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Abstract 

SMS: A SMARTWATCH APPLICATION SUITE FOR  

MOBILITY ASSESMENT 

 

Suresh Avula 
 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Engineering 

 

Electrical and Computer Engineering 

The University of Alabama in Huntsville 

May 2024 

 

 Regular assessment of mobility can detect changes in physical health over time and 

discover underlying health issues. Some of these changes in mobility may indicate an 

increased risk of falls, which can lead to serious injuries. Identifying mobility changes can 

help prevent these incidents. Wearable technology can facilitate mobility tests at home and 

alert caregivers or medical professionals to any irregularities and promote proactive 

healthcare. Adoption of smartwatches with various built-in sensors like accelerometer and 

gyroscope creates new opportunities for wearable health monitoring. We developed the 

Smartwatch Application Suite to evaluate functional mobility using standard mobility tests: 

Timed Up and Go Test, Thirty-Second Chair Stand Test, and Two-Minute Walk Test. The 

application suite was implemented and tested on the Samsung Galaxy 4 smartwatch. The 

applications process signals from inertial sensors, generate mobility parameters, and save 

all signals and results on the medical server. We present implementation and verification 

of the application suite.  
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Epigraph 

Scientists study the word as it is, engineers create the world that never has been. 

 

– Theodore von Karman 
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Chapter 1. Introduction

Assessment of mobility is very important for long-term and short-term monitoring 

of the health of the elderly. The Centers for Disease Control and Prevention (CDC) 

created the STEADI (Stopping Elderly Accidents, Deaths & Injuries) tool kit [1] for 

health care providers. This kit includes a set of rules and recommended tests for fall risk 

assessments and interventions. The CDC recommends the evaluation of gait, strength, 

and balance using three tests: the Timed Up and Go (TUG) test [2], the 30-Sec Chair 

Stand (30SCS) test [3], and the 4-stage Balance (4SBT) test [4]. There is another test 

called the Two-Minute Walk Test [5] that is being used in healthcare centers along with 

STEADI to assess mobility. 

UAH has developed a suite of mobile applications running on smartphone to assess 

mobility and store the records on the mobile health server from 2013 to 2016 [6], [7]. In 

addition to smartphones, smartwatches have become increasingly important platforms for 

health management and ambulatory patient monitoring for several reasons: 

• Convenience: strategically positioned on the wrist, smartwatches are very

convenient for notifications, interaction, and continuous monitoring without

additional devices.

• Accessibility: easily accessible on the wrist, smartwatches facilitate

monitoring of possible falls and emergency SOS calls directly from the



 

2 

 

smartwatch that is particularly useful for the elderly and people with certain 

health conditions, providing timely help when needed. 

• Sophisticated sensors: smartwatches feature inertial sensors (accelerometers, 

gyroscopes), vital sign monitoring (PPG, SpO2, ECG, bioimpedance), 

temperature, UV and light sensors.  

• Reminders: smartwatches can be programmed to remind users to take 

medications or perform other health-related tasks. 

The UAH team developed the first smartwatch monitoring application for 

mobility assessment in 2019 [8]. This thesis presents the design and validation of the 

expanded suite of mobility assessment applications on a smartwatch: 

• STUG – smartwatch Timed Up and Go test. The application allows the user to 

perform the automated test and calculate the total time, the number of steps, 

and step duration.  

• 30SCST – Thirty-Second Chair Stand Test allows automation of the test, 

calculate total time of completed stands, the number of stands, and timing of 

individual stands.  

• 2MWT – Two-Minute Walk Test automates the standard test, and calculates 

the total number of steps, timing of left and right steps, and their symmetry. 

The Timed-Up-and-Go (TUG) test is a frequently used clinical test for the 

assessment of functional mobility and fall risk prediction in the elderly population and 

people with Parkinson’s disease, neurological and geriatric problems [9]–[11]. To 

monitor daily activity and to detect changes in the mobility and fall conditions, healthcare 

professionals administer standardized assessments manually. TUG provides an 
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assessment of walking, turning, and postural transitions, including standing and sitting. It  

is a reliable and valid measure of fall prediction in older adults [12]. At the beginning of 

the test, a subject sits in a standard armchair. On the command ‘Go’ the subject stands up 

from the chair and walks to a 3 meters marker on the floor at a normal pace, turns around, 

walks back to the chair, and sits down again. Total time from the command ‘Go’ to end 

of the test is recorded using a stopwatch which is used to analyze subject’s mobility. This 

test is generally performed manually in the clinic using a stopwatch and results are noted 

down in the records. 

 

Figure 1.1 Timed-Up-and-Go Test Phases. 

The Thirty-Second Chair Stand (30SCS) test is a clinical test for the assessment 

of the lower body strength and endurance. In this test, a subject sits in the middle of a 

standard armchair with hands placed on opposite shoulders crossed at the wrists and feet 

flat on the floor. Back should be straights and arms are against chest. On the command 

‘Go’ the subject rises to a full standing position and sits back down again. The subject 

should repeat stands as many times as possible in 30 seconds. Total complete stands from 
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the command “Go” to end of the test are recorded using a notepad which is used to 

analyze subject’s strength of lower body. This test is generally performed manually in the 

clinic using a stopwatch and results are noted down in the records. 

 

  

Figure 1.2 Thirty-Second Chair Stand Test. 

The Two-Minute Walk Test (2MWT) is measure of self-paced walking ability 

and functional capacity, particularly for subjects who cannot manage the longer Six 

Minute Walk Test (6MWT) or 12 Minute Walk Test [13]. In this test the subject walks 

without assistance for two minutes and the total distance is measured. A subject sits in a 

standard armchair. On the command “Go” the subject stands up from the chair and walks 

without assistance for 2 minutes and sits down again. Walking should be at the fastest 

speed possible. Assistive devices can be used but not physical assistance. Total time from 

the command “Go” to the end of the test is recorded using a stopwatch. This test is 

https://www.physio-pedia.com/Six_Minute_Walk_Test_/_6_Minute_Walk_Test
https://www.physio-pedia.com/Six_Minute_Walk_Test_/_6_Minute_Walk_Test
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1639415/pdf/brmedj00510-0042.pdf
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generally performed manually in the clinic using a stopwatch and results are noted down 

in the records. 

 

Figure 1.3 Two-Minute Walk Test. 

