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Abstract

CURATION AND ANALYSIS OF AI READY
ENVIRONMENTAL JUSTICE DATASETS: A

PROOF-OF-CONCEPT STUDY

Paridhi Parajuli

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

Computer Science

The University of Alabama in Huntsville

May 2024

Equity and Environmental Justice (EEJ) advocates for unbiased distribution

of environmental impacts across communities, regardless of social and economic char-

acteristics. After extreme events like natural disasters, EEJ gains importance due

to evident disparities in impact among communities. Addressing these injustices

requires comprehensive datasets and analytical methods for quantification and res-

olution. While AI and advanced data analysis offer promising solutions, creating

AI-ready EEJ datasets is challenging due to heterogeneity in the data surrounding

EEJ. In this work, we focus on curating novel datasets for EEJ targeting a few recent

extreme events - Maui Wildfire, Hurricane Harvey, and Hurricane Ida. We demon-

strate the utility of the datasets using preliminary analysis with machine learning

and AI enabled methods. Succinctly, we created masks to identify EEJ issues and

generated nuanced insights employing machine learning, image processing and sta-

tistical methods. This study has the potential to empower authorities in data-driven

policy-making, disaster management, and resource allocation, addressing the actual

needs of affected communities.
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Chapter 1. Introduction

1.1 Background

As we navigate to creating a equal and just society, the concept of envi-

ronmental justice takes the center stage. The term Equity and Environmental

Justice (EEJ) refers to the equal distribution of environmental burdens and ben-

efits to all the communities irrespective of their racial, social, demographic and

economic characteristics. Environmental injustice becomes more pronounced in

the wake of extreme and hazardous events, whether they stem from natural oc-

currences or human-made causes [1]. From the disparate impacts resulting from

a wildfire to the health inequalities stemming from the geographical placement of

industries, and the uneven consequences brought about by specific rules and regu-

lations, environmental justice manifests in various forms and dimensions. This is

what makes it a sensitive and intricate subject, given the challenge of identifying

instances of injustices and charting a course for resolution. The complexity is

heightened by its direct connection to the lives of individuals, making it a matter

that directly impacts communities. Therefore, it is crucial to address this issue in

order to promote an equal distribution of resources to all the communities as per

their need. However, the above-mentioned issues can be addressed to a significant
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extent using a data-driven framework with the use of Artificial Intelligence and

in-depth data analytics [2].

1.2 Equity and Environmental Justice Data Components

When addressing Equity and Environmental Justice concerns, various view-

points can be explored, including issues emerging post-natural disasters, dispar-

ities in policy implementation impacting communities differently, challenges spe-

cific to certain occupations, and consequences linked to developmental patterns.

This study specifically focuses on the perspective of natural disasters, exploring

how various natural events affect communities with diverse racial, gender, and so-

cioeconomic characteristics in terms of damage and recovery. We have compiled

novel EEJ datasets focused on natural disasters that encompass all the important

dimensions of EEJ. In addition to the socio-economic and demographic features

of communities, the dataset also contains complementary data that directly or

indirectly support the EEJ narrative. This includes information about the disas-

ter, as well as remote sensing data depicting the pre- and post-disaster scenarios.

The components of our data set are described below.

1.2.1 Events

The curated dataset focuses on three major events, known for their severity

and significant impact on people’s lives. To ensure diversity, we selected a wildfire

event and two hurricane events, carefully choosing the Area of Interest (AOI)

based on the fire and hurricane landfalls, respectively. The Maui Wildfire of
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2023, Hurricane Harvey in 2017 and Hurricane Ida in 2021 were chosen as event

instances for the EEJ data curation and case studies for our analysis.

• The Maui Wildfire ignited fully on August 8, 2023 and rapidly escalated,

attributed to dry conditions, consuming over 17,000 acres and resulting in

a devastating toll of over 100 lives lost and 60 severe injuries [3]. According

to the Federal Emergency Management Agency (FEMA), estimated capital

loss incurred due to Maui wildfire is nearly $5.5 billion along with substantial

damage to over 2,200 buildings. This catastrophe profoundly affected veg-

etation, critical infrastructure, and economic activities, evident in a surge

of unemployment claims from 130 to 2,705 cases per week [4]. Unveiling in-

stances of environmental injustice exacerbated by the fire presents a unique

challenge, necessitating a comprehensive understanding of the wildfire’s far-

reaching consequences.

• The Hurricane Harvey struck the east coast of Texas on August 25, 2017,

bringing over 60 inches of precipitation to the southeast region and causing

extensive flooding [5]. The storm resulted in 68 casualties, power outages

affecting 336,000 customers, and an estimated total cost of $125 billion

according to National Oceanic and Atmospheric Administration (NOAA).

This research focuses on examining the disparities in damages brought by

the hurricane in various communities in the affected area.

• The Hurricane Ida made landfall near Port Fourchon, Louisiana on Au-

gust 29, 2021 as a category 4 hurricane resulting in total fatalities of 107
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and an estimated damage of $75.3 billion [6]. To demonstrate the various

perspectives of accessing EEJ, we take this event to analyse the disparities

in the recovery post disaster over the time, over different zip-codes and their

community characteristics.

1.2.2 Remote Sensing Data

High-resolution remote sensing data play a crucial role in addressing EEJ

issues. Given that EEJ issues inherently have both spatial and temporal dimen-

sions, remote sensing data serve as a valuable resource for conducting analyses

in both dimensions. We leverage the disparities in remote sensing data captured

before and after a disaster to assess the extent of damage caused. Additionally,

remote sensing data serve as effective proxies for variables that may be physically

challenging to measure within the short pre and post timestamps. Here are some

remote sensing sources that we have used.

• Sentinel 2: It is a multi-sprectral data consisting of 13 bands covering var-

ious spectral ranges from visible and near-infrared to shortwave infrared.

The spatial resolution varies across bands, with 60 meters for Bands 1 and

9, 10 meters for Bands 2, 3, 4, and 8, and 20 meters for Bands 5, 6, 7, 8a,

11, and 12. These bands are combined to compute different land cover in-

dices. We leverage these indices as proxies for estimating damage caused by

events such as fire or flooding. The calculated indices include the Normal-

ized Difference Vegetation Index (NDVI), Normalized Difference Built-up
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Index (NDBI), Normalized Difference Water Index (NDWI), and Normal-

ized Difference Moisture Index (NDMI) [7].

NDVI = (B08 - B04) / (B08 + B04)

NDMI = (B08 - B11) / (B08 + B11)

NDWI= (B03 - B08) / (B03 + B08)

NDBI = (B11-B8) / (B11+B8)

Apart from sentinel -2 data products, there are sentinel 5 data products

that are used to measure air quality measure including aerosols, ozone and

other gases [8].

