it is particularly necessary to parse
the contents and select only the relevant information, followed by storing it in a proper
format so that it could be retrieved easily later. In this work case, we focus on tracking
faces along with their time of occurrence. There are a number of state of the art face
detection algorithms [3,4] that are very effective for such purposes.

Once the parsing is complete, the information can then be used to create
suitable indexing structure. This structure is very important in making a very efficient
query processing flow. There are different indexing schemes [9, 10| that focus on
spatio-temporal context. In this thesis, we study whether bitmap index can be used
for temporal querying.

In this section, we firstly provide background on bitmap index. We then
describe briefly some of the previous works done in face video retrieval and temporal

querying.



2.1 BitMap Index

A bitmap index is a special type of database index which uses bitmaps to
optimize search for low-variability data (which have a modest number of distinct
values). Basic bitmap indexes use one bitmap for each distinct value but it is also

possible to reduce the number of bitmaps using different encoding methods [11].

Student ID | Gender
1001 F
Data Table 1002 M
1003 F
1004 F

!

Female | Male
1 0
Bitmap Index 0 1
1 0
1 0

Table 2.1: Sample database for bitmap indexing.

A simple example is shown in Table 2.1. In this case, a two dimensional array
is constructed for ‘Gender’ column for bitmap indexing. There will be a row in the
bitmap index table corresponding to each row in the data table and each value in the
row will be marked as ‘1’ or ‘0’ based on the condition, whether the student is ‘Male’
or ‘Female’.

A bitmap index can also be created for columns having many distinct values.

This is done by including more columns in the bitmap array. In Table 2.2, there are



Student ID | Age Range
1001 18-22
Data table 1002 18-22
1003 23-27
1004 27-30

!

18-22 | 23-27 | 27-30
1 0 0
Bitmap Index 1 0 0
0 1 0
0 0 1

Table 2.2: Bitmap index for attribute with high variability.

four different age ranges, which translate into three distinct columns in the bitmap
index.
We can take real advantage of bitmap indexes when we can join several bitmap

indexes together by applying bitwise logical operations between different bit arrays.

Student ID | Gender | Married | Age Range
1001 F N 18-22
Data Table 1002 M Y 18-22
1003 F Y 23-27
1004 F Y 27-30

Male | Married | 27-30
0 0 0
Bitmap Index | 1 1 0
0 1 0
0 1 1

Table 2.3: Bitmap index for multiple attributes.



In Table 2.3, while none of the columns has a lot of uniqueness, by having
a bitmap index on each column and then conducting a logical ‘AND’ operation, a
demographic query such as ‘finding all the males who are married and in the age range
of 27 to 30’ can easily be answered. With bitmap index, it is possible and desirable to
have many of such bitmap indexes across various columns to perform these bitwise
logical operation between the different bit arrays.

There are other advantages of using bitmap indexes besides the simplicity of
its structure. The bit arrays like this can be compressed [12] making the structure
space efficient. If compressed they do not take much space on disk and the read
operations can be done very quickly. One disadvantage of bitmap index is that if there
are high number of distinct values (more than several thousands) then we will need to
have same number of columns in our bitmap index which might not be an efficient
approach [13]. This is also one of the deciding factors whether to use a bitmap index

or not.

2.2 Face Video Retrieval

In recent years, there have been a lot of studies going on in the field of face video
retrieval [14-17]. [14] provides a single image based face matching method with partial
occlusion and expression change allowing robustness to pose, expression, illumination
and background clutter. [15] is a person retrieval system by comparing the Chi-square
distance between sets of faces which are represented as distributions in the form of
histogram to retrieve a ranked list of shots of a queried person. These implementations

mainly focus on spotting a person in a single video and do not address a solution to



find the shots of a given person in a large database of videos. [17] tries to address
this problem by proposing a heterogeneous hashing-based retrieval where two entirely
heterogeneous spaces (e.g., Euclidean space and Riemannian manifold) are embedded
into a common discriminant Hamming space. In their study, the query face is a point
in Euclidean space and the video clip is modeled as a point on Riemannian manifold.
While this addresses the problem of querying in a large scale databases, it is still only
applicable for a single person search. In this paper, we implement a generic approach
towards face video retrieval, where we can add the number of faces in the query to
find out if they appear together in a particular instance using bitmap index. This
makes our approach different from the above implementations.

In recent years there has been huge improvement in face detection and
recognition. For a given input image, face recognition system typically runs face
detection first to isolate the faces present in the image. Once the faces are detected,
each face is preprocessed and represented into a low-dimensional representation
(embedding). This low-dimensional representation is key for efficient classification.
In this process, the face representation needs to be resilient to intra-personal image
variation such as age, expressions and styling. These representations are mapping of
face images into a compact Euclidean space, which are trained usually through deep
learning network [4].

