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Abstract 

A NOVEL METHOD FOR TIME-BASED SYNCHRONIZATION OF 

ACQUIRED FORCE AND MOTION DATA 

 

Darnisha Detraniece Crane 
 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

 

Mechanical and Aerospace Engineering 

The University of Alabama in Huntsville 

May 2024 

 

 Enhancing the performance of flapping wing micro air vehicles hinges upon a thorough 

comprehension of the intricate interplay between wing kinematics and resulting forces. This 

understanding necessitates a method of synchronization capable of establishing a precise 

correlation of wing motion and force generation. The objective of this project is to develop a 

time-based synchronization method using existing hardware in the ATOM lab. Algorithms were 

developed to control the Vicon motion-tracking system and the ATI force sensor to achieve the 

synchronization of acquired data. Experimental testing was conducted to validate the algorithms 

and system architecture. Results from testing revealed a time lag delay, equivalent to the 

acquisition time of the force transducer between the two measurements. This delay indicates that 

synchronization was not achieved. Further investigations suggest that the operating system and 

the data acquisition board were limited in executing resource intensive input/output bound tasks 

to support synchronization. 
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Chapter 1. Introduction 

The concept of the micro air vehicle (MAV) was proposed by the Defense Advanced 

Research Projects Agency (DARPA) in 1996. Micro air vehicles are small, unmanned aircraft 

that can be autonomous or remotely controlled. Commercial and military use are some of the 

driving factors for the development of MAVs. Currently, there are three core designs for MAVs: 

fixed-wing, flapping-wing, and multi-rotor systems. The area of interest for this research is the 

development of a flapping-wing micro air vehicle with the capability of desirable flight 

characteristics. A flapping wing MAV with desirable flight characteristics would improve the 

understanding of biological flyers that use flapping wing mechanisms and could potentially be 

used for military and space applications. 

1.1 Background 

Small natural flyers use unsteady aerodynamic mechanisms to produce lift and thrust, 

which is qualitatively different than large aircraft aerodynamics (Shyy et al.2013). Scaling laws 

indicate that a reduction in the size of a flyer leads to an increase in environmental influence for 

small flyers – natural flyers overcome this by improving flight performance (force generation, 

flapping wings, and wing tail coordination, etc.) (Shyy et al.2013). While flapping wing flight 

for natural flyers has improved over time through evolution, manmade flapping wing designs 

cannot fully emulate these characteristics. As a result, flapping wing designs are continually 

evolving as researchers continue to study the kinematic and kinetic relationship of flapping wing 

designs.  
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Figure 1.1 shows a monarch butterfly – the inspiration behind the design of the artificial 

wing used for validation of this research project. The flapping motion of the artificial wing – 

Figure 1.2 –  was achieved using a gear box and a motor.  

 

 

Figure 1.1 Monarch Butterfly and its right forewing structure. (a) A monarch butterfly with a wing length of R. (b) 

A right forewing. (c) Morphological labels of a monarch butterfly wing, as defined by Emmet and heath: red - veins; 

black - membrane spaces; green anatomical region names (Twigg, 2020). From Twigg with permission. 

 

 

Figure 1.2 Micron wing flapper, with the artificial wing mounted on the left side. 

 

Results of a study performed by Sane and Dickinson concluded that subtle alterations in 

stroke kinematics have large effects on force production (Sane & Dickinson, 2001). An 

understanding of the relationship between the wing kinematics and resulting forces on a flapping 

wing is essential for the development and improvement of flapping wings. This understanding 

requires a method of synchronizing the wing kinematic data and force data which is critical in 

directly correlating the increases or decrease in force production to the flapping wing kinematics 

(i.e., stroke amplitude, etc.). Previous synchronization methods have used aerodynamic 
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characteristics such as angle of attack, upstroke/downstroke, and in some cases the horizonal 

suction column as a method for synchronizing acquired kinematic and kinetic. Other methods 

have achieved the synchronization of kinematic and kinetic data by deriving the forces acting on 

the object using the captured motion data. While these methods do achieve the desired results, 

acquiring the data based on the same timing trigger would result in an increase in the accuracy of 

the data correlation. 

The primary challenge that exists with achieving synchronization is technological 

capability. First, computers are limited in their ability to execute multiple tasks simultaneously. 

Specifically, Input/Output (I/O) bound processes cannot be executed simultaneously due to them 

being resource intensive. That means that the computer used directly affects the ability to 

achieve synchronization and matters greatly when attempting data synchronization. Multicore, 

multiprocessor, and supercomputers are some of the computer types available. Multicore 

computers have an increased number of cores allowing for a task to be split amongst the cores 

for more efficient execution. Multiprocessor computers have multiple central processing units 

(CPUs) which allow for parallel execution of tasks – supercomputers fall into this category as 

well. However, what separates a supercomputer from what most users have – traditional 

computers –  is that supercomputers function at the highest operational rate or peak performance 

for computers. The use of multiprocessor computers would achieve the synchronization task. 

However, the use of these computers would not be feasible for researchers to use due to cost.  

Another challenge associated with technological capabilities is the use of specific operating 

systems. For a task as resource intensive as simultaneous acquisition, the Linux operating system 

would be most suitable due to the speed in which it executes tasks and its reliability. However, 

Linux is limited in terms of hardware driver support meaning that there may be challenges in 
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finding hardware equipment that is compatible with the Linux operating system. The Windows 

operating system is compatible with most hardware indicating that there would be less 

challenges associated with finding compatible hardware. However, this operating system has 

reliability issues and the speed in which it executes tasks can degrade over time. 

1.2 Objective 

The objective of this project is to method t that allows for acquiring kinetic (force) and 

kinematic (motion) data points simultaneously by developing a software toolset. While this 

toolset is intended for application with flapping wing MAV development, it could potentially be 

used for other areas of research such as biomechanics and kinesiology. The developed software 

tools need to work with the existing lab equipment and should be able to work with any test 

setup. Additionally, the method should be developed using a system engineering approach. 

1.3 Requirements 

Requirement definition was critical in identifying the constraints for the project and 

defining the expectations for the developed method. The requirements for the developed 

software suite are as follows: 

• Ability to integrate with the existing hardware.  

• Acquire force data from the ATI Nano 17 force/torque transducer and motion data from 

the Vicon Motion Capture Camera System simultaneously. 

• The software tools need to be developed using software programs compatible with the 

existing hardware). 

• Execution of the toolset should occur without software failures. 
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• Develop method using a system engineering approach (i.e., requirements definition, 

system architecture design, system integration, etc.). 

1.4 Outline 

Chapter 2 of this thesis describes a literature study in which three topics are discussed. 

The first topic is a discussion of force generation and wing defamation characteristics. 

Additionally, established methods of synchronizing data and acquiring data from multiple 

devices are discussed. Chapter 3 covers the system design and algorithm development section 

which includes a summary of the system architecture, the algorithm development process for the 

selected software tools, and the system implementation process. In Chapter 4, results from the 

testing and validation process are discussed. Furthermore, alternative system designs and 

solutions are proposed. In Chapter 5, the conclusion is stated, future work is defined, and novel 

contributions are presented. 
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Chapter 2. Literature Study 

The literature review discusses three primary topics. First, a summary of studies related 

to force generation and wing deformation of flapping wings is discussed. This section discusses 

findings made through research on the forces acting upon and deformation characteristics 

observed from a flapping wing in motion. The section also discusses the importance of 

understanding how force generation is influenced by wing deformation respective to improving 

existing flapping wing designs. Next, a discussion of methods used historically to acquire 

kinematic and kinetic data will take place. The literature study will conclude with a discussion of  

established methods used to synchronize acquired data. This review influenced the algorithm 

development process and provided a baseline for the process used to synchronize the data 

acquisition. 

2.1 Measurements of Force Production 

The relationship between wing deformation and how that deformation affects 

aerodynamic force generation has been studied extensively (Shyy et al.2013). An understanding 

of the relationship between force production and wing motion is essential for the continual 

development of flapping wing MAVs and improvement of knowledge regarding biological flyers 

capable of flapping wing flight.  

Bahlman et al. (Bahlman et al.2013) constructed a robotic bat wing to circumvent the 

problem of trying to measure power input and force from a flying vertebrate. A range of 

kinematic parameters were used to observe the force output and power input for the designed bat 
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wing. This study resulted in the discovery that the wing would drift forward during the 

downstroke from thrust generation and  due to inertia. However, despite the drifting issues, 

researchers concluded that the creation of the wing would allow for a better understanding of 

aerodynamic performance of flapping wings without having to use a live specimen (Bahlman et 

al.2013).  

The wing deformation characteristics and aerodynamic force generation of a DelFly II 

MAV in hovering flight was observed for the purpose of posing alternative wing designs (Percin 

et al.2016). A force transducer and particle image velocimetry (PIV) system were used to 

observe force generation, power consumption, and defamation characteristics for trials in which 

flapping frequency and wing configuration was altered – specifically wing thickness, wing 

layout, and material were varied (Figure 2.1) . 
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Figure 2.1 (a) Experimental setup for the wing structural deformation measurements. (b) Sketch of the wing layout 

with circular markers (Percin et al.2016). From Percin et al with permission (Percin et al.2016). 