• Visible Infrared Imaging Radiometer Suite (VIIRS): VIIRS im-

agery captures spectral bands, including visible and infrared wavelengths

[9]. Specifically, we utilized VIIRS night-time lights data, of spatial reso-

lution 375m, as a proxy for economic/industrial activity. This data helped

us study how economic activities change before and after disasters. Addi-

tionally, Fire Information for Resource Management System (FIRMS) also

provides access to the VIIRS active fire detections.

1.2.3 Census Data

The U.S. Census Bureau conducts a decennial census every 10 years, sup-

plemented by the more frequent American Community Survey (ACS) conducted

annually [10]. The data is organized hierarchically, spanning state, county, tracts,

and census block groups. Our study leverages both census and ACS data, utilizing
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a variety of variables at the tract and block levels where available. This includes

demographic information such as race, gender, housing, and income, which is later

integrated with event data for in-depth analysis.

1.2.4 Pre-existing Environmental Justice Data

Different private and public authorities like the US Environmental Protec-

tion Agency (EPA), Centers for Disease Control and Prevention (CDC), NASA

are working in the EEJ domain. Any freely available open datasets related to en-

vironmental justice can be used in combination with the disaster, remote-sensing

and census data.

1.3 Motivation

The motivation for this research initiative comes with the Justice 40 ini-

tiative by the federal government of the US, under which 40% of the overall

benefits of certain Federal investments flow to disadvantaged communities that

are marginalized, underserved, and overburdened by pollution [11]. Following an

objective to identify communities overburdened by environmental conditions, we

propose various image processing and machine learning approaches that can serve

as an initial dataset in addressing this issue. We believe the curation of compre-

hensive datasets in the environmental justice domain will empower researchers to

conduct spatial and temporal analyses on the aftermath and recovery processes

following a disaster. We aim to fill the gap in the absence of a unified dataset

and EJ analysis by open-sourcing AI-ready datasets representing the EJ aspects

6



of a disaster in a three-dimensional cube. This research serves as a proof of con-

cept for curating EJ datasets and introduces a set of methods and techniques for

conducting preliminary analyses on the data. The outcomes of this study will aid

in enhancing disaster preparedness, management, and data-driven policy mak-

ing. Apart from promoting equity and equality, this study will help concerned

authorities in urban planning and resource allocation based on demand.
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Chapter 2. Literature Review

This section comprises of the discussion of related works and research

efforts made so far in addressing Environmental Injustice issues.

2.1 Previous Works

One of the earliest researches in environmental justice was by Freeman et

al. where cross tabulation was performed to see correlations between pollution

exposure with income and race across different US locations [12]. During 1980s,

research in environmental justice mostly focused on advocacy of political ideas,

lacking scientific quality. However, after 1990 the field advanced methodologically

- leveraging complex scientific techniques [13].

The availability of comprehensive datasets that can represent most of the

dimensions spanning the domain is crucial for enabling rigorous scientific research.

As demonstrated by a study [14] by Rasp et al., highlights the importance of an

unified dataset for weather forecasting, encompassing various climate variables.

Another research for a benchmark data creation is illustrated by Betancourt et al.

focusing on tropospheric ozone levels prediction leveraging historical air quality

data and weather station’s metadata. This study employs innovative proxies, such

as night-time light data for gauging industrial activity and population density for

8



assessing human emissions [15]. Inspired by these initiatives, we draw parallels

to the necessity of curating comprehensive datasets for EEJ domain. While these

studies [15, 14] establish a benchmark dataset for their respective domains, they

do not delve into the dimensions of environmental justice. Our work seeks to

address this gap through incorporating community demographic, socioeconomic

information alongside temporal geospatial data.

Ho et al. explored the role of social-demographic, land cover, human mo-

bility and built environment features in shaping disparities in exposure to urban

heat, flood and air pollution across 6 US counties [16]. Employing interpretable

machine learning algorithms like random forests and gradient boosting, they pre-

dicted hazard risk using the social-demographic, land cover, human mobility and

built environment features as illustrated by Figure 2.1.The Analysis revealed that

social-demographic features play a predominant role in influencing the disparities

observed in hazard exposure, shedding light on environmental injustice.

A notable research effort was conducted by from Nunez et al. in identify-

ing county-level racial/ethnic and socioeconomic inequalities in emissions changes

from the span of 1970-2020 after the enforcement of the Clean Air Act in US. From

the association analysis of change in emissions with racial and socioeconomic fea-

tures shown in Figure 2.2, it revealed association in the relative decrease in emis-

sions among different racial and socioeconomic groups, empirically highlighting

environmental injustice issues.

Prior research efforts centered around analyzing inequalities across space

and time where as event-centric spatio-temporal based approaches remain under

9



Figure 2.1: Study Overview for Relationship Urban Features and Environmental
Justice using Interpretable Machine Learning by Ho et al.

Figure 2.2: Summary of Results for Association Study by Nunez et al.

10



explored. Event based EJ analysis are crucial in accessing how different events

like a global pandemic or a natural disaster affect different communities. As ex-

emplified by a EJ study of the event COVID-19 by Segovia-Dominguez et al.,

introduces a consensus ML model to investigate the relationship among sever-

ity of COVID 19 with air quality across communities of different socioeconomic

backgrounds [17].

The effects of a natural disaster go beyond structural damages and loss of

lives. It impacts different communities in diverse ways and unfortunately, it is

the socially and economically vulnerable communities who feel the most signifi-

cant repercussions[18]. Numerous studies regarding the aftermath of devastating

disasters like hurricanes have highlighted how they have affected vulnerable pop-

ulation like people with disabilities [19]. This kind of research sheds light on

how disproportionately disaster are affecting communities and outlines the need

for effective disaster management and preparedness. Additionally, there is ev-

ident heterogeneity in the recovery process following a catastrophic event [20].

Certain areas take shorter time to recover while certain areas do not recover for

prolonged amount of time. Understanding the role of demographic and socioeco-

nomic features in creating such disparities in the recovery time would be helpful

in optimizing the effectiveness of the disaster management process.

As far as calculating damages brought by disaster is concerned, there has

been multiple studies that suggest remote sensing data such as change in land

cover, night time lights as good estimator for the extent of damage [15, 21] . An

innovative example of leveraging remotely sensed data is illustrated by the work

11



from NASA IMPACT team where they detected blue tarps as a damage mea-

surement variable after Hurricane Ida happened in New Orleans [22]. Through

advanced image processing techniques on high resolution Planet Lab Imagery of

the area of impact, they detected blue tarp over different months following the dis-

aster. They identified heterogeneity in the rate of change of blue tarp detections

over time for different zip codes. Validation of this methodology was uniquely

conducted by cross-referencing news articles to derive damage severity in each zip

code, thereby comparing it with the severity obtained from blue tarp detection.

