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Abstract

DEEP LEARNING APPROACH FOR ROBUST
STRUCTURAL HEALTH MONITORING USING

GUIDED LAMB WAVE RESPONSES

Sameer Gopali

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

Computer Science

The University of Alabama in Huntsville

May 2024

Guided Lamb waves offer a promising solution for the early detection of inter-

nal damages in structures due to their high sensitivity to small damages. However,

noise can adversely impact the development of data-driven models for damage de-

tection, leading to inaccurate monitoring systems. This thesis explores deep learning

techniques to robustly predict the location and severity of damage in cantilevered

beams using noisy guided wave responses. Initially, Multi-Layer Perceptron (MLP) is

trained with frequency domain features to achieve robust performance against noisy

data. Further performance improvement is achieved using end-to-end learning mod-

els, which include autoencoder and one-dimensional Convolutional Neural Network

(CNN). The autoencoder demonstrates better dimensionality reduction compared to

frequency-based feature extraction while also exhibiting better performance. The

one-dimensional CNN model outperforms other techniques, achieving an R2 score of

0.9908 in the highest noise level settings. These results facilitate the development of

robust structural health monitoring using deep learning techniques.
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Chapter 1. Introduction

1.1 Structural Health Monitoring

The performance of different civil and mechanical infrastructures can de-

grade due to several factors like usage, aging, and environmental conditions which

can lead to catastrophic failures causing great economic costs and loss of human

life. Therefore, it is highly important to monitor the performance to ensure the

reliability and safety of infrastructure. SHM is the process of monitoring and

assessing the conditions of the structures. The main objective is to identify any

potential damage to the structure. The process starts by placing sensors on in-

frastructures. The data are then transmitted and collected into storage databases.

Various techniques and algorithms are then applied to assess the current structural

health. After that, experts make decisions related to inspection and maintenance

based on the severity, location, and predicted future propagation of identified

damage [22].

There are two popular approaches in SHM: the model-driven approach

and the data-driven approach [10]. Model-based SHM uses mathematical models

to predict and assess the structural health of the infrastructure. This method

creates a mathematical model of the structure’s dynamics and response which is

compared with the collected data to detect any damages or anomalies. However,

1



Figure 1.1: A typical components of SHM [22].

constructing such models can be difficult due to the complexity of their geometry,

material properties, and environmental conditions. Moreover, uncertainties in

these parameters could affect the accuracy of such models.

In contrast, data-driven approaches do not depend on such mathematical

models and only use the collected data to identify any damages. It uses machine

learning algorithms, statistical analysis, and data mining techniques to discover
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patterns from the data directly. Due to the advancements in big data technologies

and machine learning, the capability of data-driven methods to uncover patterns

from the vast amount of data has significantly increased. This has led to an

increase in the popularity of data-driven SHM. Data-driven techniques may in-

volve analyzing either time series-based vibration data or image-based data [35].

While image data are limited to revealing external damage and can be affected by

environmental conditions, vibration-based signal data can also identify problems

within the internal state of the structure.

Vibration-based SHM utilizes modal information, electromechanical impedance,

acoustic emissions, and ultrasonic wave-based methods such as Lamb waves [6].

Among these, Lamb waves are particularly sensitive to small damages and are

capable of traveling long distances with only little energy loss [11]. As a result,

they can they can cover large areas. Thus, they are the primary focus of our

study.

1.2 Guided Lamb Wave

Guided Lamb waves, named after Horace Lamb, are a type of ultrasonic

waves that are guided between two parallel free surfaces, such as the upper and

lower surfaces of a plate [11]. Lamb waves can exist in two fundamental modes:

symmetric S0 and antisymmetric A0 modes. In the symmetric modes, the oscilla-

tions on the structure surface are in phase while in the antisymmetric modes, the

motion is out of phase [28]. Lamb waves can travel through structures in different

patterns by utilizing these different mode configurations.
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In guided Lamb wave-based SHM, waves are propagated through the struc-

ture. The structure’s response to these waves when it interacts with any irregular-

ities or inconsistencies is then used for the detection of any structural anomalies

or defects.

Figure 1.2: Simulation of Lamb waves (a) symmetric S0 mode; (b) antisymmetric A0

mode [11].

1.3 Research Problem

The thesis deals with the application of guided Lamb waves to the SHM of

cantilevered beams subjected to a tip force. The aim is to localize and predict the

severity of damage. Lamb waves are very sensitive to small damages therefore

they are suitable for early detection and characterization. However, the data
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are complex as they capture interactions between multiple propagation modes,

reflections from boundaries, and potential defects within the structure. Thus it is

difficult to identify clear signatures that accurately localize damage and its extent.

Furthermore, a large number of sample points is needed to capture wave behavior

over time. This makes the data high dimensional for analysis using traditional

machine-learning methods. So, feature engineering is needed, but this requires

domain knowledge. Moreover, the chosen feature could be affected by noise and

it might not generalize well to different environmental conditions. It can result

in unreliable predictions and make SHM systems inefficient.