The breakthrough in deep learning based networks occurred when AlexNet
won the ImageNet competition [18]. The networks for face recognition learn multiple
levels of representations that correspond to different levels of abstraction, showing

strong invariance to the face pose, lighting and expression changes. Inspired by



the extraordinary success on the ImageNet challenge, there has been significant
number of deep learning research studies based on convolutional neural network (CNN)
architectures [19], such as VGGNet [20], GoogleNet [21], ResNet [22] and SENet [23]
which are widely used as the baseline model in face recognition. Still researchers
are trying to improve learning in these models even more and use them for multiple
applications. For example, the introduction of large margin cosine loss (LMCL) [24]
function aims to maximize inter-class variance while minimizing intra-class variance.
In [24] , it is shown that LCML achieves consistent state of the art results on the
benchmark datasets. ArcFace [25] introduces another loss function named additive
angular margin loss function that aims to obtain rich discriminative features for face
recognition. The performance of ArcFace achieves promising results using their loss
function that has high discriminative power to obtain the deeply learned features.
ArcFace outperforms current state of art approaches on LFW, YTF, CALFW and
CPLFW datasets.

Hyperface [26] is a framework based on CNNs for simultaneous face detection,
facial landmarks localization, head pose estimation and gender recognition from a
given image using the synergy among features. The authors show that learning
correlated features simultaneously can boost the performance of individual tasks.
Yang et al. [27] propose to neural aggregation network that produces a compact and
fixed-dimension feature representation for recognition. The network consists of two
modules: embedding module and aggregation module for adaptive aggregation. Their
results show that the network automatically learns to advocate high-quality face

images while repelling low-quality ones such as blurred, occluded and improperly
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exposed faces. This process helps consistently outperform naive aggregation methods
while achieving the state-of-the-art accuracy.

While these studies explore the boundaries of deep learning based networks
to solve problems related to face recognition, other research studies such as [3,5,28]
have published their own pre-trained networks to accelerate the face recognition
research community with the motive to perform more research and create more useful
applications that rely on face recognition.

In this thesis, we use Dlib [5], which is a state of the art library for face
detection and tracking. Dlib has a pretrained neural network model for this purpose
and its model consists of ResNet network [22], which has a building block as shown in

Figure 2.1.

(.
X &
weight layer

f(x) l relu

weight layer

X
identity

f(x) + x

Figure 2.1: Resnet Building block

A brief review of the steps involved while tracking faces using Dlib library are

explained in the following section.
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2.2.1 Pre-processing the input

The robustness of detection can be improved by preprocessing the input image.
For example, the lightning condition for every image or each frame of video will not
be optimal, so it is a good option to preprocess the input which helps to obtain higher
accuracy. The preprocessing mostly includes operations such as the gamma correction

for enhancing the image quality (Figure 2.2).

Figure 2.2: Gamma correction

2.2.2 Detecting Faces

This is a crucial part of the process since we do not want to miss out on a
possible face that can be queried later. Among numerous approaches, Histogram
Oriented Gradient (HOG) is one of the most popular [29] feature extracting approaches.
This technique counts occurrences of gradient orientation in localized portions of an

image - detection window, or region of interest (ROI), which is similar to that of edge

12



orientation histograms, but differs in that it is computed on a dense grid of uniformly
spaced cells and uses overlapping local contrast normalization for improved accuracy.
This then is applied to a sliding window detector over an image or frame and HOG
descriptor is calculated for each position. Each HOG descriptor that is computed is
fed to a pre-trained SVM classifier to to find the part of our image that looks the

most similar to a known HOG pattern (Figure 2.3).

HOG version of our image

HORG face patters from
trained retwork

pattarr maten

Figure 2.3: HOG computation

2.2.3 Detecting Facial Landmarks and Aligning Faces

After detecting faces, important facial structures on the face are detected
using shape prediction methods. [30] is one of the popular algorithms used to detect
facial landmarks in real-time with high quality predictions. Also, it is better to align

the faces with some reference template because a tilt or a turn of face may cause

13



the representation or the coordinates of landmarks to be shifted by a certain factor.

Figure 2.4 shows an example of aligning faces.

F Centered result we want Face Align Transformation

o SN

detected Face landmark detected

Figure 2.4: Landmark detection with Affine Transformation

2.2.4 Extracting Embeddings

Extracting features that are similar for the same faces and can distinguish
different faces is important. Generally, a face is represented as a feature vector and
the distance between feature vectors is used to determine the similarity between
faces. Feature extraction is usually done through training a deep neural network (a
convolutional neural network) with the objective of minimizing the distance between
the output feature vectors of the same face and maximizing the distance between
different faces.