Figure 2.3 shows the blue tarp detections over a specified area in New Orleans

, five months post Hurricane Ida. However, a socioeconomic study of zip codes

exhibiting slower versus faster recovery rates has not been conducted, presenting

a valuable opportunity for an extension to this work.

2.2 Pertinent Theoretical Concepts

This section discusses the core theoretical concepts used in the research.

2.2.1 Correlation

Correlation is a widely used statistical measure and quantifies the rela-

tionship and association between two variables. Among the various correlation

coefficients, Pearson’s Correlation Coefficient assesses the linear relationship be-

tween variables. It is calculated using the formula:

ρXY =
cov(X, Y )

σXσY

,

12



Figure 2.3: Blue Tarp Detection Over New Orleans on February 12, 2022.
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where

ρXY : Pearson’s correlation coefficient,

cov(X, Y ): covariance with X and Y ,

σX : variance of X,

σY : variance of Y

The value of Pearson’s correlation coefficient ranges from -1 to 1, where

high positive values signify strong positive correlation and low negative values

signify strong negative correlation. Apart from Pearson’s coefficient, Spearman’s

rank correlation and Kendall’s tau are alternative methods used for assessing the

strength and direction of monotonic relationships based on the ranks of the data

points [23].

2.2.2 Random Forest

Random Forest is a tree-based machine learning algorithm that creates

an ensemble of multiple decision trees to perform a classification or regression

task. Decision trees work by recursively splitting the data based on the features

that have the most predictability for the target variable [24]. The main principle

of decision trees is to choose split features that have the maximum information

gain and minimum entropy regarding the predictability of the target variable.

However, decision trees are very sensitive to the training data and are prone to

overfitting.

14



Random Forest, as the name suggests, is a collection of decision trees

trained on random samples of the data with a random subset of features, illus-

trated by Figure 2.4. This process of performing random sampling of data and

features is called bootstrapping. Whenever it has to make predictions, the out-

put of all trees is combined and presented as a prediction. For a random forest

regression task, where the predicted variable is a continuous variable, it uses ag-

gregation on the different outputs of the trees and presents it as the final output.

Since tree-based methods are known to capture the non-linearity of data, random

forest works well for non-linear complex data with many features [25].

The performance of a random forest regressor model can be assessed using

metrics like mean square error that calculates the average squared values of the

error in predictions. Similarly, explained variance ratio can give us information

about the fit of the data, explaining how much variance in the target variable can

be explained by the predictor variables. A random forest model can be utilized

using the implementation available in the scikit-learn library.

2.2.3 K-means Clustering

K-means clustering is a unsupervised machine learning technique that aims

to create clusters of similar data points based on distance/similarity between them

[26]. The technique aims to minimize the intra-cluster distances and maximize

the inter-cluster distances. Hence the data within the same cluster should be

as homogeneous as possible, whereas the data across different clusters should be

as heterogeneous as possible [24]. In practice K-means clusters are computed
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Figure 2.4: Random Forest as Collection of Decision Trees.
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Figure 2.5: Illustration of K-means Clustering.

using an iterative algorithm that tries to homogenize the computed clusters over

iterations and stops when no further progress can be made.

The performance of K-Means clustering can be evaluated using the inertia

value, which represents the sum of squared distances within the clusters. Addi-

tionally, the silhouette score and davies bouldin score are also used to assess how

similar an object is to its own cluster compared to other clusters. K-means clus-

tering algorithm can also be used for feature extraction [27], image segmentation

and labeling data for semi supervised learning [28].
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2.2.4 Segment Anything Model

Segment Anything Model (SAM) [29] is an image segmentation model

developed by Meta AI pre-trained on huge amount of data. It has the ability

to segment out specified objects from an image with reasonable accuracy. It has

also been found good at zero shot learning i.e.,the models ability to segment a

new image that it has not been trained on [30]. This can open up a possibility

of using SAM for segmenting images and labeling them so that semi supervised

learning can be performed for domains that lack labeled dataset [31].

2.2.5 Data Centric AI

Data-Centric AI (DCAI) [32] emphasizes prioritizing data and its quality

to drive AI outcomes, rather than focusing solely on the model. Adhering to

the principle that the quality of input data significantly influences the quality

of outcomes, DCAI encompasses the implementation of processes and algorithms

designed to enhance results, particularly when working with smaller datasets. In

conjunction with the rise of foundation models [33] in AI, this approach allows

us to address challenges in domains where a unified dataset is lacking. By using

foundation models initially to label data and applying DCAI principles to enhance

dataset creation, significant progress in machine learning can be made for areas

lacking dedicated datasets.
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Chapter 3. Dataset

In this section, we delve into the details of curating comprehensive datasets

for Maui Wildfire, Hurricane Harvey, and Hurricane Ida in a format that is user-

friendly and conducive to analysis. Our datasets aim to encapsulate the disaster

along with its associated damage and community data, providing an Equity and

Environmental Justice (EEJ) perspective through the disaster-in-a-cube anal-

ogy.Our study on EEJ with respect to disaster aftermath and recovery can be

summarized by the data pipeline shown in Figure 3.1.

3.1 Maui Wildfire Data Cube Creation

This section discusses the process involved in creation of AI ready data

cube for Maui Wildfire.

3.1.1 Data Collection

The dataset used for the Maui Wildfire EEJ analysis was curated using re-

mote sensing data and US census data. Different categories of data were collected

for the data cube preparation is listed in Table 3.1
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Figure 3.1: Data Processing and Curation Pipeline Overview.
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Table 3.1: Description of different data sources and its attributes for Maui Wildfire.

Category Attribute Frequency

Racial (US Census) Percentage of White, Black, African American, American Indian and Alaska Native, Asian, Native Hawaiian, Pacific Islander, Hispanic Constant

Gender (US Census) Percentage of men and women Constant

Household (US Census) Percentage of household 1- 7 Constant

Economic (US Census) Median household income Constant

Land Cover (Copernicus Sentinel-2) NDVI, NDBI, NDMI, NDWI Pre/Post

Socioeconomic (VIIRS) Night time light Pre/Post

Air Quality (Copernicus) Aerosol Index Pre/Post

Fire (FIRMS) Active Fire Detections During

3.1.2 Data Processing

The data comes from different sources, each with distinct spatial resolution

and coordinate reference systems (CRS) [34]. So preprocessing is required to stack

these datasets into a data cube. The general preprocessing steps applied to create

the Maui Wildfire data cube were as follows.