 

They concluded that an increase in flapping frequency resulted in an increase in force 

generation with respect to the x component of the three-dimensional force vector and power 

consumption, but also introduced a phase lag in the temporal evolution of forces. Another 

conclusion stated was that an increase in the thickness of the wing material (Mylar) resulted in an 

increase in both X-force and power consumption which in turn decreased the ratio of force to 

power (Percin et al.2016). The study presents more conclusions derived from the testing 

variations conducted with the DelFly II MAV related to testing with thicker or thinner 

membranes, different span lengths, and aspect ratios. However, the significance presented with 

this study is that an understanding of force generation as it relates to wing deformation and in 

turn wing design is essential for the optimization of the wing itself.  
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In a study conducted by Thomson et al. (Thomson et al.2009), a hawkmoth inspired wing 

was fabricated and tested to determine the optimal flight trajectory that would maximize average 

vertical force. The wing was connected to a flapping mechanism comprised of gears, an encoder, 

and motors. The flapping mechanism was mounted above a load cell and a LabVIEW developed 

controller was used to send desired trajectories to the encoder for testing force (Thomson et 

al.2009). This test was conducted iteratively with the output of one trial (i.e., angle and force 

data) serving as the inputs of the next until the optimal trajectories were reached. This study 

showed that understanding the force production as a result of flight trajectories was essential in 

discovering the trajectory that would maximize the force production (Figure 2.2). 

 

 

Figure 2.2 Rotation angles vs time for iteration 1 (top left) and iteration 300 (top right). Instantaneous vertical force 

(arbitrary units) vs. time for iteration 1 (bottom left) and iteration 300 (bottom right) (Thomson et al.2009). From 

Thomson et al. with permission (Thomson et al.2009). 

 

2.2 Established Methods for Acquiring Kinematic and Kinetic Data 

Section 2.1 focused on the key trends observed during studies conducted related to 

unsteady aerodynamics and their correlation to wing deformation characteristics. While this 
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section includes information related to the topic, it primarily focuses on the methods used to 

measure wing deformation and unsteady aerodynamics. Several methods have been used 

historically to acquire kinematic and kinetic data. An established method used for acquiring both 

kinematic and kinetic data has been using a load cell in combination with a camera system. 

While investigating the aerodynamic characteristics of an experimental flapping wing, Wu and 

his co-workers (Wu et al.2011) used a four camera Digital Image Correlation (DIC) system to 

measure the kinematics and deformation of a flapping wing while measuring the aerodynamic 

forces acting on the wing using an ATI Nano 17 Titanium force transducer (Figure 2.3). The 

acquisition of the data informed key decisions on wing design.  

 

 

Figure 2.3: The test stand used by Wu et al. includes four Point Grey Research Flea2 cameras, a stroboscope, and 

an ATI Nano 17 force/torque transducer mounted underneath the wing (Wu et al.2011). From Wu et al.  (Wu et 

al.2011) with permission. 

 

 

In another study, a two camera DIC system in conjunction with an ATI Nano 17 force 

transducer (Figure 2.4) was used to capture kinematic and kinetic data using a dove inspired 
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flapping wing MAV. Additionally, a hall angle sensor was incorporated to capture the flapping 

angle (Yang et al.2022). In both studies, the use of the DIC camera system and ATI Nano 17 

force transducer were critical in capturing force data and wing kinematics which allowed for 

researchers to understand the data in relation to the performance of flapping wings. 

 

 

Figure 2.4 Measurement of wing deformation and forces (YANG et al.2022). 

 

While the use of a force transducer and camera system is an established method for the 

acquisition of force kinematic and kinetic data, other methods are used to acquire the data. For 

rigid wings,  Sane and Dickinson (Sane & Dickinson, 2001) used stroke position (ϕ), angle of 

attack  α , and stroke deviation  θ  to descri e the kinematics of the win s and move a 

dynamically scaled wing in oil. The stroke position was described by a triangular waveform, a 

trapezoidal waveform was used to describe the angle of attack, and two functions were used to 

descri e the stroke deviation. An ‘oval’ pattern was used to descri e the win  tip deviation from 

the stroke plane according to a half-sine wave (Sane & Dickinson, 2001). A ‘fi ure-of-ei ht’ 

pattern was used to describe stroke deviation which was varied as a full sine wave (Sane & 
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Dickinson, 2001). Force measurements were acquired using a two-dimensional sensor acquired 

using a National Instruments BNC 2090 data acquisition board (Sane & Dickinson, 2001). Similar 

to the previously discussed research studies, kinetic data were measured and observed. However, 

in this study kinematics were described using waveform functions – specifically, custom 

MATLAB programs were used to convert the angular trajectories into stepper motor commands 

(Sane & Dickinson, 2001). 

Kinematic and kinetic data can also be measured using a magnetic position sensor and 

load cell, respectively. In a study conducted by Leys et al. (Leys et al.2016), the kinematic and 

kinetic performance of a hummingbird inspired flapping wing mechanism was observed. The 

kinetic performance, specifically thrust, of the flapping wing mechanism was measured using a 

double beam load cell. The kinematic performance, specifically stroke an le  θ , was measured 

using a AS5055A contactless magnetic position sensor. A key aspect of this study was to prove 

that a magnetic position sensor can acquire accurate kinematic which provides a less expensive 

alternative when compared to high-speed cameras. 

Deriving forces using acquired motion data is another proven method used to acquire 

both kinematic and kinetic data. Meng and Sun (Meng & Sun, 2016) acquired motion data using 

three high speed cameras and then used stereovision-based triangulation to extract the three-

dimensional body and wing kinematics. For reference, stereovision-based triangulation identifies 

a point in three-dimensional space from the left and right pixel in a pair of stereo images. The 

inputs of using this method are the homogeneous coordinates of the detected image points and 

the camera matrices for the left and right cameras. The output of the triangulation method is a 

three-dimensional point in the homogenous representation (Computer Vision: Stereo 3D Vision, 

2022). Following the collection of images and extraction of kinematic data, a Computation Fluid 
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Dynamics (CFD) method was used to derive thrust and vertical force coefficients by solving the 

Navier Stokes equation. In another study, a motion capture system comprised of an Optitrack 

Flex V100R2 hardware and Arena Motion Capture Software was used to capture the motion of 

su jects performin   ody wei ht squats while a Rice Lake Wei htin  Solution’s force plate was 

used to measure ground reaction forces (Fry et al.2016). Force data was sampled using a Biopac 

data acquisition system and LabVIEW was used to control sample rate. Following data 

acquisition, ground reaction forces were derived from the data captured by the motion capture 

system using proprietary methods (Moodie, 2013) and derived forces were then compared to data 

collected from the force plate (Fry et al.2016). 

2.3 Established Methods for Synchronizing Kinematic and Kinetic Data 

Synchronizing acquired kinematic and kinetic data is essential for understating the 

relationship between the two. Synchronization methods are necessary to ensure that the 

kinematic and kinetic data correlation is accurate. Established methods for data synchronization 

include using software, microcontrollers, and aerodynamic characteristics. 

Software based methods have been used previously to synchronize kinetic and kinematic 

acquired data. A C++ based software algorithm was developed to trigger image acquisition at 

specific wing positions for a DelFly  II MAV in simulated hovering flight. Force measurements 

were captured using a strain gauge with Wheatstone bridges. In this study, two Lavision 

HighspeedStar CMOS cameras were used to capture motion data – this acquisition process was 

tri  ered  y the PC used to control the motion of the MAV’s wings. The vertical force of the 

object was measured using a strain-gauge balance and two Wheatstone sensors. The tracking of 

motor pulses during testing allowed for the acquired force data to be synchronized with the wing 

location (De Clercq et al.2009). 
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Microcontroller boards have also been used to synchronize acquired kinetic and 

kinematic data. A microcontroller is a small computer on an integrated circuit and is used to 

execute specific functions within electronic systems. Microcontrollers typically contain a 

processor, memory, and input/output (I/O) peripherals. These boards can also be used to trigger 

and control external systems. A microcontroller board was used to synchronize the stereo-PIV 

system and force measurements while also controlling the flapping frequency during a study 

conducted on the Del Fly Micro MAV (Deng et al.2016). In this study, force measurements were 

recorded using an ATI Nano 17 Titanium force transducer and three Photron Fastcam SA1.1 

high speed cameras to record the flapping motion – the microcontroller was used to synchronize 

both systems based on the flapping frequency (Deng et al.2016). A similar experimental setup 

was also used to examine the kinematic and kinetic performance for the DelFly II MAV. Similar 

to the previously discussed study, a microcontroller was used to control the flapping frequency, 

synchronize the force, and image acquisition to flapping frequency. In addition to the 

microcontroller, a National Instruments field-programmable gate array (FPGA) was used for the 

data acquisition (Percin et al.2017). 

 A method used previously to correlate acquired kinematic and kinetic data has been to 

use wing deformation characteristics and non-dimensional time. The stroke angle for the DelFly 

II MAV in hovering motion was calculated using the mechanical model of the driving system. 

Concurrently, the forces acting on the DelFly II were measured using an ATI Nano 17 Titanium 

force transducer. Stroke angle and acquired force were then plotted against non-dimensional – 

time in seconds divided by the period of a flapping cycle – to show the relationship between 

stroke angle and the generated forces (Percin et al.2017). 
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For the purpose of distinguishing between the synchronization methods mentioned 

previously and the synchronization method that is the focus of the project, synchronization will 

be separated into two categories: time-based synchronization and characteristic based 

synchronization. Time-based synchronization is data synchronization in which the external 

devices start acquiring data at the same time based on a shared internal clock. Characteristic 

based synchronization is achieved by triggering acquisition based on the characteristics of the 

test specimen or parameters of the trial.  

To put this idea into perspective, acquisition is triggered based on the flapping angle set 

for a flapping-wing MAV during a trial. Characteristic based synchronization usually occurs 

during the post-processing of data. Based on typical characteristics of the wing motion, e.g., the 

flapping angle, the force data are shifted to match the kinematic motion. The research studies 

mentioned previously are all examples of characteristic based synchronization. One exception 

may be the study by Deng et al. (Deng et al.2016). This appears to be an example of the time-

based synchronization because the microcontroller board acts as the control for two external 

acquisition systems and synchronizes the measurements for both systems. A key observation to 

make in re ard to this study is that the microcontroller’s primary purpose was to control the 

flapping frequency of the Del Fly II and to synchronize measurements from each system with the 

flapping angle of the MAV. The actual correlation of force and motion data occurred during the 

post-processing phase of the data using the flapping angle as the basis for correlation. 