So, to build a predictive model that can overcome these challenges and

identify damage location as well as predict its extent, this thesis explores two

strategies:

1.3.1 Feature Selection

Initially, we intend to explore feature selection methods that can provide

meaningful representation from Lamb wave responses to train deep learning mod-

els. Our focus will be on techniques that can extract useful information from the

data even in the presence of noise, ensuring reliable features for real-world data.

1.3.2 End-to-End Deep Learning Approach

Secondly, we aim to utilize deep learning models that will directly pro-

cess raw data without using handcrafted features. As deep learning models can

directly learn complex patterns from the data, they offer the potential for more

5



accurate and efficient models. We will explore various deep learning architectures

for creating accurate end-to-end systems even with noisy data.

1.3.3 Comparative Analysis

To gain a comprehensive understanding, we will compare the performance

of both approaches: deep learning models trained directly on raw data and models

utilizing extracted features. This comparison will be conducted under varying

noise levels to assess the impact of noise on each approach’s effectiveness. We will

employ various performance metrics to evaluate the models’ ability to accurately

localize and predict damage severity.

By investigating these two methodologies and conducting a thorough com-

parison, this thesis aims to develop robust and accurate solutions for detecting

damages using Lamb wave responses. This will ultimately contribute to more

reliable and effective SHM systems, ensuring the safety of infrastructure.

1.4 Approach

To address the research challenges, we begin by utilizing frequency domain

transformations for feature engineering and dimensionality reduction. We aim to

extract informative features that will filter the noise in the signal by selecting

features of specific frequency bands from the frequency domain. These extracted

features will then serve as input for training MLP.

Additionally, we will employ the following models to explore the different

end-to-end deep learning models:

6



• 1D Convolutional Neural Network: This architecture specializes in

learning spatial features directly from sequential data which makes it suit-

able for analyzing Lamb wave responses.

• Autoencoder: This neural network is designed to learn to compress repre-

sentation and reconstruct input data. This allows it to learn important fea-

tures from the data, which in turn automates the feature extraction process.

Additionally, this capability helps to reduce noise and data dimensionality.

These models will be trained on datasets with different noise levels to

simulate real-world sensor data. The models’ performances will be evaluated

using metrics such as R2 and percentage error.

1.5 Thesis Organization

The thesis is divided into six chapters, each exploring different parts of

the research problem. In Chapter 1, we discussed the SHM background and

introduced a guided Lamb wave-based damaged detection method. The objectives

and the proposed approach are discussed as well.

Chapter 2 provides an overview of various deep learning algorithms that

potentially benefit SHM applications.

Chapter 3 discusses the dataset preparation for these guided Lamb wave

responses. Additionally, physical insights are collected from the wave response

data to demonstrate the damage location/extent effects on the wave responses.

7



Chapter 4 describes the methodologies used for training different neural

network models. It provides information about the architectures and the training

hyperparameters. Additionally, it presents a discussion on model selection and

evaluation techniques.

Chapter 5 presents the results of various tests conducted. This chapter

includes a comparison of the performance of the different models under various

noise levels.

Chapter 6 concludes the thesis by summarizing the key findings and also

provides potential areas for future research work.

8



Chapter 2. Background and Related Works

This chapter delves into the various feature selection techniques and deep

learning methods for SHM. First, it provides an overview of feature selection

methods commonly used in this domain. After this, the chapter explores the

various deep-learning models employed for SHM. It focuses on different unique

architectures and their suitability for analyzing Lamb wave response data.

2.1 Feature Selection Techniques

Analyzing vibration-based data such as Lamb wave response data, presents

a significant challenge due to its high dimensionality. This happens as numerous

data points are sampled to capture the behavior of the wave responses. Tradi-

tional data mining methods, which are designed for simpler data structures, often

struggle with such complexity. For high dimensional data, dimensional reduction

techniques like PCA, and LDA offer some solutions. In a study by Prabhav et al.

[6], POD was applied to extract features and reduce the dimensionality of data,

and then the features were used to train a shallow neural network for damage

location and thickness reduction. Similarly, Farrar et al. [9] applied to LDA for

vibration-based health monitoring of a concrete bridge column to detect dam-

aged and undamaged states. However, such dimensionality reduction methods

9



can potentially discard essential information embedded within the signal. This

can compromise the accuracy and effectiveness of SHM systems.

So, for processing of vibration-based data which is essentially time se-

ries data, there are four common categories of representations – piecewise linear,

transform-based, symbolic, and model-based [5]. Among the four common cat-

egories, transform-based representations are common in SHM. In this method,

the original time series data is converted into a different domain (e.g., frequency

domain ) using Fourier, cosine or wavelet transforms.

The Fourier transform is a mathematical technique for analyzing functions

and signals in terms of their frequency components. For a time-continuous signal

x(t) with frequency f , it is given by equation 2.1:

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt, (2.1)

where ω = 2πf is the angular frequency.