Inertial motion tracking, which uses Inertial Measurement Units (IMUs) or 

inertial sensors for motion tracking, has been a hot research topic for more than two 

decades [15]. Typical inertial sensors, such as accelerometers and gyroscopes, are 

integrated into most mobile and wearable platforms and can provide different types of 

sensing information in different scenarios such as healthcare, smart home, automation 

etc. 

Leading wearable operating systems like Android, Apple (iOS) and Android 

WearOS provide Application Programming Interfaces (APIs) that enable the reading of 

raw data from inertial sensors. These operating systems allow to check availability and 

features of available hardware sensors, register to read them at certain intervals, and 

unregister once application completes data acquisition [16], [17].  With increased 

acceptance and availability, smartwatches became the most popular wearable devices in 

healthcare applications. Smartwatch applications can be used to automate the manual 
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tests, monitor vital signs and other physiological parameters, store the result on the cloud 

in personal medical records, administer questionnaires, and generate notifications. We 

expanded the previously developed 30SCST application to smartphone application suite 

to support more comprehensive evaluation of mobility of users. 

The thesis is organized as follows. Chapter 2 presents a survey of smartwatch 

technology and the use of smartwatches in healthcare. Chapter 3 presents the hardware 

and software architecture of the smartwatch-based system used to run the applications. 

Chapter 4 presents the application mobility suite and details of each application in the 

suite. Chapter 5 discusses the validation of implemented signal processing algorithms, 

analysis of experimental data, and algorithms developed based on these data. Chapter 6 

concludes the thesis and describes possible future enhancements of the proposed system. 
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Chapter 2. Wearable Monitoring of Health and Activity Using Smartwatches

Integration of sensors into smartwatches played a very important role in enabling 

wearable monitoring of health status and activity of the users. There are a variety of 

sensors available in today’s wearable and mobile devices. Some sensors are accessible as 

physical hardware devices, and some sensors are virtual, with outputs generated in 

software procedures. For example, Heart Rate sensor (HR) is a software sensor in 

Android operating system, that will calculate average heart rate using hardware 

photoplethysmography (PPG) sensor. The most frequently used sensor types according to 

their Android name are presented in Table 1. A more detailed list of sensors is provided 

in Appendix A. 

Table 2.1 Sensors and their properties. 

Sensor Type Description 

TYPE_ACCELEROMETER Hardware Measures the acceleration force in 

m/s2 that is applied to a device on all 

three physical axes (x, y, and z), including 

the force of gravity. 

TYPE_GYROSCOPE Hardware Measures the angular velocity in all three 

physical axes (x, y, z), in degrees/sec 

TYPE_HEART_RATE Software The calculated value of the heart rate in 

beats per minute.  

TYPE_MAGNETIC_FIELD Hardware Measures the ambient geomagnetic field 

for all three physical axes (x, y, z) in 

microTesla. 

https://developer.android.com/reference/android/hardware/Sensor#TYPE_ACCELEROMETER
https://developer.android.com/reference/android/hardware/Sensor#TYPE_MAGNETIC_FIELD
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2.1 Smartphones for Wearable Health Monitoring  

Mobile Health (mHealth) created a revolution in delivery and applications of 

healthcare [18], [19].  Mobile phones are used as personal servers for integration of 

information from individual sensors. In addition, increasingly sophisticated sensors 

integrated in mobile phones allow use of mobile phones as sensor platforms for 

diagnostic and health management.  

Major mobile operating systems, such as Android, iOS, and Windows, support 

frameworks for managing the sensors including continual sampling, thus enabling a wide 

variety of new mobile sensing applications in different domains. Due to availability of 

these features, high performing microprocessors, communication facilities (cellular, 

WiFi, and Bluetooth/BLE) on the smartphone, researchers are extensively exploring 

smartphone-based solutions for fall detection and prevention.  

Milosevic et al. [6], [20]  developed a smartphone application called sTUG to 

completely automate and quantify the instrumented version of the Timed-Up-and-Go test, 

and facilitate testing at home and physician’s office. The subject mounts a smartphone on 

the chest (or) belt and starts the application to capture movement by using smartphone’s 

built-in accelerometer and gyroscope sensors.  

Milenkovic et al.[21] presented a Smart Wheelchair that uses a smartphone to 

record physical activity of manual wheelchair with the help of a smartphone’s built-in 

sensors. A Smartphone application called mWheelness was developed to capture and 

process activity related data and periodically upload to the mHealth server. Along with 

these data, the smartphone acquires heart rate data from the Zephyr Heart Monitor and 

logs the heart activity for processing and quantifying results. 
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Jovanov et al. [22] developed a mobile wellness monitoring system (imWell) to 

continuously assess the dynamic physiological response to posture transitions during 

activities of daily living. They used a Zephyr Bio Harness3 physiological monitor to 

continuously report heart activity and physical activity via Bluetooth to a personal mobile 

device. The personal device processes the signals from the accelerometer to recognize 

posture transitions in real-time, characterizes dynamic heart response to posture changes, 

and uploads the event descriptors to an mHealth server. 

Wood et al.[23] developed a smartphone based mHealth application that can 

diagnose, track, control infectious diseases and improve efficiency of health system. They 

propose using either the built-in or externally connected sensors to the phone that can 

diagnose, analyze a condition and connect to mobile health networks through mHealth 

app. These data are stored and updated in the public health system and patients are 

provided remote consultation and care. A comprehensive review of the use of wearable 

technology during the pandemics was presented in [24].  

Wang et al.[25] explored the clinical effect of continuous care for patients with 

type 2 diabetes using mobile health application by comparing traditional discharge 

nursing using a mobile phone application. Their research concluded that patients using 

mobile health applications and continuous care showed improvements in disease 

awareness, blood glucose levels and less rehospitalization. 

Weisel et al. [26]  investigated the efficacy of standalone smartphone apps for 

mental health. Interventions utilizing mobile apps have several benefits, such as reaching 

individuals who would otherwise not seek treatment and delivering large-scale 

interventions in emerging and low-income economies. 
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While smartphones applications proved to be very valuable in healthcare, they 

have some significant limitations. For applications to run and collect sensor data from 

onboard sensors in real time, phones must be attached to the patient, sometimes on body 

location of interest for the given application. While most of the population uses mobile 

phones, they are often carried in pockets, bags or placed, which significantly limits 

possible applications of activity monitoring. 