The characteristic based synchronization is useful in the correlation of wing motion and 

force production, the accuracy of the results can be called into question. However, the emphasis 

on observing force production at specific flapping angles such as the upstroke or downstroke of a 

flapping wing could result in trends in force production at other flapping strokes being 
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overlooked. On the contrary, time-based synchronization would allow for a correlation force 

production and motion throughout the flight of the test specimen allowing for all potential trends 

in force production to be observed and increase the accuracy of the results captured. The focus of 

this study is the development of a time-based synchronization method which will allow for an 

accurate and direct correlation of force production and wing motion.  
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Chapter 3. System Design and Algorithm Development 

The goal of this project was to develop a method for acquiring measurements 

simultaneously from two external systems using a systems engineering approach. In order to 

achieve this objective, a system architecture had to be defined with the necessary hardware 

components used. Subsequently algorithms had to be developed to integrate these components 

together. This chapter details the design of the system architecture, algorithm development 

process, and system implementation. 

3.1 System Architecture Design I 

The first step in approaching this task was defining an initial system architecture showing 

the hardware components with the system along with the connections indicating integration 

points (i.e., algorithms). Figure 3.1 is a representation of this initial system architecture. 

Hardware components are represented by blue boxes. The gray boxes indicated areas where 

algorithm development was necessary for hardware integration. 
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Figure 3.1 Block diagram shows the initial system architecture. The diagram includes the connection of the 

hardware components to the algorithms that are under development. 

 

3.2 Algorithm Development 

Algorithm development was critical in integration of the hardware components. 

However, before algorithm development could occur, software tools had to be selected that 

would serve as the development environment for the algorithms. Since the hardware components 

presented in the system architecture strongly influenced the selection of software tools, a non-

trivial process had to be used for the selection of software. Specifically, the following sub-

sections discuss the software tools selected for integration with the National Instruments Data 

Acquisition Device (NI DAQ) connected to the ATI force transducer and the Vicon camera 

system, respectively. The process involved selecting the software used for algorithm 

development by investigating from a set of software tools that are compatible with the existing 

hardware components. Although the processes discussed pertain to the components specified, 

they can be applied to other hardware products. 
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3.2.1 Software Tool Selection for the NI DAQ 

As mentioned in the introductory section, the selection of the software tool used to 

develop the force acquisition algorithm was dependent on the hardware itself. For force 

acquisition, the NI DAQ has the task of reading, storing, and transmitting data from the ATI 

force transducer. This meant that the software tool selected had to be capable of triggering force 

acquisition from the DAQ while also supporting the tasks that the DAQ is responsible for. The 

NI DAQ is compatible with the following software programs: LabVIEW, LabWindows / CVI, 

Measurement Studio, and Visual Basic. Table 3.1 provides a brief overview of the programs – 

this overview includes a description of the tool, primary purpose, and capabilities.  

Table 3.1 The table shows an overview of the software tools that are compatible with the NI DAQ USB 6110. 

Software 

Program 

Development 

Environment 

Type 

Programming 

Language 
Description Key Capabilities 

LabVIEW Graphical G 

Program developed 

by National 

Instruments. 

Graphical 

programming 

environment that 

allows for signal 

generation, 

measurement 

analysis, and 

automation of data 

acquisition from 

hardware. 

• Works with third-

party hardware 

• Acquire data and 

control hardware 

• Monitor and 

control tests with 

UI development 

• Integrate with 

Python, C/C++, 

.NET, MATLAB 

LabWindows 

/ CVI 
Textual X 

Program developed 

by National 

Instruments. ANSI 

C development 

environment that 

allows for the 

creation of test and 

measurement 

applications. 

• Works with third-

party hardware 

• Develop 

applications for 

real-time 

measurements 

• Control hardware 

virtually 
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Software 

Program 

Development 

Environment 

Type 

Programming 

Language 
Description Key Capabilities 

• Provide intuitive 

debugging 

capabilities 

Measurement 

Studio 
Graphical 

C, VBA, etc. 

(.NET 

framework) 

Developed by 

National 

Instruments as an 

extension of 

Microsoft Visual 

Studio. .NET tools 

used to design 

applications for 

acquiring, 

analyzing, and 

displaying 

measurement data.  

• Works with third-

party hardware 

• Remove 

complexities of 

hardware 

communication 

through object-

oriented hardware 

class 

• Perform real-time 

analysis on 

acquired signals 

Visual Basic Textual 

VBA 

(.NET 

framework) 

Developed by 

Microsoft. 

Programming 

language that 

allows for 

development of 

web applications 

and GUI 

development. 

• Works with third-

party hardware 

• Communicate with 

hardware through 

ActiveX 

components 

• Provide object-

oriented 

programming 

• Access to basic 

data acquisition 

function in Visual 

Basic 
 

The following paragraphs discuss the differences between these software programs and 

the decision process used to down select to the program used to develop the force acquisition 

algorithm.  

LabVIEW is a graphical development environment that allows for the development of 

applications to acquire from and control third-party hardware. Key advantages of this software 

tool are that it allows for automation of acquisition and can integrate with other software tools 

like Python and MATLAB. A disadvantage of LabVIEW is that the cost of the tool can increase 
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depending on the functionality required. Also, debugging in the LabVIEW environment can be 

more complex when compared to other development environments.  

LabWindows / CVI is a textual development environment that uses the C programming 

language. Similar to LabVIEW, the tool is capable of connecting to third-part hardware and 

acquiring data using developed applications. A disadvantage of using this programming 

environment is that the dependency on the C programming language can create a steep learning 

curve for users who are not experienced with the programming language. 

Measurement Studio was developed by National Instruments to serve as an extension of 

the Microsoft Visual Studio program. This program relies on .NET tools and the .NET 

framework to allow for the designing of applications for data acquisition and for connecting to 

hardware. An advantage of this program is that the graphical environment allows users to 

develop interfaces capable of being integrated with hardware. However, there is a disadvantage 

with using this program. Since the tool is an extension of Visual Studio, it does require that users 

have some experience with using programming languages like C/C++ and VBA which can create 

a steep learning curve for users. 

Visual Basic can connect to and acquire from the DAQ by using Active X components. 

This poses a disadvantage to the program because the components have limitations in terms of 

security and compatibility with other operating systems (OS), such as macOS and Linux, and 

programming environments. Also, data acquisition from DAQ is limited to what functions are 

available in the Visual Basic programming environment.  

Given the advantages and disadvantages of each development environment, LabVIEW 

was selected as the tool for the development of the force acquisition algorithm. The primary 

reason LabVIEW was selected was because of its ability to integrate with other programming 
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tools. Referring back to Figure 3.1 which shows the first design of the system architecture, one 

of the key algorithms needed for the task was an algorithm that was capable of triggering 

acquisition from  oth systems. La VIEW’s a ility to inte rate with other pro rams meant that it 

could be connected to and triggered from another program which would support the automation 

of data acquisition required to satisfy the objective of the project. 

3.2.2 Software Selection for the Vicon Camera System 

Nexus is a software tool developed by Vicon Motion Systems to allow users to model 

and process measurement data. It was specifically designed for the life sciences community. A 

key feature of Nexus is that it “delivers precise, repeata le data, and clinically validated model 

outputs”  NEXUS, 2 2  . Nexus is compati le with  oth MA LAB and Python –each software 

suite included the Nexus API. This API allows users to connect to Vicon Nexus for offline data 

access and model development.  

Tracker is a software tool developed by Vicon Motion Systems that allows users to 

capture high quality real-time data. The tool suite was designed for engineering applications such 

as drone tracking and human factors engineering. The Vicon Tracker software is compatible with 

MATLAB, specifically MATLAB Simulink, as well as Python. For MATLAB, the Vicon Data 

Stream SDK provides the connection between Vicon and MATLAB Simulink. For Python, the 

Tracker API allows Python to access Vicon camera system through  Tracker functions. 

While Nexus can be used to acquire motion data, the primary function of the NEXUS 

API is to allow for streamlined data processing and model development. It was not designed to 

automate the acquisition process. As a result, Nexus is not suitable for supporting the motion 

acquisition algorithm development.  
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Tracker is also capable of acquiring motion capture data and like Nexus, it works with 

both MATLAB and Python. Unlike Nexus, the connection between Tracker and MATLAB is 

different when compared to the connection between Tracker and Python. The connection to 

MATLAB from Tracker is achieved via the Vicon DataStream SDK (TCP/IP connection) or 

UDP stream. In each case, data from Vicon can be streamed to MATLAB via Simulink using 

one of the previously mentioned connections. However, one requirement of using these 

connections is that Vicon must be already streaming data before Simulink can access it. 

Therefore, Simulink cannot trigger acquisition and is instead dependent on Tracker. So, using 

Tracker with MATLAB would not support algorithm development for acquiring motion data 

because automation is not possible using Simulink. 

Python is able to connect to Tracker through the Tracker API – this API was introduced 

with Tracker version 3.9 in 2020. It contains functionality that allows Python to trigger data 

acquisition through its capture processes. The API also contains functionality that allows Python 

to trigger camera calibration and data exporting. Given the capabilities contained within the 

Tracker API, developing an algorithm to automate motion capture acquisition is possible. 

Therefore, the use of Tracker would support the development of an algorithm that satisfies the 

objective of this project.. 

3.3 Final System Design 

For the development of the force acquisition algorithm, LabVIEW was selected for the 

algorithm development. Vicon Tracker in conjunction with Python was selected for the 

development of the motion capture algorithm. Since Python is capable of being integrated with 

both LabVIEW and Vicon Tracker, it was selected for the development of the algorithm that 

triggered acquisition from both systems simultaneously. The first design of the system 
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architecture shown in Figure 3.1 was updated with the selected software tools and the  final 

system architecture is shown in Figure 3.2. This updated architecture describes the interaction 

between the major components of the system and displays how the developed algorithms interact 

with the software and hardware components of the system.  