These methods also often provide efficient data compression as the first

few coefficients contain most of the sequence energy. Moreover, high-frequency

components often correspond to noise. Thus, selecting low-frequency components

naturally filters them out, providing noise reduction for damage detection.

Several studies have demonstrated the effectiveness of transform-based rep-

resentations in SHM. Hoshyar et al. [15] successfully localized concrete cracks us-

ing frequency information obtained from vibration signals. Furthermore, Tehrani

10



et al. [1] employed the generalized S-transform combining features of both Fourier

and wavelet transforms, to assess damage severity in structures. Similarly, Nguyen

et al. [25] achieved better performance when combining frequency transform-

based representations with deep learning for damage evaluation. This suggests

the possibility that this integrated approach can achieve robust damage detection

using lamb wave responses.

2.2 Deep Learning Methods

While feature selection has traditionally played a crucial role in preparing

data for machine learning models, recent advancements in deep learning suggest

possibilities for bypassing this step in Lamb wave-based SHM. Deep learning, is

a subset of machine learning, which has achieved success in numerous tasks such

as image and speech recognition, natural language processing, and generative

artificial intelligence [37]. The success of deep learning can be attributed to its

capacity to handle vast amounts of data, scalability, and adaptability to diverse

domains. There also has been a lot of research involving deep learning in the field

of vibration-based SHM [35].

2.2.1 Multi-Layer Perceptron

The artificial neuron model was first proposed by Warren McCulloch and

Walter Pitts in 1943 [36]. Later, it was implemented by Rosenblatt in 1958 as

a perceptron, which demonstrated the ability to learn through a combination

of linear transformations and nonlinear thresholding functions [30]. Minsky and
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Papert [23] presented mathematical proofs that showed that while perceptrons can

effectively learn any linearly separable function, they face challenges in handling

functions that require nonlinear decision boundaries, such as the XOR function.

In the artificial neuron model, inputs are multiplied by learned weights,

and the resulting product is then subjected to a nonlinear activation function.

Finally, the output is passed on to the subsequent layer. If we denote the input

feature vector as x, the weight matrix as W, the bias as b, and the non-linear

activation function as σ, we can express the output y as follows:

y = σ(Wx+ b). (2.2)

Despite these limitations, the introduction of networked layers in an MLP

has shown its capabilities in learning complex patterns and functions. In terms

of SHM applications, Hekmati Athar et al. [13] demonstrated the effectiveness

of MLP by training it on a collection of direct and indirect sensor data to detect

damage to bridge structures.

A multi-layer perceptron, also known as a feed-forward network, consists

of an input layer, one or more hidden layers, and an output layer. The input layer

of an MLP receives the data or features that are input into the neural network.

In this layer, each neuron represents a specific feature, with the values at these

nodes corresponding to the input features of the dataset.

There are one or more hidden layers in an MLP between the input and

output layers. The connection between neurons in different layers is associated

12



Figure 2.1: Typical architecture of MLP.

with weight. The weights are adjusted during the training process. To introduce

non-linearity, nonlinear activation functions are applied to the weighted sum of

inputs. This non-linearity enables the network to capture and learn complex

patterns in the data.

The output layer is responsible for producing the final predictions of the

neural network. The number of neurons in the output layer depends on the

specific task. For instance, a classification task might have one neuron per class.

When dealing with high-dimensional data, the computational cost of MLP

models can grow exponentially as there is significant growth in the number of

parameters with the increase in features. This can result in challenges like over-

fitting [31]. To address these issues, a combination of dimensionality reduction

and feature selection techniques are often employed along with MLP models.
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2.2.2 Long-Short Term Memory

RNN is a specialized type of neural network that is often applied to se-

quence datasets. The architecture of an RNN includes recurrent connections that

allow the network to maintain a memory of previous inputs. Thus, making it

suitable for tasks involving sequential dependencies [16]. However, traditional

RNNs face the challenge of vanishing gradients. The vanishing gradient problem

occurs during training when the gradients diminish as they are backpropagated.

To address this issue, LSTM networks were introduced, which incorporate gating

mechanisms [14]. LSTMs control information flow with three special gates:

• Forget gate: Decides which information from the previous cell state to dis-

card

• Input gate: Selects the relevant information from the current input and

combines it with a processed cell state.

• Output gate: Determines which part of the processed cell state to expose

as the output.

These gates empower LSTMs to learn long-term dependencies within sequences.

In SHM, Sony et al. [33] used an LSTM network with a sequence of win-

dowed acceleration signals for damage detection and localization. Lin et al. [21]

trained LSTM with raw multipoint measurements getting superior results over

other techniques. Beyond standalone applications, LSTMs are often combined

with other networks. For eg. a hybrid approach has also been tried by combin-

14



ing RNNs with features extracted by CNNs for SHM [7]. While these studies

highlight the potential of LSTMs in extracting relevant information directly from

wave response, the training of the network can still be unstable. While gating

mechanisms mitigate the vanishing gradient problem, exploding gradients can

also arise, leading to unstable training. Moreover, the addition of gating mecha-

nisms in LSTMs increases the computational cost and this can be a challenge for

resource-constrained environments.