2.2 Smartwatches as Wearable Health Monitoring Platform 

A smartwatch is a wristwatch with built-in computer hardware which allows it to 

run specialized applications, and display information, such as the weather, calendar 

information, and user’s activity. The smartwatch market has grown significantly over the 

past few years, with global market size USD 30.4 billion in 2021 and is expected to 

expand at a compound annual growth rate (CAGR) of 8.2 % from 2022 to 2030 [27].  

Smartwatches were initially developed as fitness trackers and to complement 

smartphones to receive notifications from the phone applications.  The latest 

smartwatches are more powerful with many features including support to cellular service 

which makes it a replacement for the smartphone [28]. The current generation of 

smartwatches integrates a rich set of powerful physiological sensors: inertial sensors 

(accelerometer and gyroscope), PPG heart rate monitor, blood oxygen saturation monitor, 

ECG, body composition/GSR, ambient sensors (barometer, temperature, ambient light, 

UV sensor), monitor/GSR, digital compass (magnetometer), GPS location, and 

microphone. Some of the possible uses of smartwatches include [29]:  

• Heart Activity Monitoring: Most smartwatches come with built-in PPG heart rate 

sensors that can continuously or periodically measure heart rate that can be used 
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as a notify users during exercise or assess fitness level. Some watches have 

integrated ECG sensor that can alert users to potential heart-related issues, such as 

atrial defibrillation and irregular heart rhythms. 

• Sleep Tracking: A combination of activity monitoring and heart rate monitoring 

provides an assessment of the sleep patterns, including the amount of deep, light, 

and REM sleep. This can help in understanding sleep quality and making 

necessary lifestyle changes. 

• Activity Tracking: Smartwatches can track various activities like walking, 

running, cycling, swimming, and more. They can measure steps, distance covered, 

calories burned, and provide data about workouts. 

• Blood Oxygen Saturation (SpO2) Monitoring: Some advanced smartwatches can 

measure blood oxygen levels, which can be crucial for those with respiratory 

conditions. 

• Fall Detection: Some smartwatches have fall detection capabilities. If a user takes 

a hard fall, the watch can send an alert. If the user does not respond within a set 

time, it can automatically call emergency services. 

• Stress Monitoring: By analyzing variations in heart rate and other metrics, some 

smartwatches can estimate user’s stress levels and offer relaxation reminders or 

guided breathing exercises. 

• Blood Pressure Monitoring: While less common and often not as precise as 

traditional cuffs, some smartwatches offer blood pressure monitoring features. 

• Environmental Alerts: Some smartwatches can provide alerts about environmental 

conditions that might affect health, such as high UV levels. 
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With the growth in smartwatch market and technological advancements like wide 

range of built-in sensors and support from leading players, smartwatches are becoming 

very popular in health care sector for regular tracking of various conditions through 

customized applications, diagnostic applications, and long-term monitoring. In addition 

to standard applications provided by the smartwatch manufacturers, there are more than 

41,000 healthcare and medical applications available in the Apple app store [30].  

Smartwatches are developed worldwide on different operating systems, support 

different hardware and come with standardized and customized applications. The most 

popular smartwatches include Apple, Samsung, Fitbit, Garmin, and Google. Apple and 

Samsung dominate the smartwatch market with their rich features, although other 

manufacturers increase their share of the market, particularly for low-price platforms 

[31]. A world-wide survey around on the most desired features in smart watches indicates 

that Fitness/health tracking features are the most important after battery life [32].  

SmartMonitor is a company that developed an application called Inspyre that can 

run on both Apple or Samsung smartwatches and detects seizures [33]. The gyroscope 

and accelerometer of these watches are used to detect seizure like movements and use the 

wearer’s smartphone to call a caregiver for assistance. Gutierrez et al. demonstrated that 

smartwatch with heart rate sensor and skin temperature sensor could determine if the 

user’s Blood Alcohol Content (BAC) Level is within a certain threshold with a precision 

of 0.970 ± 0.002. 

Lutze et al. [34] developed a sensor data collection app and used it to collect 

sensor information from different activities such as walking, eating, etc. Data mining was 
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used on the sensor data to develop algorithms that could determine when an action 

performed by the wearer was a drinking motion.  

Jovanov et al. [8] developed a smartwatch application for automation of the 30 

second chair stand test (30SCST). The test measures the number of complete standups a 

person can perform during a 30s interval. The test is conducted using a straight back chair 

without arm rests, and a stopwatch. While a standard test provides only the number of 

completed stands, automated tests provide several additional parameters. They 

implemented a smartwatch application for Android Wear OS operating system and tested 

the application on two smartwatch platforms: Fossil Gen 4 and Polar M600. The 

smartwatch application collects inertial signals (3 axis of acceleration and 3 gyroscope 

signals) sampled at Fs=100 Hz, and heart rate provided as events in Wear OS. 

Matey-Sanz et al. [35] present and describe a system capable of automating the 

TUG test using a consumer WearOS-based wrist-worn smartwatch, which collects 

accelerometer and gyroscope sensor data, and a paired smartphone capable of measuring 

and segmenting the TUG test sub-phases in real time, using sliding window feature 

extraction based on an offline-trained machine learning model. 

Christine et al. [36] conducted a survey of how smartwatches work in remote 

health monitoring. The results show that most research on smartwatches has been 

conducted only as feasibility studies for chronic disease self-management. Specifically, 

these applications targeted various disease conditions whose symptoms can easily be 

measured by inertial sensors, such as seizures or gait disturbances. 
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2.3 Modelling of Step Detection 

To analyze steps during walking, different positioning of single or multiple 

inertial sensors can be used. Godfrey et al. [37] used single accelerometers on the chest 

and used valley points on 3D vector magnitude to detect the start and stop of a step 

during walking. 

Madhushri et al. [7] developed algorithms using both raw accelerometer and raw 

gyroscope signals in the smartphone application STUG to analyze and detect the steps 

during the test. The application also uses the smartphone’s magnetic sensor data to detect 

turning and the number of steps before the turn. 

Troung et al. [38] presented the precise stride counting-based method to estimate 

the walking distance using insole sensors. The insole sensors consisted of a triaxial 

inertial sensor and eight pressure sensors. The authors estimated the traveling distance 

based on the number of strides extracted from the phase information. However, they only 

considered the walking distance estimation of normal walking on flat ground. 