After training a model, the input image can be fed to the model to generate a
feature vector corresponding to the person in the image. An example is provided in

Figure 2.5.
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Figure 2.5: 128d vector embedding generated from given image

2.2.5 Similarity Search

Traditional databases are made up of structured tables containing symbolic
information where tables are viewed as relations and their columns are viewed as
attributes [31]. For example, to represent an image collection, we would need to
create a table having one row per indexed photo. Each row would have its own image
identifier and can be linked to entries from another tables as well.

There are different techniques to generate high dimensional descriptors (for
text, images etc.) that are much more powerful and flexible than fixed symbolic
representation. But, the problem is that the traditional databases can be queried
efficiently using SQL, which do not support high dimensional descriptor representations.

In similarity search, the descriptors (vector representation) are designed to
produce similar vectors for similar images where similar vectors are defined as those
that are nearby in space [32]. For example, the images of faces of the same person

will have a smaller distance as compared to that of the images of a different person.
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So, for similarity search, a query vector should return the list of database objects that

are nearest to the given vector in terms of a distance measure.

Indexing

REw"

nput collection

xz RY

QQuery

v

Result o b —argmingg offe — o |

Figure 2.6: Similarity search block diagram

Figure 2.6 represents a block diagram that describes the similarity search
process. First, the collection of input is loaded into the memory. Then the query
object is compared with each of the input to return the ‘N’ similar objects [33].
However, this is a brute-force method that computes all the similarities — exactly
and exhaustively. Implementing such algorithms is not efficient and can impact the
performance of the system.

[34] is a state of the art similarity search library that spans a wide spectrum
of usage trade-offs with optimized memory usage and GPU implementation for the
most relevant indexing methods.

In summary, face recognition/tracking systems has a flow block diagram as

shown in Figure 2.7 [28].
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Input image Detect Face Tranform Crop
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Deep Neural Network Representation
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Sananty Search
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Figure 2.7: Face Recognition/Tracking block diagram

2.3 Indexing for Temporal data

A video database features a spatio-temporal context. Queries having temporal
or spatio-temporal query conditions are difficult to handle using traditional index
structures. To perform such queries, special index structures, such as semantic sequence
state graph (S®G) [9,10], have been developed. S®G represents object locations as a
state and link states when objects change locations. Spatio-temporal retrieval can
be imitated using SQL patterns. Jain et al. [35,36] developed strings based on a
grammar to represent a spatio temporal context and show how SQL patterns can be
used for spatio-temporal querying. The downside, however, is that it cannot benefit
from existing index structures in relational databases. In this paper, we focus on
temporal querying using a bitmap index. Spatial context will be added in our future
work. Our temporal querying is based on linear temporal logic [37]. For example,
eventually/globally operator checks if the condition becomes true at a point in the

path. Next operator checks whether the condition becomes true in the next time point.

17



Bettaiah and Aygun used gaming controller to specify spatio-temporal queries that

include 'next’ and ’eventually’ operators [38,39].

2.4 Summary

There are effective face recognition and similarity search algorithms that extract
feature vectors for faces and run quick similarity search. Our goal is to develop a type
of face retrieval method based on temporal context. We plan to utilize bitmap index

for achieving temporal querying.
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CHAPTER 3

METHOD

The first step in performing an indexing structure for temporal querying is
to acquire video dataset. After the dataset is obtained, video parsing is to be done
which involves running face detection and tracking on each video and clustering them
with respect to faces [40] inorder to maintain a mapping of face versus time interval.
Using this information, first a bitmap of person versus video is constructed followed
by person versus timings bitmap which are maintained in a proper file structure.
Once the indexes are constructed, the structure can be used to perform queries like
co-appearance, next and eventual. Figure 3.1 summarizes the system in a block

diagram.

Meta data stored in
proper file structure

.

Figure 3.1: System block diagram
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3.1 Dataset

For querying faces in videos, we could not find a labeled standard publicly
available dataset. Therefore, we created our own dataset using a face detection and
recognition library. Nevertheless, we had to manually track the appearance and timings
of each person in the video for verifying outputs of the face detection/recognition. We
have collected videos of movies and TV shows from multiple sources. Videos varied
in length and quality so that a variety of experiments could be run based on those
properties. Eventually, we generated a dataset of 30 videos with varying duration
from 20 seconds to 30 minutes. We have built this dataset for evaluating our method

for temporal querying.

3.2 Video parsing

Index is built by first detecting and recognizing who appear in the videos and
then identifying intervals they appear. In this research, Dlib’s [5] pre-trained face
detector based on ResNet network with 29 convolutional layers [41,42] is used to
detect and track faces while sampling the videos.