 

 

Figure 3.2 Block diagram shows the final system architecture. The diagram includes the connection of the hardware 
and software components as well as the developed software algorithms. 

 

3.3.1 Components in System Architecture 

The components shown in the system architecture (Figure 3.2) are critical to the execution of 

the data acquisition process and contain a mixture of software and hardware components. The 

key components in the system architecture are as follows: 

• Test Specimen 

• ATI Nano 17 Force/Torque Transducer 

• Vicon Motion Capture Camera System 

• Data Acquisition Device (NI USB 6210 DAQ) 

• Python 

• LabVIEW 



25 
 

• Vicon Tracker Software 

3.3.2 Component Limitations 

This section addresses the limitations encountered when using the components in the full 

architecture. The limitations of specific hardware components directly affect the configuration of 

the system. Additionally, limitations in both hardware and software components were a driving 

factor behind the selection of specific software builds that were used during the algorithm 

development process. Table 3.2 identifies the limitations associated with specific system 

components and how the component may affect other components within the system 

architecture.  

 

Table 3.2 The table shows the limitations of the hardware and software components used the in the final system 

architecture. 

Component Limitations 

Component 
Limitation Affected Components 

Test Specimen - - 

ATI Nano 17 Force/Torque 

Transducer 

Constrained to Windows OS 

due to DAQ 

Python and LabVIEW  

components are constrained 

to Windows OS 

Vicon Motion Capture 

Camera System 
Constrained to Windows OS 

Python version is constrained 

to Windows 

Data Acquisition Device (NI 

USB 6210 DAQ) 

Constrained to Windows OS 

due to lack of support on 

other operating systems 

Python version is constrained 

to Windows 

Python - - 
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LabVIEW 
Constrained to Python 

Version 3.6 and later releases 

Python version selection is 

dependent on LabVIEW 

compatibility 

Vicon Tracker Software 
Constrained to Tracker 

version 3.9 

Python version selection is 

constrained to 3.x and later 

releases 
 

3.4 LabVIEW Edition Selection 

This section discusses the process used to identify the LabVIEW edition that would 

satisfy the objective of the project. The following paragraphs provide a brief overview of the 

LabVIEW software and a description of the LabVIEW editions available. The section concludes 

with a discussion of the pros and cons associated with each edition. 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a graphical 

programming environment that is used by engineers to develop automated research, validation, 

and production test systems (Select Your LabVIEW Edition, 2023). The software suite was 

developed by National Instruments (NI). 

LabVIEW has three editions available for purchase: LabVIEW Base, LabVIEW Full, and 

LabVIEW Professional. Each edition includes the following capabilities: 

• Acquire data from NI and third-party hardware and communicate using industry 

protocols (Select Your LabVIEW Edition, 2023). 

• Create interactive UIs for test monitoring and control (Select Your LabVIEW Edition, 2023). 

• Utilize standard math, probability, and statistical functions (Select Your LabVIEW Edition, 

2023). 

• Integrate code written in Python, C/C++, .Net, and MathWorks MATLAB® software 

(Select Your LabVIEW Edition, 2023). 
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• Save data to .csv, .tdms, or any custom-defined binary file (Select Your LabVIEW Edition, 

2023). 

In addition to the capabilities presented above, the LabVIEW Full edition also includes 

advanced analysis algorithms, signal processing functions, and signal generation functionality. 

The LabVIEW Professional edition includes the capabilities introduced with the LabVIEW Full 

edition as well as an Application Builder, Report Generation Toolkit, Advanced Signal 

Processing Toolkit, code comparison tools, and a Database Connectivity Toolkit. Each edition is 

supported on the Windows operating system. However, only the Full and Professional editions 

are supported on the Mac and Linux operating systems.  

The selection of the LabVIEW edition that was most suited to supporting this project was 

determined using the following criteria: 

• Ability to support meeting the objectives and requirements defined in Sections 1.3 

• Ability to function with the full system architecture given the limitations of the physical 

system identified in Section 3.3.2 

While each edition met the second criteria listed above, assessing whether the software builds 

satisfied the first criteria required more investigation. Due to limitations with  the device used to 

capture force data, the build selected had to also support meeting the objectives of the project. As 

mentioned previously, the device’s compati ility with existin  operatin  systems is limited to 

Windows. However, with respect to the LabVIEW edition selection process, this limitation was 

negligible as all editions are compatible with the device. When comparing the three editions in 

regard to the first criteria, the selection process was not straightforward and required further 

discernment. While each edition satisfied the requirement of acquiring data from external 

hardware, further scrutiny had to be applied when determining whether the editions supported 
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the objectives of the project and whether the added features of each edition would contribute to 

the success of the developed method. Initially, the LabVIEW Full edition was ruled out as a 

viable candidate for the selection process. Although the signal processing toolbox included with 

the Full edition posed an advantage over the base version, the toolbox was not deemed as critical 

to meeting the objective of this project. Signal processing does play a role in the final product; 

however, LabVIEW was not used to oversee this task. This logic was also applied to the 

Professional edition which includes an advanced signal processing toolbox as well as the signal 

processing toolbox of the Full edition. This added capability was weighted lowly when the final 

determination of the edition was made. When comparing the Base and Professional editions, the 

Professional edition had a significant advantage in terms of the Application Builder functionality 

that was incorporated. The builder allows users to convert LabVIEW virtual instruments into 

applications that can be executed outside of the LabVIEW environment – the only prerequisite to 

this being that the LabVIEW Runtime Engine (a free application provided by National 

Instruments) had to be installed for execution to occur. The potential implications of using this 

edition would be that the need to continuously renew a LabVIEW subscription would decrease 

due to the capability of running developed code outside of its development environment. 

However, the upfront costs of the edition as well as the risk of potentially needing to repurchase 

the software should the existing application require changes puts the Professional edition at a 

disadvantage. Although, utilizing the Base version does require that the user execute tasks within 

the LabVIEW environment which in turn requires a yearly subscription renewal, it is far more 

cost effective than the Professional version. It was decided that the Base version of LabVIEW 

was best suited to support this project. The edition is more cost-effective and contains the 

necessary tools needed to interact with the existing external devices and acquire data from the 
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system. Additionally, it was determined that the need to use LabVIEW can potentially be 

eliminated by replacing critical LabVIEW instruments with Python developed modules, making 

the need to incorporate the Application Builder inconsequential. 

3.5 Force Acquisition Algorithm Development 

During the algorithm development process for force acquisition, the LabVIEW virtual 

instrument (VI) development was key in supporting the data acquisition requirement defined in 

Section 1.3. Specifically, the LabVIEW VIs are utilized for acquiring data from the force/torque 

transducer. This section covers the virtual instruments that are critical to this acquisition task. 

These LabVIEW VIs will be referred to by its process and not by the name of the virtual 

instrument itself. The main algorithm for force acquisition is tasked with issuing commands to 

the sub-algorithms that contain most of the processes completing the acquisition tasks. The sub-

algorithms that perform the acquisition tasks are Acquire, Save Data, Process Data, and Load 

Data. 

3.5.1 Force Acquisition Algorithm 

The force acquisition algorithm commands the sub-algorithms to execute acquisition 

tasks. This algorithm is organized using case structures and list variables. The front panel of the 

algorithm contains buttons that link to the case structures for each sub-algorithm. Selecting each 

button prompts LabVIEW to execute the code contained within the defined case structures and 

provides feedback to the user regarding the status of the code execution. In addition to the 

buttons, the front panel contains a graph this is automatically updated with force data once the 

algorithm recognizes that data has been stored in the variable tied to the graph – data is 
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populated if the user opts to acquire data from the force transducer or load previously acquired 

data.  

 

3.5.2 Acquire Data Algorithm 

The acquire data algorithm (Figure 3.3) is responsible for acquiring data from the 

force/torque transducer. Inputs such as sample size and trial name are passed to this algorithm in 

the form of control objects (a static object used to pass reference values from the force 

acquisition algorithm to sub-algorithms). Inputs are then used with the National Instruments data 

acquisition toolbox (NI-DAQmx) to extract raw voltage data from the force transducer through 

the DAQs analog output channels. Voltages are converted to force and torque data using the 

force transducer’s cali ration matrix and the newly converted data is stored in a new control 

object – information stored in this control object is sent to the force acquisition algorithm and 

distributed to other sub-algorithms. 

 

 

 

Figure 3.3: Process diagram for the acquire data algorithm. The diagram includes the primary inputs and sequential 
steps that the algorithm executes to acquire force data. 
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3.5.3 Process Data Algorithm 

The process data algorithm performs the post-acquisition processing of the acquired data. 

This algorithm (Figure 3.4  esta lishes a connection to Python usin  the ‘Python Open Session’ 

node in LabVIEW. Following successful connection, LabVIEW sends inputs from the user and 

the stored data to Python through the LabVIEW Python node. Data is then processed within 

LabVIEW using a Python developed processing algorithm. Following successful execution pf 

the Python processing algorithm, LabVIEW ends the connection to Python and concludes its 

execution. The post processing script is discussed in further detail during the discussion of the 

Python algorithm development process in Section 3.6.2. 

 

Figure 3.4 Process diagram for the save data algorithm. The diagram includes the primary inputs and sequential 

steps that the algorithm executes to process the force data using Python. 

 

3.5.4 Save Data Algorithm 

The save data algorithm (Figure 3.5) is used to save the acquired or loaded data. 

LabVIEW saves the data to the path specified by the user and in the format specified. Users have 

the option to save data in the following formats: .csv, .tdms, and .bin. 
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Figure 3.5 Process diagram for the save data algorithm. The diagram includes the primary inputs and sequential 

steps that the algorithm executes to save acquired data. 