Ho et al. [39]  developed a method of walking distance estimation based on an 

adaptive estimator of the step length and robust step detection. The presented method 

successfully estimated the traveling distance at three speed levels and four different 

distances. 

In most common approaches, all processed activities data are directly fed to an 

adaptive step detector without classifying the performing activities. It is more effective if 

the activities are classified because the thresholds of the acceleration values depend on 

the type of activities. Susi et al.[40] proposed adaptive step detection by analyzing the 

characteristics of the gait cycle, which included the hand motion and carrying-mode 



 

15 

 

difference of a pedestrian using a smartphone. The authors detected the motion modes, 

e.g., swinging, texting, phoning, bag carrying and irregular motion, before applying the 

step detection algorithm on the collected inertial signals. 

Bui et al. [41] implemented robust step detection and adaptive distance estimation 

algorithm based on the classification of five daily wrist activities (phone texting, phone 

calling, hand in pocket, suitcase carrying and hand swinging.) while walking at various 

speeds using a smart band. Park et al demonstrated that the arm and foot movements were 

synchronized during walking [42]. This relationship is used by Troung Bui et al to detect 

the step events by analyzing the acceleration data from the smart band [43]. 

Matey-Sanz et al.[44]  implemented a smartwatch application that allows the user 

to start the data collection process (for ML model training) or to start the execution of the 

TUG test. When instructed, the smartwatch starts the data collection process and sends 

the collected data on a regular basis to the paired smartphone device through Bluetooth. 

In COLLECTION mode, the smartphone stores the incoming data into a file to offline-

train the model later. In TUG mode, the smartphone device processes the incoming data 

in real time and infers the current activity that the user is performing. Once the 

smartphone detects that the user has finished the test (i.e., the user sat down), it prompts 

the smartwatch to stop the data collection process, computes the test results, and sends 

the total time of the test to the smartwatch to provide feedback to the user.  
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Chapter 3. Hardware and Software Architecture of the Smartwatch

We used a Samsung Galaxy Watch 4 [45] to develop and test the smartwatch 

applications in this project. 

3.1 Hardware Architecture 

The Samsung Galaxy Watch has Exynos W920 (5nm) Dual Core 1.18GHz 

processor, 16 GB Storage with 1.5GB of RAM. It has all the inertial sensors and 

connectivity through Bluetooth, Wi-Fi, LTE. It has a Super AMOLED display. 

Figure 3.1 Samsung Galaxy Watch 4 Default Screen and App Screen. 

The Samsung Galaxy Watch 4 is Compatible with devices Android 6.0 or higher. 

Watch activation is done after connecting to compatible Android device. This smartwatch 

needs “Galaxy Wearable app” on the compatible Android device to activate. Later apps 

on the smartwatch can be managed using this Galaxy Wearable app [Appendix A]. 
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3.2 Software Architecture 

 Samsung Galaxy Watch 4 supports Wear Operating System (Wear OS) version 4 

co-developed by Google and Samsung. Wear OS 4 [46] is based on Android, which 

allows integrated development environment like Android Studio [47] to develop 

customizable applications for smartwatches. The availability of all inertial sensors in one 

device along with various connectivity options makes this smartwatch a powerful 

embedded sensor platform. This allows developers in various fields to design and create a 

variety of new and exciting health applications. 

This sensor data can be used to design applications based on the needs of the user. 

Wear OS Application consists of a sequence of activities with each activity consisting of 

a group of user interface views. Events allow users to create buttons, text boxes, list view 

and other view objects that are defined using Extensible Markup Language (XML).  

The Android Sensor consists of a list of sensor implementation classes. Each 

sensor implementation class allows the user to acquire and log data from embedded 

sensors such as accelerometer and gyroscope. The Sensor Coordinate System uses a 

standard 3-axis coordinate system to express data values. When a device is laid down 

horizontally, the X axis points to the right, the Y axis points up in the same plane, and the 

Z axis points vertically from the smartwatch, as shown in Figure 3.2. 
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Figure 3.2 Coordinates of inertial sensors in smartwatch. 

The Sensor Manager class is the super class which gives primary access to all hardware 

sensors. Each hardware sensor is listed as a service where the Sensor Manager class 

allows the user to register (enable) and un-register (disable) each service. The Sensor 

event listener is an interface that provides the callbacks created by sensor related events 

executed by the user provide procedures. Sensor Event is an object that contains all the 

information that is passed to an application when a hardware sensor has some 

information to report. A sensor event object is passed from sensor system service to 

callback methods on Sensor event listener. The listener processes the data in the sensor 

event object in an application specific manner. It is important that acquiring values from 

a sensor should not be implemented inside an activity as it might cause time delays and 

dropped data. This is because Android is not a Real Time Operating System (RTOS) and 
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some measured values might be delayed due to the processing of other tasks at that time 

(or) system might be busy performing other high priority jobs. 

The best practices for accessing and using sensors are the following: 

• Verify sensor existence in the device before attempting to acquire data 

from the sensor. 

• Request for necessary permissions to access the sensors. 

• Register for sensors (enable) only when needed and un-register (disable) 

sensors after recording data samples. 

• Check and configure sampling rate that is suitable for the application, 

since the sensors can provide data at high sampling rates, at a higher use 

of resources (processing time, memory, and power). 

3.3 Android Activity Life Cycle 

 The Android Activity Life Cycle is the set of states that an activity goes through 

during its lifetime. It is designed as a series of callback methods that the Android 

framework calls on the activity as the activity transitions from one state to another. The 

lifecycle consists of seven different states. 

• onCreate(): Called when the activity is first created. Used to initialize the 

activity and its views. 

• onStart(): Called when the activity becomes visible to the user, but not 

yet in the foreground and interacting with the users. 

• onResume(): Called when the activity comes to the foreground and is 

interacting with the user. 
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• onPause(): Called when another activity comes to the foreground and the 

current activity is no longer in the foreground. 

• onStop(): Called when the activity is no longer visible to the user. 

• onDestroy(): Called when the activity is about to be destroyed. Used to 

cleanup and release resources. 

• onRestart(): Called when the activity has been stopped and is restarting. 