Figure 3.2 is an example of the facial landmark detector implemented in DIlib
that produces 68 landmark points that map to specific facial structures [30]. The
Dlib’s facial recognition library maps an image of a human face to a 128 dimensional
vector space where images of the same person are near to each other and images from
different people are far apart. Once 128d feature vector is available, face recognition

is accomplished by a similarity or distance function such as Euclidean.
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Figure 3.2: 68-landmark representation of face

128d
0.3412
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p; = | 04421

0.8378

Figure 3.3: 128d vector representation of face of person p;

Figure 3.4 shows an example of the face detection and the corresponding feature
vector. After detecting faces, the time intervals in which they appear are tracked. As
the number of frames in a video can be very high, running face detection on each frame
is not an optimal approach. It is necessary to partition the video into shots for efficient

indexing and retrieval of video. Shot transition detection is used to split up a video
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into basic temporal units called shots [43]. A shot is a series of interrelated consecutive

pictures taken contiguously and representing a continuous action in time and space [44].

Shot
/’

y

Frames

Figure 3.4: Structure of a video

Displaced frame difference [45] is used to find shots and record its duration
in the video. After finding the shots and their durations, we detect and track faces
appearing only in those shots rather than tracking each frame. Once we have the
face track, we apply clustering to obtain unique set of faces in the video and their
corresponding timeline of appearance as shown in Figure 3.5. This information is then
used to create an indexing structure which will be discussed in the Section 3.3. For

clustering, dlib’s chinese whisper module is used to cluster unknown faces using a
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graph data structure. It runs on linear time and is fast and recommended for large

datasets with unknown number of classes [46].

e ROSS

Rachel e JOCY

Figure 3.5: Timeline for appearance of people in a video

3.3 Creation of Bitmap index

Our main objective is to use bitmap index for temporal querying. Since videos
are continuous, we need to come up with a way to properly structure the bitmap
index. For this purpose, we build a two-level bitmap index. The first level maintains
whether people appear in the videos or not, whereas the second level maintains the
time intervals of people who appeared in a specific video.

In the first level, a bitmap index of person versus videos (p2v) is maintained
where " person is denoted as p; and his or her appearance is determined by the 7
row in p2v matrix. Person p; is represented as a 128-dimensional feature vector as
explained in Section 3.2.

Each column in p2v matrix corresponds to the j** video. So, p2v(i, j) corresponds
to the bit for the appearance of person p; in video v; and is set to 1 if p; appears in
vj, otherwise, it is set to 0.

Figure 3.6 is a sample p2v matrix which maintains records of whether a person

appears in a given video or not.
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Figure 3.6: Person versus video mapping

In the second level, a similar indexing scheme is maintained for each individual
video v;. First, the intervals only where faces appear are filtered out (since intervals
without face are not used for further computation). Each interval has its start and
end times. These intervals are sorted in ascending order with respect to their start
times. Then p2t/ matrix for video v; is constructed where column ¢, represents the
r'* interval and p2t7(i,r) corresponds to the bit for the appearance of person p; in
interval ¢, and is set to 1 if p; appears in t,, otherwise, it is set to 0. The following is

a sample matrix:

p| ti tz tz ... tpy
P1 ¥l A8 1
P2 0 1 0 il
P; L. 0% Gl

Figure 3.7: Person versus timing mapping for each video

Figure 3.8 is a sample p2¢ matrix which maintains records of whether the

person appears in a given time interval in that a particular video or not.
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Figure 3.8: Person versus timing mapping for each video

Whenever a new video (v,+1) is added to the database, a new column is added
to the p2v matrix, and a new p2t matrix is created for the video. For updating p2v
matrix, we run a similarity search against the p column for each person appearing
in the video in the p2v matrix. If the similarity score is within the threshold, it
indicates that we already have a previous record of that person (e.g., p;) and need to
set p2v(i,n + 1) = 1. If the similarity score is beyond the threshold, we add a new
k + 1" row (assuming k people in the database so far) and assign p2v(k + 1,n + 1)

= 1. For any other video v;, p2v(k + 1, j) is set to 0. Table 3.1 summarizes symbols

used in the following sections.

Table 3.1: Table of Symbols

Symbol | Description

p2v person versus video mapping

p2t7 person versus time interval mapping for video v,

p2uy, person p’s row in p2v

p2t;, person pg’s row in p2t’

V(i k) bitmap after computing 'p2v; & p2uv;’

Vi) the list of videos where p; and p; appear together

k) bitmap after computing 'p2t] & p2t]’

t4 (i) the list of time intervals having p; and pj, together in video v;
n bitmap for intersection of intervals between p2t] and p2t;,
@_k bitmap corresponding to p2tj, after removing 7 from p2¢;,
By left shift B by one bit

a-”'(i,k) bitmap indicating if py appears right after p; in video v;
o (i) actual intervals where p, appears right after p; in video v,
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3.4 Querying in Videos

For querying purposes, the user provides images of people rather than the
names of people. Our system extracts 128-dimensional feature vector from the image
and runs a similarity search against all faces (column p) in p2v matrix. Once the
person is found, we can find the intervals in which this person appears in each video
using the corresponding p2t/ matrix for that video. The following example of p2uy
shows sample row of p2v for person pi. The p2ti is the time interval mapping for

person pg 1n video Uy .