• Rasterization: The data that were available as raster data were made into

a uniform file format i.e., the geotiff file format [35]. For vector data like the

US census data, we utilized vector to raster conversion tools and brought

them to geotiff file format as well.

• Re-projection: Given the different sources of data, they come in different

projection and follow different Coordinate Reference Systems (CRS). All

of the raster data were brought to same CRS i.e., EPSG:4326 for further

processing.
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• Clipping: After identifying the Area of Interest (AOI) for the wildfire, we

clipped the raster data based on the identified AOI. The AOI corresponding

to the event is described below by the GeoJSON projected to EPSG:4326.

{

"type": "Polygon",

"coordinates": [

[

[-156.70353317911116, 20.62256935688882],

[-156.70353317911116, 21.06701380111118],

[-156.1815887348888, 21.06701380111118],

[-156.1815887348888, 20.62256935688882],

[-156.70353317911116, 20.62256935688882]

]

]

}

• Resampling: The raster data should be downsampled/upsampled to the

same dimension i.e., 512*512 grid in order to be stacked into a data cube.

During upsampling, nearest interpolation method was used for discrete data

like fire pixels where as linear interpolation was used for continuous data

like nighttime light.
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3.1.3 Calculating Derived Channels

From the different raster data obtained from source data, we derived a set

of raster data required for our study and hence went into our data cube.

• Fire Proximity: This was derived from the active fire detections raster

data. It was calculated such that each pixel value in fire proximity data

has the distance to its nearest fire pixel from the active fire detection. A

lower value indicates close proximity to fire where as higher value indicates

farther in proximity to fire.

• Difference: The difference between NDVI, NDMI, NDBI, NDWI, Night

time light data and Aerosol Index from pre and post timestamps were cal-

culated and added as Variable post - Variable pre. These difference data

were used as proxies for damage due to the wildfire.

3.1.4 Description of Maui Wildfire Data Cube

The data cube is stored in a NetCDF [36] file format, which is a widely

used file format for geo-spatial data storage, with 3 dimensions : x, y and channel

representing longitude, latitude and the channel name respectively in EPSG:4326

projection. The actual data is stored as data variable name band data which by

selectable using the channel name.

The dims of the data cube NetCDF file is : (x:512, y:512, channel:37)

The channel names and description of the channels is in Table 3.2 and Figure 3.2

illustrates a subset of channels present in the data cube.
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Table 3.2: Description of Different Channels in Maui Wildfire Data Cube.

Channel Name Description

NDVI post Normalized Difference Vegetation Index calculated after the wildfire

NDWI post Normalized Difference Water Index calculated after the wildfire

NDBI post Normalized Difference Built-up Index calculated after the wildfire

NDMI post Normalized Difference Moisture Index calculated after the wildfire

NDVI pre Normalized Difference Vegetation Index calculated before the wildfire

NDWI pre Normalized Difference Water Index calculated before the wildfire

NDBI pre Normalized Difference Built-up Index calculated before the wildfire

NDMI pre Normalized Difference Moisture Index calculated before the wildfire

NDVI diff Difference in Normalized Difference Vegetation Index after wildfire

NDWI diff Difference in Normalized Difference Water Index after wildfire

NDBI diff Difference in Normalized Difference Built-up Index after wildfire

NDMI diff Difference in Normalized Difference Moisture Index after wildfire

nt post Night-time light detections after the wildfire

nt pre Night-time light detections before the wildfire

nt diff Difference in night-time light data after wildfire

fire mask Fire detections

fire proximity Fire proximity map

AI pre Aerosol Index before wildfire

AI post Aerosol Index after wildfire

AI diff Difference in Aerosol Index after wildfire

H013002 - H013008 Percentage of household size 1, 2, 3, 4, 5, 6, 7+ respectively

B19013 001E Median Household Income

P003002 - P003008 Percentages of white, black, Indian, Asian, Hawaiian, other race, and 2 or more races

P012026 Percentage of women population

P012002 Percentage of men population

3.2 Hurricane Harvey Data Cube Creation

This section discusses the process involved in creation of AI ready data

cube for Hurricane Harvey.

3.2.1 Data Collection

The dataset used for the Hurricane Harvey EEJ analysis for Hurricane Har-

vey was curated using remote sensing data, US census data and openly available

EJ datasets like diseases and healthcare accessibility data. Different categories of

data were collected for the data cube preparation is listed in Table 3.3.
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Figure 3.2: Illustration of Selected Channels from Maui Wildfire Data Cube.

Table 3.3: Description of different data sources and its attributes for Hurricane Harvey.

Category Attribute Frequency

Health Accessibility [37] Accessibility to Healthcare Constant

Disease (CDC) [38] Percentage Population with Chronic Diseases Constant

Topography (Copernicus) Digital Elevation Model (DEM) Constant

Racial (US Census) Percentage of White, Black, African American, American Indian and Alaska Native, Asian, Native Hawaiian, Pacific Islander, Hispanic Constant

Gender (US Census) Percentage of men and women Constant

Household (US Census) Percentage of household size 1-7 Constant

Economic (US Census) Median household income Constant

Land Cover (Copernicus Sentinel-2) NDVI, NDBI, NDMI, NDWI Pre/Post

3.2.2 Data Processing

We followed similar data processing steps as mentioned in section 3.1.2.

• Rasterization: For vector data like the US census and the diseases data,

we utilized vector to raster conversion tools and brought them to geotiff

format.
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• Reprojection: All of the rasters were brought to same CRS i.e., EPSG:4326

for further processing.

• Clipping: After identifying the Area of Interest (AOI) for as per the hurri-

cane’s landfall, we clipped the rasters based on the identified AOI. The AOI

corresponding to the event is described below by the GeoJSON projected

to EPSG:4326.

{

"type": "Polygon",

"coordinates": [

[

[-97.515061,27.796357],

[-97.515061,28.450374],

[-96.697953,28.450374],

[-96.697953,27.796357],

[-97.515061,27.796357]

]

]

}

• Resampling: Similar resampling techniques were used as mentioned in

section 3.1.2.

• Calculating Difference Channels The difference between the land cover

indices NDVI, NDMI, NDBI, NDWI, from pre and post timestamps were
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Figure 3.3: Illustration of Selected Channels from Hurricane Harvey Data Cube

calculated and added as Variable post - Variable pre. These difference

data were used as proxies for damage due to the hurricane.

3.2.3 Description of Hurricane Harvey Data Cube

The data cube is stored as mentioned in section 3.1.4. The channel names

and description of channels in the Hurricane Harvey data cube is shown in Table

3.4 and Figure 3.3 illustrates a subset of channels present in the data cube.