 

 
Figure 3.3 Activity Lifecycle in Android.  



 

21 

 

3.4 Development Environment 

 Android studio chipmunk version is used as IDE and java as programming 

language to develop the applications. 

3.5 Publishing the Results 

 Results from each of the applications will be published using Message Queuing 

Telemetry Transport (MQTT) [48] Protocol. It is designed as an extremely lightweight 

publish/subscribe messaging transport that is ideal for connecting remote devices with a 

small code footprint and minimal network bandwidth. It is standard messaging protocol 

for the Internet of Things (IoT). There are clients which can either publish the messages 

to broker or subscribe to notifications from broker as shown in Figure 3.4. 

subscriber 1 

 

 

 

                  subscriber 2 

Figure 3.4 MQTT Client Broker Architecture. 

 

CLIENT 1 

CLIENT 2 

CLIENT 3 

MQTT 

BROKER 
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These results are displayed instantly when a broker subscribes to the server. We 

use mosquito [49] server to publish the results and use MQTTAnalyzer phone 

Application [50] as Broker to subscribe and display the results. 
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Chapter 4. A Smartwatch Application Suite

A smartwatch Application Suite was developed consisting of the STUG, 30SCST 

and 2MWT that automate the standard Time Up and Go, 30 Seconds Chair Stand and 2 

Minute Walk tests. 

4.1 STUG Application 

4.1.1 Design and Architecture 

The STUG (Smart Timed Up and Go) application is designed and developed to 

calculate the time it takes to finish TUG test and mean step duration using the sensor 

values from accelerometer, gyroscope collected during the test at a sample rate of 100Hz. 

The application contains Start, Stop and Close (Result) Views as shown in Figure 4.1. 

Figure 4.1 STUG Views. 

The Application starts when the user clicks the START button. It registers and 

starts recording heart rate from the HR sensor. View is changed to display with a 15 

second countdown timer and STOP button. Once the countdown timer reaches zero, the 



 

24 

 

application registers for accelerometer, gyroscope sensors and starts recording the signal. 

It vibrates indicating the user to start the test. After the user finishes the TUG test, the 

user clicks on the STOP button that will stop recording accelerometer, gyroscope signals 

and unregister them. The application will continue to record heart rate and physical 

recovery of the subject for another 15 seconds. During this time, the countdown timer is 

displayed; at the end the display changes to RELAX. At the countdown of zero, the 

application generates a vibration to indicate the end of test, stops recording HR data and 

unregisters the HR sensor. Display changes to CLOSE showing the total TUG time. 

Clicking on the CLOSE button will take the user to the application home screen with the 

START option to test again. 
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Figure 4.2 STUG Application Flowchart. 

 

 

4.1.2 Experimental Data Collection 

 

 All the sensor data captured during the test is uploaded to a preconfigured ftp 

server in 3 different text files, one for IMU, one for HR and one to store Result. 



 

26 

 

4.1.3 Results Data in Health Server 

 Results from the STUG application are instantly uploaded to preconfigured 

Health Server using MQTT protocol as shown in Figure 4.3.  

 

 

Figure 4.3 STUG Results Stored in Server. 

 

4.2 30SCST Application 

4.2.1 Design and Architecture 

 

The 30SCST (30 Seconds Chair Stand Test) application is designed and 

developed to calculate number of stands a subject can perform from a chair in 30 seconds 

using the sensor values from accelerometer, gyroscope collected during the test at a 

sample rate of 100Hz. The application contains Start, Stop and Close (Result) Views as 

shown in Figure 4.4. 
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Figure 4.4 30SCST Views. 

 

 The Application starts when the user clicks the START button. It registers 

and starts recording heart rate from the HR sensor. View is changed to display with a 15 

second countdown timer and STOP button. Once the countdown timer reaches zero, the 

application registers for accelerometer, gyroscope sensors and starts recording the signal. 

It vibrates indicating the user to start the test. At the end of 30 seconds, the application 

will stop recording accelerometer, gyroscope signals and unregister them. It vibrates 

indicating user to stop the test and rest while continuing to record heart rate and physical 

recovery of the subject for another 15 seconds. During this time, the countdown timer is 

displayed. At the countdown of zero, the application generates a vibration to indicate the 

end of test, stops recording HR data and unregisters the HR sensor. Display changes to 

CLOSE showing the total time and number of stands calculated by Algorithm. Clicking 

on the CLOSE button will take the user to the application home screen with the START 

option to test again. 
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Figure 4.5 30SCST Application Flowchart. 

 

 

4.2.2 Experimental Data Collection 

 All the sensor data captured during the test is uploaded to a preconfigured 

ftp server in 3 different text files, one for IMU, one for HR and one to store Result. 
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4.2.3 Results Data in Health Server 

 Results from the 30SCST application are instantly uploaded to 

preconfigured Health Server using MQTT protocol as shown in Figure 4.6. 

 

Figure 4.6 30SCST Results Stored in Server. 

 

4.3 2MWT Application 

4.3.1 Design and Architecture 

The 2MWT (2 Minute Walk Test) application is designed and developed to 

calculate the total number of steps taken in 2 minutes and mean step duration using the 

sensor values from accelerometer, gyroscope collected during the test at a sample rate of 

100Hz. The application contains Start, Stop and Close (Result) Views as shown in 

Figure 4.7 
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Figure 4.7 2MWT Views. 

 

The Application starts when the user clicks the START button. It registers and 

starts recording heart rate from the HR sensor. View is changed to display with a 15 

second countdown timer and STOP button. Once the countdown timer reaches zero, the 

application registers for accelerometer, gyroscope sensors and starts recording the signal. 

It vibrates indicating the user to start the test. At the end of 30 seconds, the application 

will stop recording accelerometer, gyroscope signals and unregister them. It vibrates 

indicating user to stop the test and rest while continuing to record heart rate and physical 

recovery of the subject for another 15 seconds. At the countdown of zero, the application 

generates a vibration to indicate the end of test, stops recording HR data and unregisters 

the HR sensor. Display changes to CLOSE showing the total steps. Clicking on the 

CLOSE button will take the user to the application home screen with the START option 

to test again. 
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Figure 4.8 2MWT Application Flowchart. 