Vi Vg V3 V4 ... Vpu
p2v = <1 0 1 0 “.1)
t1 t2 t3 t4 ey tm

p2t;, = (0 1 1 0 .. 1)

To find videos where two or more people appear together, rows of p2v for each

person are extracted and bitwise ’AND’ is applied.
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Once the list of videos where a person(s) appears is filtered, the system can
compute the intervals in which the queried person(s) appears using the p2t/ mappings
for the person in each video. This can help to formulate numerous sequence of events
that can be used as additional conditions for a query. Since we are using the bitmap
index, the computation for these conditions can be done using bit-wise operations.
Our system supports the following types of queries: 1) (co-occurrence) find intervals
where person A and person B appear together, 2) (next) find videos where a person
appears right after another person, 3) (prior) find videos where a person appears
before another person appears, and 4) (eventually) find videos where a person appears

sometime after another person appears.

3.4.1 Co-appearance Query

Finding when a person appears or time intervals in which they appear in each
video is readily available by p2t/ bitmap index. Using these, time intervals when
multiple people appear together can be found.

Co-appearance in a video does not necessarily mean people appear at the same
time in the video. Using p2t/ matrix for a common video v;, a similar conjunction
(AND,&) for rows of these people is applied while extracting the time intervals
that these people appear together. For example, consider p2tf and thi represent
the bitmaps for time intervals for a specific video (v;) for people p; and py. Their
conjunction yields bitmaps that indicate the interval of co-appearance represented

by t{i,k). We then find the indices of set bits of t{i,k)’ which will be the actual time
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intervals where the people appear together, represented by tfi, K Sample steps involved

while calculating the intervals are provided below.

pt! =[1 0 1 1_653 L8 .. 3]
.80 86 1 % ... 1]

ty tz tz3 ts ts te tr ... ty
=11 ¢ 0 8-0-1 8 ... 1]

I

p‘Zt{,

fan’ = [ti,te...,tn]

3.4.2 Next-appearance Query

The next query can be used to find whether a person appears after another
person. For example, in a video v;, we want to check if person 'p;’ appears right
after person ’p;" (not in the same frame). This is achieved by first removing the
co-appearing time intervals (1) from p2(]. The result is then left-shifted by one bit
(B_k), followed by computing bitwise ‘AND’with p2t{ :

M thi & p2tf

Bk + p2t], ® n

afi.k) —p2t; & B—k
where ‘n’indicates the bitmap for co-appearing intervals which is removed from [)2t‘,’;
using the bitwise ‘XOR’operator in the second step to get ‘By’. The left-shift operation

Bk is indicated by left-arrow over the bitmap variable as Sy.
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If a{ik_) returns a bitmap with non-zero value, it means that there is at least

a sequence in the video where p; appears right after p;. The actual intervals can be

calculated using the indices of a{i’k), represented by Q’{i,k)' The following shows sample

calculations.

pil =1L B .3 1.0 1.0 ... 4
o =1L 0 00 ¢ 1 1 .. 1

’7?:{1 0.0 9. 1-80°.. 1]

808 071 34 3
.8 0.8 1 8 & 1

g=[0 0000 01 .. 0

=0 0060010 .. 0

P, =1 0 1 1 0 1 0 ... 1]

. t1 to tg tg ts tg tr ... t,
ohp= [0 0 0 0 0 1 0 ... 0]

“»"g;k; = [tg]

Figure 3.9: Allen’s relations to illustrate co-appearance, next-appearance and
eventual-appearance
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3.4.3 Prior-appearance Query

The prior-appearance query is used to find whether a person appears before
another person appears. This can be done by just comparing two bitmaps. For

example, if B > th{, person py appears before p;.

3.4.4 Eventual-appearance Query

Similar to the prior-appearance query, eventual-appearance query can be used
to determine if a person appears some time after the other person. This can be done
by just comparing two bitmaps. For example if p2t£ > [y, person p; appears sometime
after p;.

We can also relate these queries with respect to Allen’s interval algebra, which
is basically a calculus for temporal reasoning, introduced by James F. Allen in 1983.
This consists of thirteen basic relations between time intervals that are distinct,
exhaustive, and qualitative [47]. Figure 3.10 shows all the possible relations that two
definite intervals can have. We use these relations to illustrate whether they satisfy
co-appearance, next-appearance or eventual-appearance. Each relation is defined

graphically by a diagram which relates two definite intervals A and B.