3.3 Hurricane Ida Data Cube Creation

This section discusses the process involved in creation of AI ready data

cube for Hurricane Ida. Unlike for Maui wildfire and hurricane Harvey, we curate

data cubes corresponding to the top 9 damaged zip codes identified and validated

by NASA Impact team’s analysis. We follow these steps in the curation of data

cube for each zip code.
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Table 3.4: Description of Different Channel in Hurricane Harvey Data Cube.

Channel Name Description

NDVI post Normalized Difference Vegetation Index calculated after hurricane

NDWI post Normalized Difference Water Index calculated after hurricane

NDBI post Normalized Difference Built-up Index calculated after hurricane

NDMI post Normalized Difference Moisture Index calculated after hurricane

NDVI pre Normalized Difference Vegetation Index calculated before hurricane

NDWI pre Normalized Difference Water Index calculated before hurricane

NDBI pre Normalized Difference Built-up Index calculated before hurricane

NDMI pre Normalized Difference Moisture Index calculated before hurricane

NDVI diff Difference in Normalized Difference Vegetation Index hurricane

NDWI diff Difference in Normalized Difference Water Index hurricane

NDBI diff Difference in Normalized Difference Built-up Index hurricane

NDMI diff Difference in Normalized Difference Moisture Index hurricane

dem Digital Elevation Model

H013002 - H013008 Percentage of household size 1, 2, 3, 4, 5, 6, 7+ respectively

B19013 001E Median Household Income

P003002 - P003008 Percentages of white, black, Indian, Asian, Hawaiian, other race, and 2 or more races

P012026 Percentage of women population

P012002 Percentage of men population

bp Percentage of population with high blood pressure

asthma Percentage of population with asthma

cancer Percentage of population with cancer

mental Percentage of population with mental illness

diabetes Percentage of population with diabetes

healthcare accessibility Time taken to reach nearest healthcare facility

3.3.1 Data Collection

The dataset used for the EEJ analysis was curated using the blue tarp de-

tection on Plannetlab 3 images from NASA Impact’s study, the building footprint

data from Microsoft and US census data. Different categories of data collected

for the data cube preparation is listed in Table 3.5.

Table 3.5: Description of different data sources and its attributes for Hurricane Ida.

Category Attribute Frequency

Racial (US Census) Percentage of White, Black, African American, American Indian and Alaska Native, Asian, Native Hawaiian, Pacific Islander, Hispanic Constant

Gender (US Census) Percentage of men and women Constant

Household (US Census) Percentage of household size 1-7 Constant

Economic (US Census) Median household income Constant

Buildings (Microsoft) [39] Building Footprint Constant

Blue Tarp (Planetlab 3) [22] Blue Tarp Detections Multiple
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3.3.2 Data Processing

We follow similar data processing as mentioned in section 3.1.2 for each

zip code.

• Rasterization: The US census data were converted to raster data in geotiff

format.

• Re-projection: Given the different sources of data, they come in different

projection and follow different Coordinate Reference Systems (CRS). All

of the raster data were brought to same CRS i.e., EPSG:4326 for further

processing.

• Clipping: We clip the data over our identified Area of Interest. The geo-

JSON representing the AOI for each zip code is shown in the listing in the

appendix 5.

• Resampling:The census raster data were resampled to match the dimen-

sions of the blue tarp detection masks for each zip code.

• Calculating Damage Period For each zip code, we calculate a chan-

nel such that each pixel value is the sum of frequency of observed blue

tarp occurrence over the analysis time period i.e., September 2021 through

February 2022.
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Figure 3.4: Illustration of Selected Channels in Hurricane Ida Data Cube for Zip code
70001.

3.3.3 Description of Hurricane Ida Data Cube

The data cubes corresponding to 9 zip codes are stored in NetCDF file

format , with 3 dimensions : x, y and channel representing longitude, latitude

and the channel name respectively in EPSG:4326 projection. The actual data

is stored as data variable name band data which by selectable using the channel

name.

The channel names and description of the channels is in Table 3.6 and Figure 3.4

illustrates a subset of channels present in a data cube.
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Table 3.6: Description of Different Channels in Ida Data Cubes.

Channel Name Description

H013002 - H013008 Percentage of household size 1, 2, 3, 4, 5, 6, 7+ respectively

B19013 001E Median Household Income

P003002 - P003008 Percentages of white, black, Indian, Asian, Hawaiian, other race, and 2 or more races

P012026 Percentage of women population

P012002 Percentage of men population

Sept26 Blue Tarp Detections on Sept 26, 2021

Nov24 Blue Tarp Detections on Nov 24, 2021

Dec15 Blue Tarp Detections on Dec 15, 2021

Jan11 Blue Tarp Detections on Jan 11, 2022

Feb12 Blue Tarp Detections on Feb 12, 2022

buildings Building Footprint

damage period Number of occurrences of Blue tarp

3.4 Errors in the Data Cubes

As we integrated diverse data from various sources with variations in pro-

jection, resolution, and structure, tradeoffs are bound to arise. Data transfor-

mation steps such as vector to raster conversion, reprojection, resampling, and

clipping are known to introduce inaccuracies in data by causing loss of informa-

tion, misalignment, and compromise in quality [40]. Here we discuss some of the

ways in which errors could have crept into our data generation process. Our goal

is to ensure that users of these datasets and baseline models we discuss later are

cognizant of the possible errors. This will allow them to take appropriate steps

to mitigate the fallout from the same. Some of the ways in which inaccuracies

might have entered into the data cubes are as follows.

• The vector to raster transformation of census data, common in all three

case studies, holds the potential to introduce errors into the system. Be-

fore vector to raster transformation, it is required to specify the resolution

of our raster data. If this resolution mismatches the inherent geometry of

the vector data, it may fail to capture complex vector features adequately.
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Similarly, geometries like polygons may possess complex curves that could

get simplified during rasterization to fit the grid. As vector data is con-

tinuous, inaccuracies in the boundary values of the geometries may arise

during rasterization. Therefore, the quality of the rasters depends on the

complexities of vector geometry, grid resolution, boundary pixels handling,

and the rasterization algorithm [41].

• Resampling and reprojection are additional data transformations ap-

plied to the channels in the datacubes. These transformations might result

in spatial distortions, scaling, skewness, rotation, and other spatial distor-

tions of the data because the data will be mapped to a different size grid.

Additionally, resampling, whether up-sampling or down-sampling, employs

interpolation and aggregation functions, leading to loss of information [42].

• Raster data clipping based on geometry is also prone to errors. Errors could

be introduced due to boundary conditions, where the complex geometry

edges could lie partially within a pixel, depending on the resolution and

clipping algorithm used.