 

4.3.2 Experimental Data Collection 

 All the sensor data captured during the test is uploaded to a preconfigured 

ftp server in 3 different text files, one for IMU, one for HR and one to store Result. 
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4.3.3 Results Data in Health Server 

 Results from the 2MWT application are instantly uploaded to 

preconfigured Health Server using MQTT protocol as shown in Figure 4.9. 

 

Figure 4.9 2MWT Results Stored in Server. 
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Chapter 5. Validation of Mobility Application Suite

Validation of the smartwatch applications requires sophisticated monitoring of 

absolute position of body segments during the test. Clinical standard is the use of high 

precision optical systems that track reflective markers on the body with high spatial 

(<1mm) and temporal (<10ms) resolution. One of the best optical systems for motion 

tracking is Vicon [51]. A low-tech option is analysis of synchronized video recordings of 

subjects during the test. However, maximum time resolution in that case is limited to the 

frame rate, typically 33 ms, and it is highly subjective, different experts may annotate 

different frames as actual events (e.g. end of standup, or actual moment when leg touches 

the ground).  

Spaulding Rehabilitation hospital as a part of Harvard Medical School in Boston, 

MA, uses Vicon system for clinical evaluation of mobility of patients, mostly stroke and 

Parkinson’s patients. We asked Dr. Paolo Bonato, Director of the Motion Analysis 

Laboratory at Spaulding Rehabilitation Hospital [52], Boston MA, for simultaneous 

recording of body markers and inertial signals from our smartwatch application. Dr. 

Bonato is an Associate Professor in the Department of Physical Medicine and 

Rehabilitation, Harvard Medical School, Boston MA, an Adjunct Professor of 

Biomedical Engineering at the MGH Institute of Health Professions, Boston MA, and an 

Associate Faculty Member at the Wyss Institute of Biologically Inspired Engineering at 

Harvard University, Boston, MA. The Motion Analysis Lab (MAL) at Spaulding 

Rehabilitation Hospital brings state-of the art technology and internationally recognized 

expertise to the study and treatment of mobility-limiting conditions, including cerebral 

palsy, stroke, traumatic brain injury, spinal cord injury and Parkinson’s Disease. The lab 
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is one of the country’s pre-eminent research labs in the development of ground-breaking 

robotics and wearable technology for patient rehabilitation. We were not able to test 

smartwatch applications on real patients at the hospital until a dedicated IRB approval of 

the Spaulding hospital.  

Accurate testing of mobile applications requires testing on real subjects, because 

of the unique motion patterns. UAH established close collaboration with Prof. Ângelo 

José Gonçalves Bós, Professor of the School of Medicine of Pontifical Catholic 

University of Rio Grande do Sul (PUCRS). Prof. Bos is a Researcher at the Institute of 

Geriatrics and Gerontology (IGG) where he coordinates de Research Project 

Multiprofessional Care for the Oldest-Old. He also coordinates the Program "Assumindo 

o Controle de sua Saúde" for the Pan American Health Organization (Brazilian branch). 

He was the President of City Council of the Older-Adults of Porto Alegre (2014-2016) 

and the Brazilian Society of Geriatrics and Gerontology RS Branch between 2012 and 

2014. His expertise includes longitudinal data analysis. Prof. Bos used our smartwatch 

applications to collect smartwatch recordings from subjects in his studies using standard 

mobility tests. We had to analyze records using video recordings of subjects during the 

test, synchronized with the smartwatch recordings. However, these recordings were very 

valuable as they represent real elderly subjects and capture unique motion patterns.  

5.1. Methods 

MAL uses Vicon systems with 10 cameras that allow absolute positioning of 3D 

markers with millimeter resolution and sampling frequency of 120Hz. We simultaneously 

recorded the position of markers as shown in Figure 5.1, and the stream of data from the 

inertial sensors on the smartwatch in our application. 
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Figure 5.1. Position of markers for monitoring of motion during STUG and 30SCST validation in MAL 

Laboratory. 

 

The recording data from all the sensors is captured simultaneously along with the 

smartwatch data. Since applications on the smartwatch are running at 100 Hz, 

accelerometer and gyroscope signal is resampled at 120 Hz to synchronize with MAL 

data. 

Prof. Angelo Bos from Pontifical Catholic University of Rio Grande, Brazil, ran 

the smartwatch applications in elderly care ran smartwatch application on patients and 

provided us with videos and sensor data. 
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We also recorded each of the tests on individual subjects(S2&S3) using an iPhone 

camera with 30fps and smartwatch application running at 100 Hz. Videos are annotated 

for manual steps and compared with the results generated by the algorithm running in the 

smartwatch application. 

 

5.2. STUG Analysis and Algorithm 

5.2.1 Raw Signal Data Analysis 

We used the Right Heel and Left Heel sensor data from MAL and identified the 

steps as shown in Figure 5.2. 

 

 
Figure 5.2 TUG step detection using absolute position of heel markers from Vicon data. 

Annotations from the Vicon data allowed precise time stamps for each step. We 

were able to confirm that the peaks of accelerometer magnitude and gyroscope 

component Gz zero crossing, could be used to find the absolute steps as shown Figure 

5.3.  
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Figure 5.3  STUG Manual annotations from Vicon video recording. 

Making annotations from the iPhone at 30fps and using the Accelerometer 

magnitude and Gyroscope Gz zero crossing, we could find the absolute steps on two 

trials is shown  Figure 5.4 and Figure 5.5. 

 

Figure 5.4 STUG Manual steps annotations from iPhone video recording -Trial1. 
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Figure 5.5 STUG Manual steps annotations from iPhone video recording -Trial2. 

 
 

5.2.2 Algorithm Based on IMU Sensors 

Based on the manual annotations above, we developed an algorithm to calculate 

steps based on sensor values from Accelerometer and Gyroscope. as shown in Figure 

5.6.  
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Figure 5.6 STUG Algorithm Annotations. 

 

• Calculate magnitude of the dynamic 3D acceleration with gravity subtracted 

(wM) and find peaks. 

• Store GyroZ and annotate indices of the zero crossing samples. 

• Store and calculate peak valley for combined angular velocity (GyroX+GyroY). 

• Find the first peak of wM after every zero crossing, which gives us the individual 

steps. 

• Ignore the steps that fall in peak valley of GyroX+GyroY as they account for 

turns. 