3.5 Summary

In this section, we firstly explained the face recognition method. We explained

our method that utilizes the bitmap index. There are two bitmap index structures:
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helation Hustration Co-appearance | Next Eventually | Interpretation

Precedes No No Yes B is preceded by A

Meets No Yes Yes A ends when B
begins

Overlaps Yes Yes Yes A overlaps B

Finished by Yes No No Ais finished by B

Contains Yes No No B during A

Starts Yes Yes Yes Astarts B

Equals Yes No No Aequals B

Started by Yes No No Bis started by A

During Yes Yes Yes A during B

Finishes Yes No No A finishes B

Overlapped Yes No No B is overlapped by

by A

Met by No No No B ends when A
begins

Preceded No No No Ais preceded by B

by

Figure 3.10: Allen’s relations to illustrate co-appearance, next-appearance and
eventual-appearance

person versus video and person vs time intervals in a video. We explain how these

bitmap index structures are used for co-appearance, next, and eventual /prior queries.
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CHAPTER 4

EXPERIMENTS AND RESULTS

We have developed a user interface to build our temporal queries. Then,
multiple experiments were performed using the dataset noted in Section 3.1 to evaluate
the level of accuracy and efficiency achieved by the system. Also, results from some
additional strategies are included that can be used to further improve the system. All
experiments were performed on a quad-core Intel(R) Core(TM) i5-7200U 2.50GHz

CPU.

4.1 User Interface for Temporal Querying of Faces in Video

We have developed a web application for our experiments. The videos are
processed and relevant information from videos is stored in a specific folder structure.
Using the bitmap index structures, the application performs queries based on the
user’s request. The front page of the application is provided in Figure 4.1. The user
needs to click on the ‘Add Person” button for each person which uploads their full
face images. Once the images are provided by the user, the user selects the query type
using one of co-appearance, next or eventual buttons as shown in Figure 4.2. Then

the user clicks the ‘Search” button to initiate the query processing. The images in
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Face Search

Add photas of person OR drag them into the box below in-order for search.

Gsery ty

Figure 4.1: Home page of the application

the screenshots are the characters from TV series Big Bang theory. These images
are provided as 'fair use’ to show how the interface looks like when the images are
uploaded.

The system shows the progress of the query using the progress as shown in
Figure 4.3. Once the query is processed, the thumbnails of videos that satisfy the
query are displayed (Figure 4.4). Whenever the user clicks on a particular video, the
time intervals that satisfy the query conditions are highlighted as red on a timeline

under the video as displayed in Figure 4.5.
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Face Search

Figure 4.2: Query Type Selection

Face Search

Figure 4.3: Apply Search
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Face Search

Figure 4.4: Filtered list of videos

Figure 4.5: Highlighted time segments

4.2 Accuracy

The overall accuracy of the system depends on the proper functioning of face
detection and similarity search for different types of videos. We use Dlib library for
face detection/tracking and Facebook’s FAISS library for similarity search. Dlib is

one of the most popular face recognition libraries and has 99.38% accuracy [48] for the



Labeled Faces in the Wild database (LFW), which is the de facto benchmark dataset
for face verification. Also, FAISS has one of the most optimal search implementation
and can handle more than a billion data points [34]. Both Dlib and FAISS libraries
are state-of-the-art technologies and have been used in many research projects and
applications.

While running our tests on different types of videos, we found that the accuracy
of Dlib library is heavily impacted by the the quality of video. For videos having
less than 360p resolution, detection of faces deteriorated and this affected the "p2t’
mappings for that video. This resulted in many missed intervals for the query. So,
in our experiments, we found that if the library is able to detect the faces, then the
system works as expected, returning exact intervals for the queries. If it is not able to
properly detect faces, then it results in many missed intervals and false recognition of
faces.

After face recognition, the similarity search is run to find the record of the
person. FAISS returns the top k similar vectors from the database such that the label
of the most similar database entry is used to label the input vector. But, for this, we
need to set a threshold such that if the similarity value is below a certain threshold [49],
we need to treat it as a new label which was never introduced to the database. To find
the optimal value of this threshold, we evaluated the face verification performance on
a range of distance threshold values. Since the dataset contained much more negative
pairs than the positive pairs, we used F1 score as our accuracy metric [50]. The result

is shown in Figure 4.6.
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Figure 4.6: Accuracy vs threshold distance

The results showed that the accuracy was maximum at 0.56 threshold value.
Using this threshold, the process of finding whether a person already exists in the
database can be done with higher level of confidence rather than just using the top
nearest result from the similarity search. Also, this procedure can be parallelized
and scale to large databases [51]. Once we have the results from face detection and

similarity search, we can move ahead to process the requesting query.