3.5.5 Load Data Algorithm 

The load data algorithm (Figure 3.6) is used to load previously acquired data. The loaded 

data is stored in the force acquisition algorithm and distributed to other sub-algorithms as 

needed.  

 

Figure 3.6 Process diagram for the acquire data algorithm. The diagram includes the primary inputs and sequential 

steps that the algorithm executes to load data previously acquired. 

 

3.5.6 Unit Testing 

Unit testing was a critical aspect of the algorithm development process. By unit testing 

each sub-algorithm developed within LabVIEW, it ensured that the execution of the force 

acquisition algorithm could occur without failures from the sub-algorithms.  Unit Testing for the 

LabVIEW VIs occurred by assessing each algorithm on its own before testing to ensure that the 

main force acquisition algorithm was able to command the sub-algorithms. The following bullet 
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points summarize the process used to unit test each algorithm and include graphic examples 

when applicable. 

• Acquire Data Algorithm: The acquire data algorithm was exclusively assessed during 

live trial testing. Validation of this procedure was defined as a successful update of the 

force acquisition algorithm with data following the execution of the acquire data process.  

• Process Data Algorithm: The process data algorithm was assessed using previously 

acquired data. The testing process provided validation that the algorithm was properly 

connecting to Python and saving data in the specified folder. An example (Figure 3.7) of 

the output of this algorithm is shown below.  

 

 

Figure 3.7 Example of Output from Process Data Algorithm. Image is an example of the Python output that is saved 

in the user defined location. 

NOTE: The data presented above is from an uncalibrated force transducer. 
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• Save Data Algorithm: The save data algorithm was evaluated using previously acquired 

data and data acquired during live testing. Data loaded into LabVIEW was resaved in the 

original format to verify that the save method preserved the original data. For data 

acquired during live testing, the data was saved in all available formats to verify that 

LabVIEW was saving the files in the specified location. The formats were checked using 

a tool developed within LabVIEW to verify that the save data algorithm preserved the 

data. 

• Load Data Algorithm: The load data procedure was evaluated using previously acquired 

force data. For full compatibility testing, data stored in different formats were loaded to 

verify that LabVIEW was reading and storing the files properly. 

3.6 Python 

Python is a high-level general purpose programming language, first released in 1991. Due 

to Python’s a ility to automatically compile code to  yte code and execute it, the software is 

suitable for use as a scripting language (Dave Kuhlman, 2012). Additionally, Python can manage 

extensive tasks due to the ability to extend Python to C and C++ (Dave Kuhlman, 2012). This 

capability alone made Python an ideal choice for developing code to execute simultaneous 

acquisition which can be computationally intensive. 

3.6.1 Software Build Selection 

Python version selection was crucial to project development due to limitations identified 

previously. As mentioned in Section 3.3.2, the Python version used for code development was 

dependent on compatibility with LabVIEW and Vicon Tracker software. LabVIEW is 

compatible with Python versions 2.7 and 3.6-3.10. However, that compatibility is not uniform 
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across all LabVIEW releases that support Python. Specifically, Python 2.7 is only compatible 

with LabVIEW releases from 2018 – 2019 whereas Python 3.6 is compatible with all releases of 

LabVIEW that support Python. Compatibility between the two software tools decreases as newer 

versions of each are released. Regarding this project, LabVIEW version 2022 Q3 was used to 

develop acquisition code for the force transducer. As a result, the Python version was initially 

constrained to Python 3.6. Vicon Tracker 3.9 was selected as the software used to acquire motion 

data and it is compatible with Python 2.7 and all releases of Python 3; per developer guidance it 

is recommended to use releases of Python 3. Given the requirements and recommendations set 

forth by each software developer Python the Python 3.6. release was selected for algorithm 

development. While Vicon Tracker is not constrained to specific releases of Python, the 

LabVIEW software build dictates the use of Python 3.6 since the base version is useable. 

Additionally, release 3.6 is supported across all LabVIEW versions with Python support, making 

it the ideal choice for the project. 

3.6.2 Python Module / Library Selection Process 

Python library selection was critical in the algorithm development process. Specifically, 

this section will discuss the Python libraries that were considered during the algorithm 

development process. The libraries that were evaluated for the project were the Threading 

module, Process-based Parallelism library (multiprocessing), and Asynchronous I/O library 

(asyncio). 

Threading is a module within the base Python library that allows users to create multiple 

threads in order to execute blocks of code or functions concurrently. A key advantage of using 

this module is that it is not constrained to using specific Python objects meaning that it can 

handle simple Python objects like list variables  or more complex Python objects such as Python 
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objects spawned from a Component Object Model (COM). A disadvantage of this module is that 

its ability is restricted by that of the Global Interpreter Lock (GIL) which forces only one thread 

to run at a time. In order to implement this module to achieve the task of executing multiple 

threads simultaneously within Python, the use of a different coding language is required to 

overcome GIL restrictions. 

Process-based Parallelism (referred to as multiprocessing) is a library that spawns 

processes using an API similar to the threading module. A key advantage of this library over the 

threading module is that it circumvents the Global Interpreter Lock (GIL) allowing for multiple 

functions to be executed at the same time. The Process class within multiprocessing was 

evaluated to assess whether it could support executing force and motion acquisition at the same 

time. However, the use of this library and class presented  limitations. Specifically, the 

LabVIEW objects defined initially were incompatible with the process class. In order to execute 

functions, the Process class has to ‘pickle’  the process of convertin  a Python o ject into a  yte 

stream) the Python object before  the function can run to completion. Due to the size of the 

La VIEW o jects, Python was not a le to ‘pickle’ the o ject posin  a si nificant o stacle with 

integrating this library into the existing code architecture. 

The asynchronous I/O library was designed to allow for the writing of concurrent code 

using the async/await syntax. This library is used by Python as the basis for asynchronous 

frameworks that provide high-performance network and webservers, database connection 

libraries, and distributed tasks. This library was chosen for evaluation because of its 

compatibility with I/O bound network code. Similar to the multiprocessing library, the 

asynchronous I/O library is also limited in terms of what data formats are compatible with the 

li rary’s functionality. 
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Given the advantages and disadvantages of the module and libraries presented, the 

asynchronous I/O library was chosen for integrating the two systems. The threading module is 

capable of working with the existing systems. However, because acquisition tasks are 

computationally intensive, the threads created with the threading module would not execute 

simultaneously. The multiprocessing library and asynchronous I/O library would execute in an 

equivalent manner and achieve the desired results. However, due to the asynchronous I/O 

li rary’s compati ility with I/O  ound operations, it was selected as the  est option for 

integration with the developed algorithms and communicating with the external hardware. 

Additionally, the Python objects limitation presented by using the asynchronous I/O library can 

be overcome by replacing complex Python objects with simple commands. The use of the 

asynchronous I/O does impose a Python build change from 3.6 to 3.7 since the library was 

introduced in version 3.7. This software build change does not affect integration with LabVIEW. 

 

3.7 Python Algorithm Development 

Several algorithms were developed during the  project to support the developed method. 

The algorithms that will be discussed in this section are the control algorithm, process data 

algorithm, and motion capture algorithm. 

3.7.1 Control Algorithm 

The control algorithm was developed to automate the force acquisition process from 

LabVIEW. The algorithm has one main process which has the following inputs: 

• Save folder: folder path that processed data will be saved in (String Input). 



38 
 

• Load data format: data type associated with the data file that will be loaded as (i.e., csv, 

bin, tdms, etc.). 

• Save data format: data type associated with the data file that will be saved as (i.e., csv, 

bin, tdms, etc.). 

The process works by first initializing the connection from Python to LabVIEW using the 

win32com library in Python. Then the inputs are defined and stored in a structure allowing for 

Python to use them in the force acquisition algorithm developed for LabVIEW. Next, the acquire 

data sub-algorithm is defined and called which then executes and stores off acquired data. 

Following this, acquired data is processed using the post process data sub-algorithm – generated 

figures and raw data are stored in the user specified save folder. Lastly, once all processes have 

concluded their execution, the connection between Python and LabVIEW is terminated.  

3.7.2 Post Process Data Algorithm 

The post process data algorithm was developed to automate the method used to process 

acquired data. The algorithm has one main function, process force data, which has the following 

inputs: 

• X force: array of acquired force data with respect to the x component of the three-

dimensional force vector. 

• Y force: array of acquired force data with respect to the y component of the three-

dimensional force vector.  

• Z force: array of acquired force data with respect to the z component of the three-

dimensional force vector. 
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• X motion: array of acquired  motion data with respect to the x component of the three-

dimensional position vector. 

• Y motion: array of acquired  motion data with respect to the y component of the three-

dimensional position vector. 

• Z motion: array of acquired  motion data with respect to the z component of the three-

dimensional position vector. 

• File path: full path to the location where the figures are saved off. 

The function works by filtering the acquired data using a low pass Butterworth filter with 

a cutoff frequency of 10 Hz and a sampling frequency of 1000 Hz. Next, the filtered x, y, and z 

force data are plotted and saved off in user defined folder. Following this, the x, y, and z motion 

data are plotted and saved off. Lastly, a three-dimensional plot of motion data is plotted against 

time and saved off. 

3.7.3 Motion Capture Algorithm 

The motion capture algorithm was developed to automate the process of acquiring motion 

data from the Vicon motion capture system through Vicon Tracker 3.9. The module contains one 

main function, tracker data acquisition, which has the following inputs: 

• Save path: file path where the trial data is saved (.csv). 

• Trial name: name of trial for acquired data. 

• Export data: flag set by the user to determine if the script will export the captured motion 

data to a csv file (the default for the system is false). 