The errors mentioned in the datacubes have the potential to propagate

into subsequent data analytics tasks. Users should remain mindful of these errors

and their possible influence on downstream tasks. It’s crucial for users to consult

literature sources such as [43, 44, 45, 46], which offer insights and approaches

for characterizing and addressing such errors. Furthermore, the results should be

interpreted with the error bounds in mind.
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Chapter 4. Analysis

In this section, we discuss the methods for conducting preliminary anal-

ysis on the datasets cretaed in Chapter 3 along with presenting the results. We

perform in depth EEJ analysis with diverse perspectives for each of our case stud-

ies. We use statistical analysis, machine learning, image processing techniques on

the datacubes curated in the previous chapter. However, it is important to note

that data used for all the downstream tasks comes from the datacubes that is

prone to data inaccuracies and errors as described in 3.4. These error might have

propagated to all the analysis and experiments we performed [47].

4.1 Maui Wildfire Analysis Results

Following our objective to analyze environmental injustice brought by the

wildfire, we sought to investigate whether disparities exist among racial, income,

gender, and household size groups in the damage caused by the wildfire. We

take the decrease in NDVI, NDMI, NDBI and night time light data and increase

in Aerosol Index data as proxies for damage caused by the wildfire. Leveraging

interpretable machine learning to we investigated if the racial, economic, gender

and household features play a role in predicting the damage caused. As tree

based ML algorithms are known to be interpretable and capture the non-linearity
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in data, we use a Random Forest Regressor model to predict damage (in terms

of NDVI, NDMI, night time light and air quality) with predictor variables as

fire proximity, and the census variables. The feature importances of predictor

variables signify the extent to which variations in them contribute to predicted

variable changes. It’s important to note that our objective is not to predict

damage but rather to discern how disparities in damage are influenced by input

features. The experimental setup was as follows.

4.1.1 Machine Learning for EJ analysis

We trained 4 Random Forest Regressor Models with census variables and

fire proximity to predict the damage in NDVI, NDMI, Night time light and Aerosol

Index. Table 4.1 shows the mean square error, R square ratio and explained vari-

ances of the models trained with different predicted variable. The explained

Table 4.1: Performance Metrics.

Predicted Variable Mean Square Error Explained Variance Ratio

NDVI damage 0.022 0.47

NDMI damage 0.005 0.32

Night time light damage 0.012 0.24

Aerosol Index damage 1.009 0.7

variance ratio is the proportion of the variance in damage variable that was cap-

tured by the predictor variables. The feature importances of input variables in
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shaping disparities in the damage in variables are shown in Figure 4.1. An ex-

plained variance ratio of 0.47 for NDVI damage suggests that the census variable

and fire proximity can capture 47% of the variance in NDVI damage caused by

the fire. Similarly, the input features could capture 70% of variance in the air

quality data, 24% of variance in night time light damage and 32% variance in the

damage in terms of moisture. From the results we observed that the disparites in

air quality damage is shaped in a greater extent by the racial, gender, household

size, income features. We see the feature importances to see how different races,

genders, income groups and household size play a role in shaping disparities in

damage in vegetation due to fire. In the figure 4.1, we can see that for predicting

all damage variables, fire proximity and income are identified as the top most

important features. It suggests that damages in a location vary with different

income groups as well as with its closeness to the wildfire. After fire proximity

and income,

⇒ damage in vegetation (NDVI) varies with the percentage of household size

and women’s population.

⇒ damage in moisture (NDMI) varies with the percentage of asian population

and men’s population.

⇒ damage in air quality (aerosol index) varies with the percentage of racial

category “two or more races” and the household size.

⇒ damage in economic/industrial activity (night time light) varies with the

percentage of racial category “two or more races” and the household size.
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Figure 4.2 illustrates the correlation between the input features with the

different damage variables. It compliments the feature importance plot by sta-

tistically representing how the input variables are correlated with the damage

variables. While the feature importances give us the extent of any input variable

in causing disparities in damage variable, its corresponding Pearson’s correlation

coefficient value sheds light in either they share a positive or negative relation-

ship. For instance, the damage in air quality varies with different income groups

(from the feature importance plot) and they are negatively correlated with each

other. This implies that low economic group communities suffered from relatively

high damage in air quality, which could be a serious environmental injustice issue

with respect to air quality and low income. Likewise, the following are a few

environmental injustice issues that was inferred using similar interpretation:

- Low income group communities suffered more damage in vegetation, air

quality and economic activity.

- The racial group - two or more category suffered more damage in economic

activity.

- Communities with larger household size suffered more damage in economic

activity.

4.1.2 Quantitative and Qualitative Analysis

In the previous section, we used statistical and machine learning based

approach to infer the presence of environmental injustice. The quantitative anal-
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Figure 4.1: Feature Importances for Different Damage Variables.

ysis deals with quantifying the extent to which the injustice occurred and the

qualitative analysis deals with the spatial information of the injustice issues.

4.1.2.1 Damage Calculation using Remote Sensing Variables

Remote sensing variables like NDVI, NDMI, aerosol index and night time

light data vary temporally before and after the wildfire. The difference in the pre

and post timestamps of these variables can be used to quantify damage brought

by the wildfire. Figure 4.3 illustrates the percentage of damage in pixels over the

total pixels covering Maui Island. There had been 80% damage in NDVI, and

70% of damage has been observed in close proximity to the fire. Similarly, there

has been 16% damage in night time lights, and 13% damage had been observed
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Figure 4.2: Correlation of input variables with damage variables.
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Figure 4.3: Damage Percentage in Remote Sensing Variables in Maui Island and in
Close Proximity to Fire.

in close proximity of the fire. The damage plot shows that the effects of wildfire

was depicted more by the difference of NDVI, Aerosol Index while night time light

data is less affected by the wildfire. This discrepancy may arise due to the direct

impact of a fire event on vegetation damage and air quality degradation, whereas

decrease in night light data may occur as an indirect consequence.

4.1.2.2 Damage Analysis with respect to Census Variables

Since environmental injustice is a very subjective term and is always with

respect to certain community, we analyse different combinations of damage vari-

ables paired with a census variable and the fire proximity. We generated multiple

geo-referenced 3 channeled tiff files such that the first channel is any of the differ-
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ence in remote sensing variable (NDVI diff, NDMI diff, AI diff etc), the second

channel is any of the census variables (H013002, P012026 etc) and the third

channel is the fire proximity. To generalize, each file has a channel representing a

damage variable, a EJ variable and a channel corresponding to the fire. For each

of such images, we apply the following thresholding conditions and create a mask

from the image satisfying these conditions:

• Difference Variable < mean (for NDVI, NDMI, Night time light)

> mean (for Aerosol Index)

• EEJ Variable > mean

• Fire Proximity > mean

Each mask will have the injustice mask for that particular EEJ vari-

able based on the damage from that particular remote sensing data due to the

wildfire. We saved these images and its corresponding masks as the filenames

DDD CCC FFF.tiff and DDD CCC FFF mask.tiff respectively. Figure 3.5 shows

the summary for quantitative analysis of each EEJ mask giving out the percent-

age of area identified as injustice area over the total damaged area. For each

image, the percentages of injustice area due to wildfire with respect to a partic-

ular damage variable and EEJ variable is calculated as shown in the bar charts

of Figure 4.4. It quantifies the environmental injustice mask associated to each

damage variable and EEJ variable as percentages. And the qualitative analysis

representing the mask plots, show exactly where the injustice cases are spatially.