4.3 Comparison of Temporal Querying

Our main approach to compute temporal queries is based on using bit manipulation
strategies with a notion that bitwise operations would normally be faster than other
operators. In our experiments, the average number of time intervals in each video was

20. Using these intervals, we generate their corresponding bitmaps having average

length of 20.
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Since we could not find any specific method for querying for a database in this
format, we came up with an alternate technique to compare performance. Rather
than using bitmaps, this alternate technique uses lists. For example, for each person,
the list of videos he or she appears is maintained.

While performing queries, there are two stages: i) finding relevant videos and ii)

the indices of intervals where they appear together, and returning the actual intervals.

4.3.1 Finding videos

Using p2v mapping, the videos in which a person appears is found. Firstly, a
similarity search is run against column p and the most similar vector to the given
query image is found. If the similarity score is within a threshold, this indicates that
the person is found and then all the videos the person appears are extracted (i.e.,
bitmap row). FAISS [34] library can find faces in less than 1-second for SIFT1M
dataset [52] having of one million data points, by computing 10000 batch searches on
a 22.8GHz Intel Xeon E5-2680v2 with 4 Maxwell Titan X GPUs on CUDA 8.0. In
our dataset, we have 150 people in 30 videos and to perform the similarity search for
a person, it took 3.51ms for each person.

After filtering out the bitmaps for each person (p2v; and p2v;), we compute
v(@ik)- The timings involved when calculating this operation with respect to varying
number of people is reported in Table 4.1. We then extract 7y from v ), which
takes 5.93us. The timings shown in the above table are with respect to bitmaps with

length as the number of videos, which is 30 in our case.
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No. of people Total Avg. time (u s)

Bitmap method | Alternate method
2 0.050 0.004
3 0.082 0.004
4 0.116 0.007

Table 4.1: Timings involved to calculate v x)

4.3.2 Checking and computing intervals

After finding the videos, each video can be processed and the corresponding
intervals can be returned. For queries involving two or more people, there are basically

three cases that are encountered.
1. No co-appearance in any video
2. Co-appearance in video, but no common time interval for co-appearance
3. Co-appearance in video and at least one common interval for co-appearance

The average time required to return the results where there is no co-appearance
is almost similar in both the approaches. So, we consider only the experiments which

has co-apperance.

i) Co-appearance query
Using bitmap method, finding co-appearance in each video involves bitwise ‘AND’
between pZtZ and th{. followed by finding indices of each set bit — which represents
the time interval of appearance. The timings for each operation is reported in

Table 4.2.
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Operation Avg. time (us)
p2t] & p2tj; (t; 1)) 0.055
Finding indices (¢{;,) | 0.258
Total 0.313

Table 4.2: Timings involved to compute t{i'k) and t{i’k)

In list approach, the time interval of appearance for each person is available and
the intersection between those sets of intervals can be computed using a linear

time algorithm. The average time taken using this approach was 0.376us.

No. of people Total Avg. time (u s)
Bitmap method | Alternate method

2 0.313 0.376

3 0.360 0.678

4 0.403 1.071

5 0.439 1.343

Table 4.3: Timing comparison between Bitmap and List method to find
Co-Appearance between varying number of people

The results from Table 4.2 show that in case of bitmap approach, the time taken
to perform ‘AND’ operation is really fast but finding the indices is costlier in
comparison. Finding indices depends on the type of implementation and we used
the ‘find’ method under the BitString class in Python 3. In future, if a faster
version of this function is released, then it will reduce the overall time taken to
return the intervals. For now, the cost to compute the queries for two people
using bitmap and list approach is almost similar. But the difference is seen when
the number of people in the query increases. From Table 4.3, we see that for

bitwise method, the overall time increases with small steps whereas in linear
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approach, bigger steps in comparison. In bitwise method, all operations prior to

finding indices are the bitwise operations, which are usually very fast.

ii) Next-appearance query
The timings involved for computing next-appearance using bitmap approach is
reported in Table Table 4.4. Finding next appearance for two disjoint set of
intervals is complex than finding co-appearance. A simple and efficient approach
would be to check if the end time of p; comes is the same as the start time of
p;- If it exists, then p; appears right after p;. Since, for each interval of p;, we
traverse all the time intervals of p;, this algorithm’s run time complexity is O(n?)
— which is quadratic time. We can also return the timings of the occurrences as

well. The average timing involved to perform these calculations is 7.03 us.