• Acquisition time: time (in seconds) that the system will capture data (the default 

acquisition time is 30 seconds). 
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• Host:  racker host IP address  the default IP address is ‘localhost’  

The process works by connecting Python to Vicon Tracker using the Tracker API Python library. 

The script then sets the trial name in Vicon Tracker 3.9 using the user defined trial name and the 

capture path function in the Tracker API. Next, the start and stop capture functions are used 

along with the defined acquisition time to acquire motion data from the Vicon camera system. 

Once acquisition is complete, Python disconnects from the Vicon system using the Tracker API 

disconnect function. 

3.7.4 Unit Testing 

The process of unit testing the Python based algorithms by testing critical blocks of the 

code that are critical for the execution of the overall module. For the control algorithm, first the 

connection to LabVIEW was tested and verified. Next the connection to the sub-algorithms 

developed in LabVIEW was tested to verify that Python could send inputs and trigger successful 

execution of these algorithms. For the post process data algorithm, existing force data was used 

to verify that the algorithm was appropriately applying the designated filter to the raw data, 

generating the necessary figures, and saving the generated figures in the appropriate folder 

location. Lastly, successful execution of the motion capture algorithm was verified using the 

following method: 

• Testing the connection between Python and Vicon Tracker 3.9 software.  

• Visual confirmation that the capture name is set appropriately in Vicon Tracker by 

checking the trial name field in the Tracker software. 

• Visual confirmation that Python triggered the acquisition process by inspecting the status 

of the ‘Recordin ’ field in the Vicon  racker software.  
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3.8 Implementation 

Implementation of both systems primarily focused on the efforts undertaken to develop a 

robust Python algorithm capable of executing acquisition without failure. This section discusses 

the system inte ration undertaken durin  the project’s life cycle  i.e., integrating the code with 

the physical hardware) and the testing done to verify that the code could be executed without a 

software failure. 

3.8.1 System Integration 

While the development of the standalone algorithms for force and motion acquisition 

were necessary for achieving the objective of this project, the critical aspect of the algorithm 

development process was integrating the force and motion acquisition algorithms to achieve the 

simultaneous measurements. Successful integration of these algorithms was required to satisfy 

the objective. This section primarily discusses the primary challenge encountered with 

integrating the two systems and the development process used to create the simultaneous 

measurement algorithm.  

The integration of the two systems was not as simple as merging the acquired force data 

and acquire motion data algorithms. Each algorithm was developed specifically to automate the 

acquisition process from their respective system and in turn contain capabilities that pose 

challenges when integrating the two systems.  

The primary challenge posed during the integration process was related to the Python 

library used to execute the simultaneous measurements. As mentioned in Section 3.5.2, Python 

library selection was critical for algorithm development in regard to acquiring simultaneous 

measurements. The library selected for algorithm integration was the asynchronous I/O library 
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due to its ability to work with I/O bound processes. However, the use of this library posed 

challenges when integrating the acquire force data and acquire motion data algorithms. 

Specifically, integrating the LabVIEW components, which are the main components of the 

acquire force data algorithm, with the asynchronous I/O library is not possible. Due to the size of 

the components, Python is not a le to ‘pickle’  the process of convertin  a Python o ject into a 

byte stream) for use with the asynchronous I/O library resulting in a failure when conducting 

trial testing. As a result, the process used for the acquire force data algorithm had to be 

reevaluated. Overcoming this issue required that the process used for acquisition be modified to 

remove the LabVIEW components that were assigned specifically with the acquisition task and 

preserve the primary functionality. The solution created to overcome the challenge was to 

remove the LabVIEW based subprocess responsible for reading measurements from the DAQ to 

a Python based force acquisition algorithm. By using Python to execute the reading of 

measurements from the DAQ, the issue of  ein  a le to ‘pickle’ is overcome  y the fact that 

Python can ‘pickle’ the acquisition function in the al orithm . Alterin  the al orithm using this 

method was achievable because like LabVIEW, Python also contains the DAQmx library (a 

library developed by National Instruments to allow for integration of Python and NI DAQ 

devices) which allows for Python to directly read measurements from NI DAQs. However, this 

alteration to the al orithm’s primary functionality required that the La VIEW al orithm also  e 

modified to accept the acquired data obtained using Python as an input. Further explanation on 

the new algorithm structure is discussed subsequently. 

The structure of the algorithm used to trigger the simultaneous acquisition from both 

systems was a matter of ensuring that the developed method met the objective of the project. 

While the acquire force data and acquire motion data algorithms can be integrated into a singular 
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algorithm, it was decided that having a main algorithm that triggers sub-algorithms would allow 

for a clean separation of defined acquisition tasks. Additionally, a failure of one algorithm does 

not impact the execution of the other. The main algorithm is the simultaneous data acquisition 

algorithm and the sub-algorithms called by the main algorithm are the acquire force data, acquire 

motion data, convert force data, process data, and save data.  

The primary purpose of the developed simultaneous data acquisition algorithm is to 

control the sub-algorithms and execute the simultaneous measurements task. Specifically, the 

algorithm uses the asynchronous I/O library in Python to execute the acquire force data and 

acquire motion data algorithms simultaneously. Following completion of acquisition from both 

systems, the data acquired from the DAQ is converted for force and torque data using the convert 

force data algorithm. The simultaneous data acquisition algorithm then uses the acquired force 

data and defined user inputs (i.e., save folder, trial name, etc.) to execute the post process data 

algorithm and save data algorithm, respectively.  

The acquire data algorithm used for the system integration uses the process discussed in 

Section 3.4.2. However, modifications were made to accommodate integration with Python. 

While the logic used has remained the same, the acquire data algorithm used for system 

integration does not contain any LabVIEW components and is primarily dependent on the 

DAQmx Python library. This modification improved the efficiency of the force acquisition 

process by eliminating the need to connect to external programs.  

The acquire motion data algorithm contains the logic required to acquire motion data 

from the Vicon camera system. This algorithm contains the necessary steps required to initialize 

the connection between Python and the Vicon Tracker software. It also contains the logic that 

starts and stops the capturing of motion data from the Vicon system.  
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The convert force data sub-algorithm was developed for system integration. Since the 

acquire data algorithm reads measurements directly from the DAQ outside of the LabVIEW 

environment, the raw voltage data acquired had to be converted to force and torque data. The 

algorithm uses the acquired data in addition to a conversion matrix and the calibration matrix 

provided with the ATI force transducer to convert the voltages to force and torque. The 

converted data is then transferred to the simultaneous measurements algorithm and used in the 

process data and save data sub-algorithms. 

The remaining two sub-algorithms, process data and save data, are called, and executed by the 

simultaneous data acquisition algorithms were discussed prior in Sections 3.4.3 and  3.4.4, 

respectively. There were no modifications made to these algorithms for the integration process. 

3.8.2 Integration Testing 

Integration testing occurred using the Python modules listed above, physical system 

architecture, and a test specimen. This section details the process of the integration testing. The 

testing process occurred as shown below: 

• Obtain and store bias data from the force transducer – bias data are measurements from 

the force transducer while the test specimen is at rest. 

• Define required inputs: 

o Number of samples to acquire from force transducer. 

o Time in seconds to capture data from the Vicon system. 

o Name of the trial. 

o Location to store acquire data and figures generate during the post processing. 

• Power up test specimen.  
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• Execute main function in the simultaneous data acquisition algorithm. 

• Note acquisition time from each system and determine the time delta between the 

systems. 

• Power down test specimen. 

This testing process was repeated multiple times with varying sample sizes, acquisition times, 

and sampling frequencies. Results from the testing will not be presented in this section, but 

instead in Chapter 4.
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Chapter 4. Experimental Results 

This chapter discusses the experimental testing results observed while conducting trials to 

validate  the simultaneous data acquisition algorithm and the sub-algorithms developed to 

accompany it. Section 4.1 primarily focuses on validating the algorithm execution and assessing  

whether significant timing phase offsets were observed between the acquisition times of both 

systems. Additionally, hypotheses are presented  to explain why a timing phase offset in the 

acquisition start times might be observed using the tested system. Additionally, Section 4.2 

discusses alternative system designs that could be implemented to achieve simultaneous data 

acquisition from two external systems.  

4.1 Testing and Validation 

This section presents the results from trial testing  in the form of processed force and 

motion data as well as timing results. The trial testing procedure is described in Section 4.1.1. It 

also discusses observations made from experimental testing and presents hypotheses as to why 

these observations may have occurred. 

4.1.1 Experimental Testing 

The section primarily focuses on the experimental setup used to conduct testing and the 

parameters used to constrain data collection. The experimental setup (Figure 4.1) used to capture 

the force and motion data consisted of an ATI Nano 17 Titanium force transducer and VICON 

T40s motion capture cameras. A gearbox was mounted to the ATI Nano Force Transducer and a 
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single wing was mounted to the top of the gear box. The test stand was surrounded by 11 

VICON T40s cameras and black material was used to cover the reflective surfaces that interfered 

with the motion capture system’s a ility to capture the win ’s motion. 

Three small reflective markers were placed on the wing (Figure 4.2) and the three-

dimensional positions of the markers were acquired at a sampling rate of 300 Hz using the 

VICON system for a duration of 10 seconds. The force generated by the wing motion was 

acquired by the force transducer at a sampling of 1000 Hz for 10 seconds. For reference, 

measurements from the force transducer were not accurate due to the force transducer 

malfunctioning during testing. However, the accuracy of the force transducer measurements does 

not impact satisfying the objective of the project since the primary objective is to acquire data 

simultaneously. The primary purpose of the force transducer as it relates to this project is to read 

measurements which it is still capable of doing.  