• Total time of the test is the timestamp of the last sample in the IMU vector.  
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5.2.2 Results 

Results of validation of STUG application using Vicon and video data analysis is 

shown in Table 5.1. We present results from three subjects, one using Vicon (S1) and two 

(S2&S3) using video analysis [53].  Primary focus in this analysis was possible use for 

assessment of stroke rehabilitation patients. Therefore, we tried to assess timing of 

individual steps on each side and symmetry of left and right steps. During recovery and 

rehabilitation from stroke it is important to quantify recovery, and we implemented 

symmetry of left and right steps as a quantitative measure of their recovery. We can use 

only full steps before and after the turn, shown as Left and Right steps in the table. 

Average duration of Left/Right steps is presented as TsL/Tsr, together with the standard 

deviation of step duration on each side. Symmetry of step duration is presented and 

calculated as shown in equations (1) and (2).  

LRratio = TsL/TsR (1) 

Symm = (TsL-TsR)/(TsL+TsR) (2) 
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Table 5.1 STUG Results.

 

 

Average error in the assessment of individual steps was 27ms, maximum error 

was 89ms, and error in the assessment of symmetry of left and right steps for each subject 

is shown below. 

 

5.3. 30SCST Analysis and Algorithm 

5.3.1 Signal Data Analysis 

We used the Right Wrist and Left Wrist sensor data from MAL and identified 

individual stands, as shown in Figure 5.7. Inertial signals from the smartwatch are shown 

in Figure 5.8.  
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Figure 5.7 30SCST Manual annotations and stand detection from Vicon Data. 

 
Figure 5.8 30SCST Manual stand annotations from Vicon Trial. 

Making annotations from the video at 30fps and using zero crossing of the 

combined angular velocities (Gyroscope Gx + Gy), we could find the absolute steps on 

two trials is as shown in Figure 5.9 and Figure 5.10. 
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Figure 5.9 30SCST Manual stands annotations from video recording -Trial1. 

 

 
  Figure 5.10 30SCST Manual stands annotations from video recording -Trial2. 
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5.3.2 Algorithm Based on IMU Sensors 

Based on the manual annotations above, we came up with an algorithm to 

calculate steps based on sensor values from Accelerometer and Gyroscope as shown in 

Figure 5.11. 

 

Figure 5.11 30SCS Algorithm Annotations. 

 

• Store combined angular velocity (GX+GY) and find zero crossings. 

• Find peaks of GX+GY. 

• find the first peak of (GX+GY) after every zero crossing which gives us the 

potential stands. 

• Use every other peak to mark stands since two peaks are generated per each cycle 

(standup). 

• Count all completed stands in 30 seconds. 
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5.3.2 STUG Results 

We used 3 subjects to validate the algorithm. Subject S1 was monitoring in MAL 

(Vicon lab) with high precision. The average stand duration error is 13ms. Next two 

subjects are video recorded using iPhone at 30fps and the average stand duration errors 

were 26ms and 21ms. We believe that the reason for the increased error ratio can be 

because of the manual annotation of the video. 

Table 5.2 30SCS Results. 

  S1 S2 S3 

Vicon/video       

No. of stands 9 7 7 

Average stand Duration 2.893 3.636 3.656 

        

smartwatch app       

No. of stands 9 7 7 

Average Stand Duration 2.88 3.61 3.634 

errors       

errors 0.013 0.026 0.021 

 

5.4. 2MWT Analysis and Algorithm 

5.4.1 Raw Signal Data Analysis 

The 2MWT is used to assess mobility. Traditionally, only total distance traveled 

is used to assess mobility of subjects. We decided to use measurement of individual steps 

and support evaluation of symmetry of steps to support assessment of stroke patients. 

Step recognition algorithm implemented in 2MWT is the same as algorithm used for 

STUG. We used the algorithm to assess the duration of steps and annotate them as left or 

right steps.  
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Since the distance traveled in 2MWT is much longer than typically used in Vicon 

labs, we used videos to validate algorithms.  Making annotations from the iPhone at 

30fps and using the Accelerometer magnitude and Gyroscope GZ zero crossing, we could 

find the absolute steps on two trials is as shown in Figure 5.12. 

 

 
Figure 5.12 2MWT Manual steps annotations from iPhone video recording -Trial1. 

 

5.4.2 Algorithm Based on IMU Sensors 

Based on the manual annotations above, we developed an algorithm to calculate 

steps based on sensor values from Accelerometer and Gyroscope. The algorithm is the 

same as the step processing algorithm used in STUG application. 

• Calculate magnitude of the dynamic 3D acceleration with gravity subtracted 

(wM) and find peaks. 

• Store GyroZ and annotate indices of the zero crossing samples. 

• Store and calculate peak valley for combined angular velocity (GyroX+GyroY). 
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• Find the first peak of wM after every zero crossing, which gives us the individual 

steps. 

• Ignore the steps that fall in peak valley of GyroX+GyroY as they account for 

turns. 

• Total time of the test is 120 seconds (2 minutes) which is controlled by the 

software in the application. 

 

 

5.4.2 Results 

We collected results from only one subject for this application. The subject 

walked in a room for 2 minutes and had to turn multiple times due to the limitation in the 

length of the room. We could detect those turns as regular steps with sufficiently wide 

turns (~>0.5m) if they satisfy the algorithm constraints. We are working on collecting 

more data so that we can compare the results and identify the turns more accurately. A 

test run with one subject (S3), indicates the error in Average step duration of about 56ms 

as shown the Table 5.3. 

 Table 5.3 2MWT Results. 

video  S3 

   

No. of steps 218 

Average step Duration [s] 0.537 

    

smartwatch app   

No. of steps 217 

Average Step Duration [s] 0.536 

errors   

Average step error [ms] 5.6 
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Chapter 6. Conclusions

Smartwatches represent powerful sensing and processing platforms that provide 

new opportunities for diagnostic and monitoring healthcare procedures. Since the 

smartwatch is conveniently located on the body and used most of the time throughout the 

day, it could be used for health care applications without attaching new sensors.  

This thesis demonstrated that smartwatch devices can be successfully used to 

automate the execution of the standardized mobility tests, paving the way for less 

intrusive and prolonged monitoring for both clinical and wellness practices. We 

demonstrated that the application could perform all the data processing in real time on the 

smartwatch, without depending on other computing devices like smartphones. Collected 

signals are also uploaded to the server for possible postprocessing, longitudinal 

monitoring, and data mining.  