For instance, 11% of the pixels damaged in terms of night light have suffered
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Figure 4.4: Quantitative and Qualitative Analysis of EEJ.

environmental injustice with respect to income groups and the corresponding

nt B19013 001E fire proximity mask.tiff shows the spatial distribution of

the injustice area.

4.1.3 EEJ Masks Creation

With the goal of identifying environmental injustice issues, we present

diverse methods for creating masks to highlight areas of environmental injustice.

Our approaches include thresholding techniques, unsupervised learning methods,

and leveraging inference from a foundation model, all of which are discussed

below.

4.1.3.1 Using Thresholding for EEJ Masks Generation

Thresholding involves applying specific conditions to an image, generating

a mask based on the satisfying conditions. Widely utilized in image processing,
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Figure 4.5: EEJ Masks Creation Using Thresholding.

thresholding is a fundamental technique for image segmentation, dataset genera-

tion, and internal steps in deep learning algorithms. As the concept of curating

Environmental Equity and Justice (EEJ) masks is novel, we propose an initial

process based on our conception of environmental injustice. We define an environ-

mental injustice area as one that experiences more damage during an event and

exhibits increased vulnerability in housing, income, race, or gender. Applying the

thresholding conditions outlined in Section 3.3.2, we create EEJ masks as a pre-

liminary step in dataset creation for the EEJ domain. Due to the complexity and

sensitivity of EEJ data, crowd-sourcing is impractical, leading us to rely on a ba-

sic understanding of environmental injustice to shape the masks. This approach

serves as a foundational step for EEJ dataset creation and provides a ground

truth for subsequent tasks. Figure 4.5 depicts instances of masks generated using

image thresholding.
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Figure 4.6: Comparing Performance Metrics to find the Optimal Number of Clusters
in Data.

4.1.3.2 Using Unsupervised Learning for EEJ Masks Generation

We used K-means clustering algorithm to segment out clusters based on

the values of the three channels of the image. Before feeding images to K-means

algorithm, we normalized each channel from 0-255. We found the optimal number

of clusters to be 5 as illustrated by the Silhoutte score, Davies Bouldin score

and Elbow plot in Figure 4.6. Figure 4.9 shows an example of mask generated

using k-means. Figure 4.7 shows the distribution of the maximum percentage

of overlapping pixels between a k-means segment and ground truth for all the

images. The range of percentage overlap lies with in the range of 40% to a 100%.

4.1.3.3 Using Foundation Model for EEJ Masks Generation

Foundation models are pre-trained on a large amount of data and have the

state of the art performance. We utilized the Segment Anything Model (SAM) to

segment the images and Figure 4.9 shows an example of the segmented image. On

average, it was able to segment out 28 segments in the input images. Figure 4.8

shows the distribution of the maximum percentage of overlapping pixels between
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Figure 4.7: Intersection Between K means cluster and Thresholded Mask.
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Figure 4.8: Intersection Between SAM cluster and Thresholded Mask.

a SAM segment and ground truth for all the images. The range of percentage

overlap lies with in the range of 20% to 80%.

4.1.4 Comparison of EEJ Masks

Figure 4.9 shows the comparison of the three techniques used for segmen-

tation. If we compare the masks generated through these processes, we can see

overlaps between the masks from thresholding and k-mmeans clustering, suggest-

ing that K means can be a alternative method to generate the masks. However,

the masks generated using SAM inference are very granular and have less over-

lap with our thresholded masks, evident in Figure 4.9 . In future, it would be
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Figure 4.9: Comparision of Masks Genrated using SAM, Kmeans Clustering and
Thresholding.

a worthwhile experiment to label more images using k-means and fine tune the

SAM model on the labeled data and see the output.

4.2 Hurricane Harvey Analysis

We tailored our analysis of Hurricane Harvey to focus on its impact on

health-vulnerable communities, primarily justified by the flooding it caused [48].

Studies have shown that the occurrence of Hurricane Harvey led to increased

physical and mental health needs [49]. A significant aspect of our analysis aimed

to understand how individuals with chronic diseases were affected by flooding in

relation to the availability of healthcare services. We used proxies such as NDMI,

NDWI, and NDVI to identify flooded areas, as these indices are considered ef-

fective for flood detection [21]. Additionally, we took the topography of the area

into consideration, recognizing its importance in flood analysis [50]. Our explo-
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ration sought to uncover relationships among disease data, healthcare availability,

topography, and the damage caused by flooding.

4.2.1 Relationship Among Diseases and Healthcare Accessibility

We examined the correlations between the prevalence of chronic health

conditions—such as high blood pressure, cancer, mental illness, diabetes, and

asthma—and the availability of healthcare, measured in terms of the time required

to reach health facilities. Figure 4.10 reveals strong positive correlations between

the population affected by diseases and the time it takes to access healthcare.

This suggests potential disparities in healthcare accessibility times for populations

vulnerable to health issues.

4.2.2 Relationship of Flooding with Health Variables

We utilized a Random Forest Regressor Model incorporating disease vari-

ables, healthcare accessibility, and topography data to predict flooding damages.

The observed mean square error was 0.01, with an explained variance ratio of

36%. This indicates that 36% of the variance in flood damage can be explained

by our predictor variables. Figure 4.11 illustrates the feature importances of

these predictor variables, highlighting healthcare accessibility time and topogra-

phy (DEM) as the top contributing factors shaping disparities in flood damage.

The Pearson correlation coefficient in Figure 4.11 provides insights into the direc-

tion of the relationship between health and topographical variables with damage.

Areas with low elevation show a negative correlation with flooding, while health-
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Figure 4.10: Correlation of Disease Variables with Healthcare Accessibility.
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Figure 4.11: Feature Importances of Input variables in Random Forest Regressor and
Correlation Plot of Input Variables with Increase in NDWI.

care accessibility time, population with cancer, and blood pressure exhibit positive

correlations. These analyses provide valuable insights into environmental justice

issues related to health and disasters.