Prior to each trial, the load due to the win ’s wei ht at rest was recorded and used  y the 

force algorithm to calculate the force data. The simultaneous acquisition algorithm was used to 

trigger the simultaneous acquisition of the motion and force data. 
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Figure 4.1 An ATI Nano 17 force transducer mounted on a custom 3D printed base, with a foam layer inserted 

between the upper and lower halves of the mount. The gearbox is attached at the top of a 3D printed mounting 

pedestal containing the motor used to generate wing motion. 

 

 

Figure 4.2 Flapper gearbox and wing mounted to the left side. The three wing markers form a triangle to calculate 

the Euler angles. 
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4.1.2 Experimental Results 

An example of data collected during the trial testing serves as validation that the 

developed code can acquire force data, acquire motion data, and process acquired data. Figure 

4.3 shows force and motion data processed using a 12th order lowpass Butterworth filter with a 

cutoff frequency of 0.03.   Additionally, unprocessed position data for each directional 

component was plotted on a three-dimensional figure to show the full motion of the wing (Figure 

4.4).  

 

(a.)  
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(b.)  

Figure 4.3 Force and motion measured with the experimental flapping wing. (a) Force measurements observed 

during trial testing with respect to the x-axis, y-axis, and z-axis. (b) Motion deformation observed during trial testing 

with respect to the x-axis, y-axis, and z-axis. 
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Figure 4.4 Un-filtered three-dimensional deformation data captured during trial testing for the experimental wing. 

The data represents the motion of the wing during testing. 

 

4.1.3 Timing Results 

In order to assess whether the objective of the project was met, an examination of timing 

results was key. In this case, timin  results indicate the timin  phase offset  Δ   etween the A I 

Nano 17 force transducer and the Vicon motion capture system. Timing results from several 

trials are shown in Table 4.1. Table 4.1 shows the LabVIEW timestamp recorded by Python, and 

it also denotes the time acquisition started from Vicon  racker. Lastly, the Δ  etween the two 

systems is shown – here Δ is the difference  etween the La VIEW start time and the  racker 

start time in Central Standard Time. For each trial, 10 seconds of data was acquired from the 
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force transducer with a sampling rate of 1000 Hz and 10 seconds were acquired from the motion 

capture camera system with a sampling rate of 300 Hz. 

 

Table 4.1 Timing Results for 10 Experimental Trials conducted. Force data was recorded with a sampling rate of 

1000 Hz for 10 seconds and motion data was sampled at 300 Hz for a duration of 10 seconds. Each timestamp 

represents the time denoted  y the computer in which the system started acquisition execution.  he Δ is the 

difference between the timestamp of each system. 

 

Trial 
LabVIEW 

Timestamp 

Tracker  

Timestamp 

Δ 

(seconds) 

1 16:16:39.835 16:16:49.893 10.058 

2 17:44:19.54 17:44:29.613 10.073 

3 17:46:27.787 17:56:37.905 10.118 

4 17:48:16.030 17:48:26.096 10.066 

5 17:49:24.692 17:49:34.744 10.052 

6 17:50:20.80 17:59:30.886 10.086 

7 18:03:04.246 18:03:14.302 10.056 

8 18:05:17.388 18:05:27.505 10.117 

9 18:08:51.452 18:09:01.541 10.089 

10 18:10:03.028 18:10:13.232 10.204 

Average Time Δ: 10.0919 

 

 

As shown in Table 4.1, there was an avera e time Δ of    seconds  etween the start of 

the force acquisition and motion acquisition. For each trial, force acquisition would be executed 

prior to motion acquisition starting. Acquisition for one system would not start until the other 

system had completed. Other trial configurations were tested in which the number of samples 

collected, and acquisition times were varied. These results suggest that the timing delta depended 

heavily on the chosen sample size and acquisition time. For force acquisition, a sample size of 

10000 at a sampling rate of 1000 Hz is 10 s of data. Given that the motion acquisition started on 

average 10 s after the force acquisition began, it can be inferred that the start time of the motion 

acquisition is dependent on the force acquisition sample size set by the user. The order of 
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acquisition (i.e., executing acquisition from LabVIEW or Vicon first) also affects the observed 

start time Δ  etween the two systems.  

Table 4.2 shows an additional example of the timin  Δ  ehavior o served durin  trial 

testing. Table 4.2 shows the LabVIEW and Vicon start times were recorded for five trials in 

which 3000 samples were collected from the force transducer at 1000 Hz and 30 seconds of 

motion data sampled at 300 Hz was captured from the Vicon camera system. For these trials, 

LabVIEW was configured to execute first during these trials. An average timing delta of three 

seconds was observed across the five trials.  

 

Table 4.2 Timing Results for 5 Experimental Trials conducted. Force data was recorded with a sampling rate of 

1000 Hz for 3 seconds and motion data was sampled at 300 Hz for a duration of 30 seconds. Each timestamp 

represents the time denoted by the computer in which the system started acquisition execution.  he Δ is the 

difference between the timestamp of each system. 

 

Trial 
LabVIEW 

Timestamp 

Tracker  

Timestamp 

Δ 

(seconds) 

1 17:35:36.004 17:35:39.041 3.037 

2 17:36:58.816 17:37:01.853 3.037 

3 17:38:25.688 17:38:28.728 3.04 

4 17:40:00.349 17:40:3.432 3.083 

5 17:41:39.839 17:41:42.881 3.042 

Average Time Δ: 3.0478 

 

 

While the timing phase offset seems insignificant in these trials, it actually results in 

neither system having any synchronized data. The three second phase offset originates from the 

system only requiring approximately three seconds to collect the samples from the force 

transducer. So, the three seconds of force data cannot be correlated to the first three seconds of 

the motion capture data. As stated previously, the delta is also dependent on the order of 

acquisition from the two systems. Since the force acquisition took place first and the sample size 
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was small, the Δ was also small. If the order of acquisition was switched for these trials to have 

Vicon acquisition occur first, then the delta would have been much larger – approximately 30 

seconds. Given the timing results presented, simultaneous measurements were not achieved with 

the system architecture. 

4.2 Discussion of Results 

The discussion of the results mostly focuses on hypothesizing why simultaneous data 

acquisition from both systems was not achieved. Two hypotheses are discussed in this section. 

The first hypothesis focuses on the potential limitations of the computer and its ability to execute 

certain tasks at the same time. The next hypothesis relates to the physical connections between 

the two external systems and the computer; it explores how these connections may have 

impacted the ability to start both systems at the same time. 

4.2.1 Hypothesis 1:  Limitations of the Computer Affect Its Ability to Execute Certain 

Tasks Concurrently 

This hypothesis discusses a potential limitation of the computer that may affect its ability 

to schedule concurrent tasks. A common misconception about most traditional computers is that 

they are executing multiple tasks at the same time. However, this is not the case. A computer can 

appear to be executing multiple tasks concurrently, but in actuality, it is rapidly changing tasks or 

interrupting tasks already in execution. There are situations in which a computer can execute 

multiple processes simultaneously and this is called parallel computing. Parallel computing is 

capable in multi-core (depending on the applications used) or multi-processor computers and 

systems of computers assigned with working on the same task. If a computer is not capable of 

parallel computing, it can only execute one task at a time. CPUs use a short-term scheduler to 
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manage the given tasks and determine which tasks in the queue to handle given the current state. 

The CPU scheduler makes its decision based on changing states (i.e., a process was interrupted, 

running, or completed). Given the state at that moment in time, the schedule decides whether to 

execute a new process or continue with the existing one. In the case of this project, the CPU was 

tasked with managing I/O bound operations. These operations can result in processes that are 

idling and cannot be interrupted, meaning that the CPU schedule must wait for the process to 

terminate before attempting to execute a new process. So, a potential reason for why the 

simultaneous acquisition could not occur is due to the I/O bound tasks from both external 

systems. Since acquisition from both systems cannot be interrupted and the computer can only 

handle one process at a time, whichever system was not queued for acquisition first would have 

to wait for the computer to finish processing the task from the first system. 

Assessing this hypothesis was primarily conducted by executing acquisition 

independently from the developer provided interfaces of both systems. Each system was started 

independently of the other with  an understanding that there would be a phase offset due to 

human interaction with the system – in this case the phase offset was the time between the start 

of the first system and the start of the second system. Three trials were conducted to assess this 

hypothesis. A description of the trials and the observed outcomes are listed below. 

Trial 1: Force acquisition started prior to motion acquisition. The outcome of this trial 

was that motion acquisition did not start until force acquisition was completed. This was verified 

by visually inspecting the Vicon Tracker interface and denoting the start times. 

Trial 2: Motion acquisition started prior to force acquisition. The outcome of this trial 

was that force acquisition did not start until force acquisition was completed. This was verified 

by visually inspecting the Vicon Tracker interface and denoting the start times.  
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Trial 3: Motion acquisition started prior to force acquisition. The outcome of this trial 

was that the motion acquisition process was interrupted by the computer scheduling and 

executing the force acquisition resulting in incomplete motion data. 

4.2.2 Hypothesis 2: Physical Connections Have an Impact on the Computer’s Ability to 

Start Both Systems Concurrently 

This hypothesis discusses the possibility that the physical connections between the two 

external systems and the computer affect the ability to receive data simultaneously. The force 

transducer was connected to the computer via a USB connection and was managed by the 

universal serial bus communication protocol. The Vicon camera system was connected to the 

computer using an ethernet connection. Despite the two different physical connections, during 

trial testing, the two systems were trying to transfer data to the computer using a serial 

connection. This was considered as a potential issue in regard to acquiring data simultaneously 

because data transferred over serial connections can only be executed one at a time 

The assessment of this hypothesis was primarily done through visual inspection of the 

ports assigned to each system by the computer. First, the device manager was used to examine 

the physical ports that the systems were connected to. The purpose of this first check was to 

verify that the two systems were not connected to ports of the same connection type (i.e., both 

systems connected via USB, ethernet, etc.). Connections made with the same connection type 

can limit the ability of a computer to transmit data simultaneously over the same channel. The 

next check was to use the device monitor and verify that the two systems were not using the 

same port for the TCP connections. This check was verified by examining the port connections 

while both systems were acquiring data. This check was critical because data cannot be 

transmitted simultaneously through the same TCP port.  
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Both systems were subjected to the defined checks, and it was determined through 

examination of the assigned ports that the computer was assigning unique ports to each system. 