2.2.3 Convolutional Neural Network

The CNN is a deep learning model that has gained immense popular-

ity for its unique architecture featuring convolutional layers. This model was

first developed by Yann LeCun, who pioneered the development of ”LeNet” and

achieved great success with the MNIST dataset [19]. CNN gained even more

widespread recognition following AlexNet’s victory in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) in 2012 [18].

The advantage of CNNs is that they integrate feature extraction within

a single framework. This is achieved by the use of convolutional layers, which

extract relevant features from input data. Additionally, CNNs offer sparse con-

nectivity, which means that each neuron is only connected to a small subset of

the input data. This helps to reduce the computational complexity of the model

and make it more efficient.

Another important feature of CNNs is parameter sharing. This means

that the same set of weights is used for multiple inputs. This helps to reduce

15



the number of parameters that need to be learned. Finally, CNNs exhibit shift

invariance, which means that they can recognize patterns in an image regardless

of their position. This has enabled CNN to be well-suited for image-related tasks

such as image classification, and object detection.

CNN architectures typically incorporate convolutional layers, subsampling

layers, and fully connected layers. Convolutional layers extract features from the

input data. This layer performs convolution with several filters or kernels. These

filters move over the input data, learning various spatial features such as edges,

textures, and shapes. The output feature map from the convolutional layer can

be as given by equation 2.3:

oj = bj +
N∑
i=1

conv2D(wij, xi). (2.3)

Here, conv2D is a 2D convolutional operation, oj is the jth output channel, x is

the input with N channels, bj is the bias term associated with jth output channel,

wij is the kernel weight associated between the ith input channel and jth output

channel.

The subsampling layers lower the spatial dimensions of the data while

keeping significant properties. These layers often apply pooling, which involves

calculating the maximum or average value in a particular window of input data.

Subsampling layers reduce the amount of parameters in the network, which helps

to prevent overfitting and improve network performance.
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Finally, the fully connected feed-forward layer integrates all of the high-

level features learned in the convolutional layers. This layer is responsible for the

network’s output.

Figure 2.2: Architecture of CNN [8].

While CNNs were initially developed for 2-dimensional image-related tasks

such as image classification, segmentation, and object detection, they have found

diverse applications in SHM. Various studies have been conducted for damage

detection and localization. For example, Rosafalco et al. [29] approached dam-

age detection as a classification problem, utilizing a fully convolutional network

by stacking multivariate time series data. Other implementations involve the

transformation of 1D signal data into 2D formats to be processed by CNNs. In a

study focused on a steel frame structure with bolted connections, a time-frequency

scalogram was employed to convert 1D signals into 2D data [26]. Another study

conducted by He et al. [12] utilized the fast Fourier transform and dimensional

transformation to convert 1D signals into 2D data.
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2.2.3.1 1-dimensional Convolutional Neural Network

The 1D CNN is a type of CNN that uses a one-dimensional convolution

operator in its convolutional layers. The output is given by the equation 2.4:

oj = bj +
N∑
i=1

conv1D(wij, xi). (2.4)

The difference between equation 2.3 and 2.4, is that the 1D CNN uses one-

dimensional convolutional operation (conv1D). Given an input sequence x =

[x1, x2, ..., xn] and one dimensional kernel w = [w1, w2, ...wk], the output of 1D

convolutional operator can be given as follows:

yi =

j=k∑
j=1

wj · xi−j. (2.5)

So, the kernels in 1D CNNs slide across the temporal axis of the data, which means

they could be directly applied to time series. And unlike applying 2D CNNs, it

does not force unnecessary spatial structures that might not be meaningful.

Furthermore, if the convolution of continuous time domain signal f(x) and

g(x) is given as:

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t)dt. (2.6)

And the Fourier transform of the function f(x) and g(x) is F (ω) and G(ω) re-

spectively, then from equations 2.1 and 2.6 convolution operation in the frequency
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domain can be given as follows:

F{f(x) ∗ g(x)} =

∫ ∞

−∞
(f ∗ g)e−jωxdx

=

∫ ∞

−∞

(∫ ∞

−∞
f(t)g(x− t)dt

)
e−jωxdx

=

∫ ∞

−∞
f(t)

(∫ ∞

−∞
g(x− t)e−jωxdt

)
dx

=

∫ ∞

−∞
f(t)e−jωt

(∫ ∞

−∞
g(u)e−jωudu

)
dt

=

∫ ∞

−∞
f(t)e−jωtG(ω)dt

= G(ω)

∫ ∞

−∞
f(t)e−jωtdt

= F (ω)G(ω),

(2.7)

where u = x−t and du = dx and F denotes Fourier Transform. This means when

we convolve two functions in the time domain, it’s equivalent to multiplying their

Fourier transforms in the frequency domain. So the features extracted by the

convolutional operator could correspond to various filtering operations that can

filter out noise or extract specific frequency components from the input signal.