The main original contributions of this thesis include: 

• Development of an expanded suite of the smartwatch mobility assessment

applications to include modified 30SCST, and new applications STUG and

2MWT.

• Validation of algorithms using Vicon monitoring and video annotations.

Future work would include improvement of the algorithms: 

• Fine tuning of algorithms for older subjects with slower and uneven motion.

• STUG: Improve Algorithm to identify sit-to-stand at the start and stand-to-sit

at the end.

• 30SCST: Improve Algorithm to identify each sit along with stand and get data

on average time on sit-to-stand and stand-to-sit.
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The algorithm used in these applications should be robust and independent of the 

arm used. The application can be ported on other compatible smartwatches. 
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Appendix A. Sensors 
 

Table A.1 Comprehensive List of Sensors. 

Sensor Reporting Mode Description 

TYPE_ACCELEROMETER Continuous Measures the 

acceleration force in 

m/s2 that is applied to a 

device on all three 

physical axes (x, y, and 

z), including the force of 

gravity. 

TYPE_GYROSCOPE Continuous Measures the angular 

velocity in all three 

physical axes (x, y, z), 

in degrees/sec 

TYPE_HEART_RATE On-Change The reported value is 

the heart rate in beats 

per minutes. 

TYPE_MAGNETIC_FIELD Continuous Measures the ambient 

geomagnetic field for all 

three physical axes (x, 

y, z) in microTesla. 

TYPE_GRAVITY Continuous Measures the force of 

gravity in m/s2 that is 

https://developer.android.com/reference/android/hardware/Sensor#TYPE_ACCELEROMETER
https://developer.android.com/reference/android/hardware/Sensor#TYPE_MAGNETIC_FIELD


 

55 

 

applied to a device on 

all three physical axes 

(x, y, z). 

TYPE_AMBIENT_TEMPERATURE On-Change Provides the ambient 

(room) temperature in 

degrees Celsius 

TYPE_LIGHT On-Change Reports the current 

illumination in SI lux 

units 

TYPE_PROXIMITY On-Change Reports the distance 

from the sensor to the 

closest visible surface 

TYPE_PRESSURE Continuous Reports the atmospheric 

pressure in hectopascal 

(hPa) 

TYPE_RELATIVE_HUMIDITY On-Change Measures relative 

ambient air humidity 

and returns a value in 

percent 
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Examples of composite sensors that rely on data from one or several physical sensors are 

shown below. 

 
Table A.2 Composite Sensors. 

Sensor Category Underlying physical 

sensors 

Reporting 

Mode 

Game rotation 

vector 

Attitude Accelerometer, gyroscope Continuous 

Gravity Attitude Accelerometer, gyroscope Continuous 

Linear Acceleration Activity Accelerometer, gyroscope Continuous 

Rotation Vector Attitude Accelerometer, 

gyroscope, magnetometer 

Continuous 

Step Counter Activity Accelerometer On-Change 

Tilt Detector Activity Accelerometer Special 

Wake up Gesture Interaction Undefined One-shot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://source.android.com/docs/core/interaction/sensors/sensor-types#game_rotation_vector
https://source.android.com/docs/core/interaction/sensors/sensor-types#game_rotation_vector
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Appendix B. Setting up Applications on the Samsung Galaxy Watch 4 
 

To set up the Samsung Galaxy Watch 4, we used the "Galaxy Wearable" app from 

the Samsung Galaxy android phone. It can be done from an iOS-based phone too with a 

Samsung wearable app. 

https://www.samsung.com/us/support/answer/ANS00078020/ 

Turn off all the notifications on the watch so that they will not interrupt during the 

test. 

https://developer.android.com/training/wearables/get-started/debugging 

Install adb and fastboot by following this page. 

https://nerdschalk.com/how-to-install-adb-and-fastboot/ 

Enable developer options, adb debugging, debug over wi-fi on the watch and 

connect debugger to it. 

https://www.samsung.com/us/support/answer/ANS00061433/ 

Download the applications over wi-fi using android studio or install the apk file of 

each application using adb commands as shown. 

• adb push app-debug.apk /sdcard/ 

• adb -e install app-debug.apk 

The applications STUG, 30SCST and 2MWT will be seen on the watch.  

 

 

 

 

 

 

 

 

 

https://www.samsung.com/us/support/answer/ANS00078020/
https://developer.android.com/training/wearables/get-started/debugging
https://nerdschalk.com/how-to-install-adb-and-fastboot/
https://www.samsung.com/us/support/answer/ANS00061433/
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Appendix C. TUG Instructions 
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Appendix D. 30SCST Instructions 
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Appendix E. 2MWT Instructions 
 

General Information:  

Individual walks without assistance for 2 minutes and the distance is measured. 

• Start timing when the individual is instructed to “Go.”  

• Stop timing at 2 minutes.  

• Assistive devices can be used but should be kept consistent and 

documented from test to test.  

• If physical assistance is required to walk, this should not be performed.  

• A measuring wheel is helpful to determine the distance walked.  

• Should be performed at the fastest speed possible. 

 

Set-up and equipment: 

• Ensure the hallway is free of obstacles. 

• Stopwatch. 

 

Patient Instructions: 

Cover as much ground as possible for over 2 minutes. Walk continuously, 

if possible, but do not be concerned if you need to slow down or stop to rest. The 

goal is to feel at the end of the test that more ground could not have been covered 

in the 2 minutes. 
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Appendix F. Abbreviations and Acronyms 
 

Table F.1 Abbreviations and Acronyms. 

TUG Timed Up and Go 

STUG Smart Timed Up and Go 

30SCST 30 Second Chair Stand Test 

2MWT 2 Minute Walk Test 

BAC Body Alcohol Content 

IMU Inertial Measurement Units 

iOS iPhone Operating System 

CAGR Compound Annual Growth Rate 

RAM Random Access Memory 

AMOLED Active-Matrix Organic Light-Emitting Diode 

LTE Long Term Evolution 

XML Extensible Markup Language 

RTOS Real Time Operating System 

HR Heart Rate 

ML Machine Learning 

STEADI Stopping Elderly Accidents, Deaths & Injuries 

CDC Centers for Disease Control and Prevention 

MQTT Message Queue Telemetry Transport 
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