4.3 Hurricane Ida Analysis

As discussed in the previous chapter, we generated analysis-ready data

cubes for each zip code, encompassing building footprints, time series blue tarp

detections, and demographic and socioeconomic data. This section focuses on

analyzing the characteristics of zip codes exhibiting slow and fast recovery. The

line plot presented in Figure 4.12 visualizes blue tarp detections over building

footprints across time, providing insights into the recovery processes of different

zip codes. The plot specifically showcases the top 9 most damaged zip codes

identified by the NASA IMPACT team. Additionally, we introduced a metric

called “recovery rate” to quantify the recovery in each zip code. A higher recov-

ery rate indicates a faster recovery from the maximum damaged condition to the

last observed state on February 12, 2022. As depicted in Figure 4.13, zip code
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Figure 4.12: Time Series Plot of Blue Tarp Detections as Percentage of Building
Footprints for Different Zip Codes.
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70112 exhibits the highest recovery rate, suggesting a significant decrease in blue

tarps within a short time period. In contrast, zip codes such as 70130, 70117,

and 70001 show slower recovery rates. To explore the correlation between socioe-

conomic and demographic features and the recovery rate of different zip codes,

Figure 4.14 illustrates these relationships. Our observations reveal that zip codes

with a higher population of Asian residents tend to recover faster, while those

with a larger population of “two or more” races recover more slowly. Addition-

ally, there is an indication that zip codes with higher income levels experience a

higher recovery rate.

For a more detailed analysis, we created a new raster named ”damage period”

from the time series of blue tarp detections. This raster assigns values from 0 to

5, where 0 indicates that the pixel has never been detected as a blue tarp, and 5

indicates that the pixel has been consistently identified as a blue tarp in all five

timestamps. The “damage period” metric provides a pixel-level estimate of the

damage period.

Figure 4.15 utilizes the “damage period” channel to visualize the damage

periods in different zip codes. A value of 5 in a pixel suggests prolonged damage,

while lower values indicate varying degrees of damage observation. When compar-

ing zip codes like 70003 with 70001, it is evident that 70003 has a higher number

of pixels observed as blue tarps once but fewer pixels observed consistently across

all months. On the other hand, zip codes like 70001 and 70114 exhibit similar

observations of pixels seen throughout all months, suggesting potential recovery

issues in these areas.
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Figure 4.13: Recovery Rates for Different Zip Codes.
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Figure 4.14: Correlation Plot among Socioeconomic Variables with Recovery Rate.
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Figure 4.15: Distribution of Frequency of Blue Tarp Occurrences for Different Zip
Codes.
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Chapter 5. Conclusion and Future Works

In conclusion, our analysis of disasters—Maui Wildfire, Hurricane Har-

vey, and Hurricane Ida—provide nuanced insights into environmental impact and

socioeconomic vulnerabilities. Leveraging interpretable machine learning, image

processing techniques and statistical methods, we illustrate how socioeconomic

factors shape post-disaster disparities in terms of damage and recovery. Our in-

novative methods, including EEJ mask creation and foundation model utilization,

contribute to a deeper understanding of Equity and Environmental Justice issues

in disaster contexts.

The future avenues for this work include incorporating additional attributes.

Furthermore, we anticipate augmenting the dataset with information related to a

broader spectrum of events, such as pandemics and wars, thereby establishing a

comprehensive data repository. This dataset will lay the groundwork for diverse

machine learning applications, empowering researchers to employ data-centric AI

methodologies, including data augmentation and confident learning [51]. We also

anticipate working on algorithms for quantifying as well as minimizing the error

introduced during the data transformation process. We envision utilizing foun-

dational models and fine-tuning them after we have collected enriched data on

many events [52]. Additionally, we envision making the dataset accessible through
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community-contributed platforms such as Hugging Face and Zenodo in a crossiant

format [53]. We hope this research will open new avenues in the research toward

Equity and Environmental justice.
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Appendix A. Hurricane Ida Zip Codes Area of Interests

{‘ZipCode’: ‘70113’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.09445795732412,29.93161641935578],

[-90.09445795732412, 29.955384714775057],

[-90.0718512703276, 29.955384714775057],

[-90.0718512703276, 29.93161641935578],

[-90.09445795732412, 29.93161641935578]]]}

{‘ZipCode’: ‘70114’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.0586863748698, 29.907222642478107],

[-90.0586863748698, 29.95839298274166],

[-90.02970573396384, 29.95839298274166],

[-90.02970573396384, 29.907222642478107],

[-90.0586863748698, 29.907222642478107]]]}

{‘ZipCode’: ‘70003’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.23808041410577, 29.973464107406013],

[-90.23808041410577, 30.03586332908945],

[-90.18920350585636, 30.03586332908945],

[-90.18920350585636, 29.973464107406013],

[-90.23808041410577, 29.973464107406013]]]}

{‘ZipCode’: ‘70119’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.1140861611854, 29.95312106759227],
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[-90.1140861611854, 29.992854032616474],

[-90.05812046307409, 29.992854032616474],

[-90.05812046307409, 29.95312106759227],

[-90.1140861611854, 29.95312106759227]]]}

{‘ZipCode’: ‘70001’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.2108570782496, 29.968073052931214],

[-90.2108570782496, 30.000181101129183],

[-90.1246895611469, 30.000181101129183],

[-90.1246895611469, 29.968073052931214],

[-90.2108570782496, 29.968073052931214]]]}

{‘ZipCode’: ‘70130’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.0870713191487, 29.919017435693686],

[-90.0870713191487, 29.958422767573012],

[-90.05797153891734, 29.958422767573012],

[-90.05797153891734, 29.919017435693686],

[-90.0870713191487, 29.919017435693686]]]}

{‘ZipCode’: ‘70117’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.05996712261795, 29.94874269738346],

[-90.05996712261795, 29.98618223039352],

[-90.02970573396384, 29.98618223039352],

[-90.02970573396384, 29.94874269738346],

[-90.05996712261795, 29.94874269738346]]]}

{‘ZipCode’: ‘70094’, ‘type’: ‘Polygon’,
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‘coordinates’: [[[-90.27358393307792, 29.887534868954116],

[-90.27358393307792, 29.96983035798101],

[-90.12742976563132, 29.96983035798101],

[-90.12742976563132, 29.887534868954116],

[-90.27358393307792, 29.887534868954116]]]}

{‘ZipCode’: ‘70112’, ‘type’: ‘Polygon’,

‘coordinates’: [[[-90.0883222820655, 29.94478131481358],

[-90.0883222820655, 29.966285963050066],

[-90.06565602540627, 29.966285963050066],

[-90.06565602540627, 29.94478131481358],

[-90.0883222820655, 29.94478131481358]]]}
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