Thus, the learned features by 1D CNN can not only capture relevant spatial

patterns but also help in denoising the signal.

In 2015, Kiranyaz et al. [17] introduced the compact 1D CNNs designed

specifically for patient-specific electrocardiogram (ECG) data. These networks

are smaller and more efficient than traditional MLP and 2D CNNs. In this archi-

tecture, the kernel slides over the time dimension of the data and captures local

patterns within sequential data.
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1D CNNs have also proven useful in SHM, where they have been used for

damage detection and real-time monitoring. For example, Avci et al. [2] used 1D

CNNs to detect damage on benchmark data. They later used these networks for

realtime monitoring using a wireless sensor network [3]. Similarly, Zhang et al.

[38] introduced a 1D CNN architecture that can process raw sensor data directly.

They created three separate acceleration databases using a T-shaped steel beam,

a short steel girder bridge, and a long steel girder bridge. The network they

developed was able to detect small local changes in both structural mass and

stiffness, making it a useful tool for SHM applications.

Figure 2.3: 1D Convolutional Neural Network [32].
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2.2.4 Autoencoder

Autoencoders are another type of neural network architecture that first

transform input data into a smaller representation that can later be reconstructed

back into its original form [4]. This two-part system consists of an encoder network

and a decoder network.

The encoder can be viewed as a transform fϕ(x) which maps a d dimen-

sional input vector x ∈ Rd into q dimensional hidden representation z ∈ Rq.

Encoder network usually applies affine transformation followed by nonlinear trans-

formation ψ, which can be given as follows:

z = ψ(Wx+ b), (2.8)

where W ∈ Rqxd is the weight matrix, b ∈ Rr is the bias and ψ is the activation

function.

The decoder gθ(x) then maps the hidden representation z back into re-

constructed vector x′ ∈ Rd in the input space. The operation performed can be

given as below:

x′ = ψ(Ŵz + b̂), (2.9)

where Ŵ ∈ Rqxd is the weight matrix of decoder, b̂ ∈ Rd is the bias, and ψ is the

activation function.

21



The parameters W, b, Ŵ, b̂, are optimized with respect to reconstruction

loss which can be given as equation 2.10. The reconstruction loss L(x′, x) measures

the difference between the original and reconstructed signal:

[W∗, b∗,Ŵ∗, b̂∗] = argminW,b,Ŵ,b̂L(g(f(x)), x). (2.10)

Figure 2.4: Architecture of Autoencoders [24].

Denoising autoencoders are a type of autoencoders that are fed noisy input

data and are forced to reconstruct the original clean input data. By doing so,

the network learns a more robust representation in the process. This approach is

particularly useful for filtering out unwanted noise from input data.

In a study, Pathirage et al. [27] used autoencoder to first obtain a compact

representation of frequency and modal information. Then, they utilized non-linear
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regression to train and learn structural stiffness parameters. This highlights the

promise of using this approach for guided lamb wave response-based damage

detection.
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Chapter 3. Data Preparation

This study used a dataset created by simulating Lamb wave responses in

a cantilevered beam. To capture the wave responses of the beam, we employed

a SFEM based on the Timoshenko beam theory [20] [34]. The SFEM accounted

for shear deformation and rotary inertia. The beam was subjected to a tip force,

and we computed the resulting tip displacement.

Figure 3.1: A cantilevered beam system.

The beam model was 0.5 m long and had a rectangular cross-section of

10x2mm (WxH). It had a density of 2700 kg/m³, a Young’s modulus of 70 GPa,

and a Poisson ratio of 0.25. The input force waveform was a 50 KHz sine burst

Hanning window at the tip with a duration of 0.1 msec [6], as shown in Figure

3.2
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Figure 3.2: Waveform of tip force.

To replicate the damaged condition, a single notch was introduced into

the beam. Damage locations varied from 25% to 85% of the beam’s length,

while thickness reduction ranged from 2% to 15%. A total of 853 samples were

generated. The time-series signal had a duration of 2.5ms and consisted of 2500

data points.

When a force is applied to a beam, time-domain signal response consists of

instantaneous response and reflection from the boundary. However, if there is any

damage to the beam, like a notch, an additional reflection from the damaged area

can also be observed. Figure 3.3 shows the signal response for undamaged and

damaged cases which has been truncated at 1ms to show entire wave propagation

characteristics. Thus, the presence of damage can be reflected in wave response

and the time of flight and the amplitude of the reflective response indicate the

location and severity of the damage [6].

In real-world situations, data collected from sensors are often noisy due

to various factors. To better model actual sensor data, we add different levels
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Figure 3.3: Time-domain response: undamaged case(left) vs damaged case(right) [6].

of noise to the simulated dataset as given by equation 3.1. Datasets with three

different noise levels 5%, 10%, and 15% were generated:

x̂i = xi(1 + α ∗ ni). (3.1)

Here, x̂i represents the signal with added noise, ni denotes the noise sample drawn

from a uniform distribution (-1, 1), and α signifies the intensity level of the noise

in percentage.