Operation Avg. time (us)
AND (1) 0.04153

XOR (By) 0.0455

Left shift (By) 0.0440

AND (o)) 0.04153

Comparison (af’k >0, 10.0332

Finding indices of (afk) 0.327
Total 0.53276

Table 4.4: Timings involved to compute Next-Appearance between two people using
Bitmap approach

In Table Table 4.4, we see a big difference while computing next-appearance.
In case of bitmap approach, the overall time required to compute is 0.53276s

which is very fast, compared to 7.03us in the other approach.
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iii) Eventual-appearance query
Checking if a person A appears eventually after person B can be done easily. If
the start time of last interval for person B is greater than the end time of first
interval for person A, then the condition is satisfied, else it is not. For our dataset,
using bitmap approach, the operations involved is similar to Next-appearance
query with the exception that we do not have to find the indices. So the average
time to compute the query, using bitmap approach is 0.20576us. But using the
other approach, it took 0.189us which is faster than the bitmap approach, but

only by a small margin. Prior-appearance query takes similar time.

4.3.3 Pre-indexing

Clustering faces in videos and using those unique faces to build bitmap index
is an automated process. But usually, due to several factors like resolution of video,
alignment of the image etc., the 128-dimensional feature vector generated for a person
in a video may have a value with a deviation of higher magnitude in another video [53].
This leads the system to treat vectors of same person as different.

In the Figure 4.7, the green line represents the distance compared with a
reference image whereas the blue line represents the distance between two images of
same person in different videos. Even though the person is the same in the videos,
the blue line could cross the threshold and consider these faces as different.

To minimize this effect, we came up with an approach such that, before
processing the videos we collect standard high resolution images of the people appearing

in those videos and compute their feature vectors. Then we add those feature vectors

42



\4

Figure 4.7: Distance computed from a reference image

to the reference table and label the vector. This table acts as a proper reference vector
for that person (a proper reference vector is an image descriptor which has resolution
larger than 21 X 21 pixels [54] with affine transformation). So when we parse the
video and look to update the p2v mapping for each person in the video, we do a
similarity search against this reference table to see if there is a vector similar to that
person. If it exists, we can update its corresponding video column and if it does not,
then it indicates that we do not have a reference vector for that person and hence
need to treat the person as a new entity for the system. This approach increased
the performance of the system significantly where the people and their interval of
appearance in videos was detected with high accuracy. The only problem here would

be to collect proper images of the people before processing the video.
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4.4 Summary

This chapter analyzes the performance of queries (co-appearance, next and
eventual) using the bitmap method and the list method along with asserting the
advantages of ‘pre-indexing’. Based on the results, it was found that computing
co-appearance and eventual query between two people in videos could be performed
using other methods with comparable execution time. However, in case of co-appearance
query, if the number of people in the query increased, the bitmap approach yielded
the intervals more rapidly. And for next-appearance query, the bitmap approach

performed much faster than other approaches.
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CHAPTER 5

CONCLUSION

In this thesis, we present an approach for indexing faces in videos which can
be used for temporal querying. The indexes are generated using the bitmap index
where one can utilize this index to perform queries to confirm if multiple people
appear together in a video, determine if a person appears right after another person,
or establish if a person appears sometime after the appearance of another person with
a simple and generic computational steps. All these queries can be performed using
the same indexing scheme employing bit manipulation logic with an assumption that
overall cost for computing the queries should be faster than list intersection techniques.

To validate our hypothesis, labeled dataset was generated manually which
consisted of 30 videos. Each video was parsed to find the faces and record their
corresponding time of appearances. Using this information, the indexing structure was
created as explained in Chapter 3. During this index generation process, it was found
that face tracking only worked well particularly in high resolution videos (typically
greater than 360p) otherwise yielding in many misses. Also, after face tracking, a
threshold distance hyper-parameter was introduced that should be satisfied in order

to verify the person with our database with higher confidence.
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Once the index was created, queries were performed and their timings were
tracked for each operation. The results from the experiment verified that the bitmap
indexing scheme can be used to perform temporal querying of faces with a generalized
approach with respect to the number of query elements and type of query while

maintaining a very high level of efficiency.

5.1 Future Works

There are few strategies that we could adopt in order to increase the performance
of our system. One of them is by reducing the time taken to parse the video for
tracking faces [55]. A robust and fast video parser with index generator will definitely
make the system much more user friendly.

Another future work will involve implementing improved version of face tracking
that especially supports low resolution videos. We also plan on adding spatial context
to our queries, which will help to create more advanced search capabilities from the
content. Additionally, we plan to apply this approach for temporal CCTV videos
analytics [56]. By exploring indexed faces in CCTV videos that focus on capturing
faces (e.g., for ATM confirmation), we will investigate how effectively the behaviors of
suspicious people can be identified and confirmed over time. In addition, the same
structure of indices allows the user to build additional components to the query like
co-appearance, next-appearance, prior-appearance and eventual-appearance.

We also plan on parallelizing our computational steps and testing it in a big
data environment [57]. In a practical scenario, a multimedia database could have a

lot of videos that could extend to millions of hours of recordings. Performing search

46



operation in such database will be a challenging task and one of the possible solution

would be to parallelize the bit manipulation steps in a larger cluster.
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