This hypothesis does not hold as much weight as the hypothesis presented in Section 4.2.1 

because it was verified using the Windows device manager and resource monitor that the two 

systems were assigned unique port identifiers by the operating system and were not transmitting 

data using the same TCP ports. 

4.3 Solutions and Alternative System Designs 

Large timing phase offsets were observed during the experimental testing phase of this 

project, meaning that the current system design is not capable of acquiring simultaneous 

measurements from multiple devices. This section presents alternative system designs that could 

potentially be implemented in order to achieve this goal. The two alternative designs are  

integrating a peripheral device with the camera system and  adding a secondary computer. 

4.3.1 Adding a Peripheral Device to the Existing Camera System 

An alternative system design that would be capable of supporting simultaneous 

measurements from a motion capture camera system and another external device would be to 

integrate the external device with the camera system. Using this system design, the camera 

system would function as the timing trigger for data acquisition from both devices. Once motion 

capture acquisition is started, the camera system would also simultaneously stream data from the 

other device and transfer that data in a packet with the motion data. The data needs to be parsed 

into its respective categories, which would require an understanding of which channels 

correspond to which systems. 

 In relation to this specific project, Vicon has a device called the Vicon Lock Sync Box 
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which would allow for third-party devices to be connected to the Vicon camera system. The 

device allows for eight peripheral devices to be integrated with an existing Vicon system using 

the General-Purpose Output (GPO) sync output sockets located on the back of the device. The 

integration of the external device and the camera system does require that the external device 

possesses a GENLOCK / trigger input socket (a connector that would allow for the output of one 

source to be used as to synchronize other sources together) and an RCA (an electrical connector 

used to carry audio and video signals) to RCA sync cable is used. Since the NI USB 6210 DAQ 

does not possess the necessary socket to connect to the Vicon Lock Sync Box, this design would 

not work with the force sensor used for this project. However, this design would work with 

sensors manufactured by companies such as AMTI Force & Motion and ProtoKinetics. 

Additionally, were this design to be used, modifications to the software would be required. 

Specifically, the Tracker software settings would have to be adjusted to include the analog 

device connected to the Lock Sync Box and the acquire force data algorithm would have to be 

modified to work with the analog device. Figure 4.5 shows a diagram of this proposed alternative 

system design. Note that with this system design, LabVIEW is not required because 

measurements from the force transducer are read and transmitted through the Vicon Lockbox. 

This system design would require significant algorithm redevelopment for the acquired force 

data because the LabVIEW based algorithm was responsible for converting the voltage data to 

force and torque data. Since this system design would not require the addition of the LabVIEW 

software, another algorithm would have to be developed using Python to convert the raw 

measurements from the DAQ to force and torque data. 
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Figure 4.5 Alternative System Design that includes the addition of the Vicon Lockbox. Instead of the force 

transducer and Vicon system being directly connected to the computer, the systems are instead connected to the 
Vicon Lockbox. The Vicon Lockbox would record data from both systems using its internal clock as the triggering 

mechanism. 

 

4.3.2 Adding a Secondary Computer to the Existing Architecture 

Another alternative system design that would be capable of supporting simultaneous 

measurements from a motion capture camera system and another external device would be to 

integrate another computer into the existing system architecture. Using this system design, the 

other external device would be connected to the secondary computer which would be tasked with 

executing the functions associated with acquiring data from the external device. In order for 

successful execution to occur with this system design, the primary computer would have to 

connect to the secondary computer and send the task to the secondary computer to start 

acquisition. Additionally, the main Python algorithm, simultaneous data acquisition, would have 

to account for a potential time delay in connecting the two systems which can be done using the 

‘await’ function in the asynchronous I/O li rary. 
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Regarding the existing system architecture, the ATI Nano 17 force transducer would be 

connected to the secondary computer and the acquire force data algorithm would be executed 

from this computer. An additional Python algorithm would have to be developed to serve as an 

intermediate control between the simultaneous data acquisition algorithm and the acquire force 

data algorithm. This algorithm would have to initialize the connection between the primary (the 

computer controlling the Vicon camera system) and secondary computers and command the 

secondary computer to start acquiring data from the force transducer. Results gathered during the 

acquisition process would then be transferred to the primary computer  for post-processing. 

An attempt to integrate this idea into the existing architecture was made during the 

project’s duration usin  a Rasp erry PI computer. However, this attempt was not successful due 

to limitations identified in the Methodology section. The Raspberry Pi does not support the 

Windows operating system which is a requirement for using the NI DAQ. Successful execution 

with this modified system design and the existing equipment requires that another computer with 

the Windows operating system is integrated into the architecture. 

 Figure 4.6 shows a diagram of the proposed alternative system design that incorporates a 

second computer. Incorporating a second computer into the architecture would allow for parallel 

computing and potentially satisfy the simultaneous measurements objective. However, prior to 

executing the algorithms, the connection between the computers would have to be verified as this 

design depends on the primary computer being able to command the secondary computer to start 

acquiring data. 

 

 

 



61 
 

 

Figure 4.6 Alternative System Design that includes the addition of an additional computer. The force transducer is 

connected to the secondary computer in this architecture to reduce resource strain on the primary computer. A 
network connection allows the two computers to communicate with each other. 

 

The addition of the second computer may not be able to precisely synchronize the data 

because each computer would trigger acquisition based on their respective internal clocks. If 

these two clocks are off by seconds, it could have a significant impact on the phase offset 

observed resulting in a misinterpretation of the data. Additionally, since a network connection is 

required for the primary computer to send the start acquisition command to the second computer, 

a slight delay in network traffic will result in a phase offset and in turn a misrepresentation of the 

acquired data. 
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Chapter 5. Conclusion and Future Work 

5.1 Summary and Concluding Remarks 

The objective of this project was to develop a method to synchronize data acquisition 

from two external systems – specifically, acquisition of force and motion data synchronously 

from a force transducer and motion capture camera system, respectively. The project was 

constrained to several requirements ensuring that the developed product would satisfy the stated 

objected. The requirements defined for the project were to acquire force and motion data using 

existing hardware and to integrate commercial software programs with the existing hardware.  

In response to the objective, a rudimentary system architecture was created to establish 

the connection between the existing software and hardware components and identify areas within 

the system in which processes needed to be developed to facilitate the synchronization process. 

Software based algorithms were selected as the method to achieve the synchronization of data 

from the two systems.  

In addition, before the algorithms were developed, a non-trivial selection process based 

on cost, software capabilities, and hardware compatibility was conducted to identify the software 

that was used to create the algorithms. LabVIEW was selected as the software tool used to 

develop the force acquisition algorithm and Vicon Tracker was selected to develop the motion 

acquisition algorithm. Python was also selected to develop an algorithm that would 

simultaneously trigger the force and motion acquisition algorithms. Following algorithm 

development and integration into the system architecture, verification testing was conducted to 
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determine whether the developed algorithms and overall system would meet the objective of the 

project.  he acquisition start times were recorded for each system durin  trial testin  and a Δ 

was calculated – this Δ represented the difference  etween the start times of both systems. Based 

on the Δ values o served durin  the verification testin , the o jective of the process was not met. 

Instead of both acquisition algorithms running in parallel, they ran in series. Investigations 

conducted in relation to the software, developed algorithms, and hardware components used in 

the tested system revealed that the hardware components used in their current states could not 

support the parallel acquisition synchronization. Due to each system requiring an extensive 

number of resources to conduct acquisition, the computer was not able to schedule each 

acquisition task simultaneously. 

5.2 Novel Contributions 

The novel contributions made during this project are as follows: 

• Developed an algorithm to automate the force acquisition process. 

• Developed an algorithm to automate the motion acquisition process. 

• Developed an algorithm to trigger the simultaneous acquisition of data from two 

external systems. 

• Defined parameters for experimental testing to validate the force and motion 

acquisition algorithms. 

• Defined the criteria to establish whether simultaneous measurements were achieved 

based on timing phase offsets observed during experimental testing. 
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5.3 Future Work 

Despite this system configuration not being able to support the goal of simultaneous 

acquisition, there are other system configurations which could potentially satisfy the objective.  

The first alternative system configuration proposed would be adding a secondary 

computer into the architecture. The secondary computer would reduce the resource strain on the 

first computer by managing the acquisition task from one of the systems. In this configuration, 

the main computer would connect to the second computer via a network connection to trigger 

acquisition from device connected to the secondary computer. 

 Another system configuration proposed was adding another peripheral device to the 

architecture. The peripheral device would allow for acquisition from the two systems to be 

triggered based on the devices internal device. In this configuration, the two devices would be 

connected to the added peripheral device. Although the developed algorithms and hardware did 

not result in the synchronization of the data acquisition, the system as whole can be modified to 

achieve the objective. 

In addition to the implementation of other system configurations, altering task manager 

settings of the primary computer could also potentially satisfy the simultaneous acquisition task. 

The Windows operating system allows for priority setting using the computer’s task mana er. 

The priorities associated with executing the acquisition tasks from the force transducer and 

camera system would  e set to ‘hi h’ or ‘real-time’ in the task mana er ensurin  that the CPU 

prioritizes these tasks over other tasks that are scheduled or in the queue to be scheduled.  

Lastly, LabVIEW is used for not only acquisition of the raw voltage data from the force 

transducer, but it also converts the raw data to force/torque data. The development of an 
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algorithm to convert the data would eliminate the need to continue using LabVIEW since Python 

would oversee the acquisition and conversion of force data. 
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