The figures 3.4 - 3.7 show the samples of data with damage location at

25% of beam length and thickness reduction level at 12% for varying intensity

levels of noise.
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Figure 3.4: Noise free wave response.

Figure 3.5: Wave response with 5% added noise level.
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Figure 3.6: Wave response with 10% added noise level.

Figure 3.7: Wave response with 15% added noise level.
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Chapter 4. Methodologies

In this chapter, the methodologies employed in the training of distinct deep

neural network architectures are outlined. As the investigation focuses on three

specific models: MLP, 1D CNN, and autoencoder, we provide details of their

architecture and the specific methodologies applied during the training process.

The discussion also delves into model selection and model evaluation strategies

for trained models.

4.1 Multi-layer Perceptron

For training MLP networks with frequency domain features, the signal

data is first passed onto the FFT layer which transforms the time domain signal

to the frequency domain. This layer helps to extract a more meaningful fea-

ture representation of the data and subsequently reduces the data dimension for

effectively training the network.

The DFT is a specific form of the Fourier transform that is designed for

digital signals. It is given by equation 4.1:

Xk =
N−1∑
n=0

xne
−i2πkn/N , (4.1)
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where Xk is time-domain data points, N is the total number of sampling points

and xn is the complex numbers.

The FFT is an efficient algorithmic implementation of the DFT. The

FFT algorithm reduces the time complexity needed for N points from O(N2)

to O(NlogN). During the data transformation process, both the very low and

very high frequency components contribute negligibly to the overall signal, as il-

lustrated in figure 4.3. It is seen that the most of signal component is between

22KHz to 76 KHz. Consequently, the frequency components are truncated to a

selected band within this range, resulting in a 135-dimensional vector representa-

tion. After this transformation step, the input data is fed to the MLP network,

consisting of three hidden layers sizes of 768, 512, and 256 neurons respectively.

The network is trained to predict the damage location and the thickness reduction

in the beam.
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Figure 4.1: Frequency Spectrum of Wave Response.

4.2 Autoencoder

The proposed autoencoder architecture comprised an encoder, a decoder,

and a regression head implemented using fully connected layers. The encoder

network had hidden layer sizes of 1024, 512, and 256 neurons, while the decoder

network had hidden layer sizes of 100 and 256 neurons. The encoder network

compressed the input signal into a latent vector space of 50 dimensions. The

regression network, with hidden layer sizes of 1024, 768, 512, and 256 neurons,

was responsible for predicting the location and intensity of damage based on the

encoded features from the latent space. The input data fed into the autoencoder

was the noisy wave responses. The decoder network aimed to reconstruct the orig-
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Figure 4.2: Flowchart of proposed FFT based MLP model.

inal clean signal from the compressed latent representation. During the training

phase, the autoencoder had two primary objectives:

1. Minimizing the reconstruction error to learn a meaningful representation of

input data, and

2. Optimizing the regression loss to accurately predict damage location and

the extent of thickness reduction.
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During the training process, the mean squared error loss function was

employed to optimize two objectives simultaneously.

Figure 4.3: Proposed Architecture of Autoencoder Network.
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4.3 1D CNN

The CNN model architecture consisted of three 1D convolution layers,

each followed by a pooling layer. Max pooling was employed for the pooling

operation. The configuration parameters of the convolutional and max pooling

layers are shown in Table 4.1. The convolutional layers utilized kernel sizes of

3 and had 32, 64, and 128 filters, respectively. After the convolutional layers, a

flattening layer was applied, followed by fully connected layers sized 768,512 and

256 neurons. Given the ability of 1D CNN to handle time series data directly, no

preprocessing of the data was performed, and the model was trained directly on

the raw time domain signals.

Table 4.1: Convolutional and Max Pool layer configuration of 1D CNN.

Layer Name Filter Size Kernel Size Padding Stride

Convolution1D 1 32 3 0 1

Max Pool1D 1 32 2 0 2

Convolution1D 2 64 3 0 1

Max Pool1D 2 64 2 0 2

Convolution1D 3 128 3 0 1

Max Pool1D 3 128 2 0 2
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4.4 Model Selection

In our study, we divided the dataset into 80% for the training set, 10%

for the validation set, and the remaining 10% for the test set. The training set is

the largest subset of the data, which is used to train the machine learning model.

During the training process, the neural network learns patterns and relationships

from the training data by adjusting its parameters to minimize the loss function.

The test set is a subset of data that the model has not seen during training. It

serves as an independent dataset to assess how well the trained model generalizes

to new, unseen data. The validation set is another subset of unseen data that is

used to fine-tune the hyperparameters of the model. This helps to approximate

the generalization error and prevent data leakage during the training phase. The

validation set is also used to ensure that the model is not overfitting the training

data and to check that it can generalize well to unseen data.

4.4.1 Training Hyperparameters

The table 4.2 shows the hyperparameters used for the training neural net-

works. The training algorithm used Adam optimizer, the batch size was 64 and

the learning rate was 0.0001 for MLP. The learning rate for the autoencoder model

and 1D CNN model was 0.001. To train the regression model, we minimize mean

square error (MSE) loss, which is given as follows:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (4.2)
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where yi is the actual value, ŷ is the predicted value, and n is the total number

of data points.

Table 4.2: Training Hyperparameters.

Model Name Optimizer Batch Size Epochs Learning Rate

MLP Adam 128 6000 0.0001

1D CNN Adam 128 3000 0.001

Autoencoder Adam 128 3000 0.001

4.4.2 Regularization

Regularization is a technique used to prevent overfitting in the model and

enhance the generalization capability of the machine learning model. Dropout

and weight decay were used in our training for regularization. Dropout involves

randomly deactivating (dropping out) a fraction of neurons during training, forc-

ing the network to learn redundant representations and enhancing its ability to

generalize to unseen data. Weight decay penalizes large weights during training,

pushing them closer to zero and preventing overfitting. A dropout value of 0.1

and a weight decay value of 0.001 were used during training.

4.4.3 R2 score

To evaluate the performance of regression models, R2 score metric is usu-

ally employed. R2 score, also known as the coefficient of determination, is a
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statistical measure that assesses the proportion of the variance in the dependent

variable (target) that is predictable from the independent variables (features). It

indicates the goodness of fit of the model. It is given as:

R2 = 1− SSres

SStot

SSres =
n∑
i

(yi − ŷ)2 =
∑
i

e2i

SStot =
n∑
i

(yi − ȳ)2.

(4.3)

SSres is the sum of squared residuals (the sum of the squared differences between

the predicted and actual values of the dependent variable). SStot is the total sum

of squares (the sum of the squared differences between each data point and the

mean of the dependent variable).

A R2 score of 0 indicates that the model does not explain any variability in

the target variable and the model’s performance is no better than predicting the

mean, whereas 1 indicates that the model perfectly predicts the target variable.
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Chapter 5. Evaluations and Results

5.1 Numerical Test 1: Evaluating Performance of Feature Selection

Method

To evaluate the effectiveness of frequency domain feature selection, we

employed two separate MLP models. One model used the raw wave response

data while the other model utilized the selected frequency components from the

FFT as input features. Both the MLP models were configured with the same

network architecture and were trained using the same hyperparameters.

The table 5.1 shows the performance metrics of both models in vari-

ous noise conditions. The FFT-MLP model outperformed the time-domain data

model, especially in noisy environments. In the higher noise signal at the level

of 15%, the FFT-MLP model had R2 score of 0.9586 compared to the R2 score

of 0.9152 for the raw data model. This demonstrates the effectiveness of FFT in

filtering noise and extracting relevant features for training the neural network.

Figure 5.1 shows this filtering process. By only using the low-frequency

range components, the clean signal can be reconstructed. Thus, these lower fre-

quencies retain the necessary information to represent the original signal data.
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Table 5.1: Performance Comparision for FFT-MLP model and MLP models.

Model Noise level(%) R2 score
Mean Percentage error

Location Thickness

MLP

0 0.9893 2.3 6.9

5 0.9834 3.1 6.3

10 0.9569 6.1 6.0

15 0.9152 9.5 5.4

FFT-MLP

0 0.9977 1.4 2.1

5 0.9887 2.8 5.1

10 0.9681 4.7 8.6

15 0.9586 5.2 7.0

5.2 Numerical Test 2: Evaluating End-to-End Deep Learning Models

In the second experiment, we trained and evaluated the autoencoder and

1D CNN model to investigate the effectiveness of end-to-end deep learning models

in noisy environments.

The performance of both models demonstrated robustness to noise. They

maintained consistently high performance across all noise levels. The 1D CNN

achieved the overall best performance, with high R2 scores ranging from 0.9964
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at no noise condition to 0.9908 at the highest noise level of 15%. Furthermore,

the mean percentage error remained within 1.2% for damage localization and

5.7% for thickness reduction prediction. Similarly, the autoencoder also exhibited

better performance than the MLP model, with R2 scores ranging from 0.9943 to

0.9869 across the noise levels. The mean percentage error for the autoencoder

remained within 2.7% for damage localization and 5.5% for thickness reduction

at the maximum noise level of 15%. These results are summarized in table 5.2.

Table 5.2: Performance of 1D CNN and autoencoder under various noise conditions.

Model Noise level(%) R2 score
Mean Percentage error(%)

Location Thickness

1D CNN

0 0.9964 1.0 3.9

5 0.9956 1.2 3.9

10 0.9920 1.5 5.1

15 0.9908 1.2 5.7

Autoencoder

0 0.9943 0.97 5.1

5 0.9911 2.1 5.5

10 0.9918 1.8 6.1

15 0.9869 2.7 5.5
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5.3 Discussions

From the result of these two experiments, we find that the end-to-end deep

learning approach has a more robust performance than the FFT-MLP model.

While the FFT-MLP demonstrated a good level of performance in low noise level

data, the model experienced performance drops with increasing noise levels. This

demonstrates that 1D CNN and autoencoder can capture relevant representation

directly from the Lamb wave response data.

Compared to the FFT-MLP model, the convolutional layers in 1D CNN

can extract spatial information from sequential input, and it can also learn var-

ious filters due to the use of convolutional operations contributing to its higher

damage prediction accuracy. Additionally, the autoencoder also demonstrates its

representation learning by encoding the data with only 50 latent dimensions com-

pared to the 135-dimensional features extracted using FFT-based methods. From

the figure 5.2, we can see that noise is reduced in the reconstructed signal from

the 50 latent dimensions. This compact representation potentially contributes to

the autoencoder’s noise resilience.

Figure 5.3-5.5 illustrates the actual values and predicted values for damage

localization and thickness reduction generated by each model under the noise

level of 15%. From these figures, it is seen that there is more variability in

predicting the damage location than in predicting the thickness reduction. The

models suffer more when predicting damage location when the severity of damage

is very low(2%). In such scenarios, the high noise level present in the guided
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Table 5.3: Examples of actual and predicted values at 15% noise level.

Actual value (Location%, Reduction%) 1D CNN Predicted value FFT-MLP Predicted value Autoencoder Predicted Value

(25, 12) (24.5, 11.5) (23.5, 11.0) (25.5, 12.1)

(33, 2) (33.5, 2.3) (41.4, 2.0) (36.7 2.0)

(33, 5) (33.8, 5.0) (31.7, 3.7) (31.7, 4.8)

(49, 11) (48.9, 10.8) (49.5, 10.2) (49.9, 11.3)

(49, 14) (48.9, 14.2) (48.8, 14.2) (48.9, 14.1)

(50, 6) (49.1, 5.3) (51.2, 6.1) (49.5, 6.0)

(53, 2) (50.1, 1.9) (67.1, 2.58) (59.1, 2.4)

(54, 4) (52.4, 3.6) (53.1, 4.3) (53.6, 4.0)

(57, 11) (56.9, 11.2) (57.2, 10.5) (57.1, 11.8)

(68, 4) (68.8, 3.8) (68.8, 3.7) (67.8, 4.0)

(71, 12) (71.0, 12.1) (77.8, 10.77) (70.6, 12.6)

wave responses appears to mask the subtle signatures associated with the low

severity damage. For FFT-MLP, this is more pronounced as the damage location

predictions deviate significantly from the true values. Table 5.3, which provides

sample predicted and actual values for the models at the 15% noise level, clearly

highlights this limitation. For example, at a thickness reduction of 2%, the FFT-

MLP predicts a value of 41.4%, and 67.1% when the damage location is at 33%

and 53% of beam length respectively. In contrast, the 1D CNN, and autoencoder,

exhibit better localization accuracy. Their predictions often fall closer to the true

values. This can be attributed to their ability to automatically learn robust

representations directly from the raw guided wave response data through end-to-

end training.
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Figure 5.1: Noisy and reconstructed wave response using FFT features.
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Figure 5.2: Noisy and reconstructed wave response using autoencoder.
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Figure 5.3: Predicted vs Actual values for MLP at 15% noise level.

Figure 5.4: Predicted vs Actual values for Autoencoder at 15% noise level.
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Figure 5.5: Predicted vs Actual values for 1D CNN at 15% noise level.
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Chapter 6. Conclusion and Future Work

6.1 Conclusion

This research investigated deep learning architectures, including MLP, 1D

CNN, and autoencoders for the SHM application using guided Lamb wave re-

sponses. The models demonstrated robust and accurate damage detection, even

in the presence of significant noise levels. They successfully extracted critical in-

formation regarding damage location and extent, achieving a strong correlation

with the actual damage values. The key findings are summarized below:

• Frequency domain features were able to provide a mechanism for signal

representation and noise filtering. The MLP model trained with these fre-

quency domain features achieved an R2 score of 0.9586 at the 15% noise

level, as compared to an R2 score of 0.9152 when using raw time domain

features, demonstrating better performance in handling increased noise lev-

els.

• The autoencoder improved the performance and used only 50 dimensional

latent vector for data representation which is 63% less than the 135 di-

mensional features extracted from frequency domain transformation. Mean
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percentage errors were within 2.7% for localization and 5.5% for thickness

reduction at the maximum noise level.

• The 1D CNN model achieved the best performance, demonstrating robust-

ness to noise. It achieved R2 scores ranging from 0.9964 to 0.9908, with

mean percentage errors remaining within 1.2% for damage localization and

5.7% for thickness reduction prediction, even at the highest noise level of

15

These results suggest that end-to-end deep learning models, particularly the 1D

CNN and autoencoder, can effectively process noisy guided Lamb wave responses

for SHM tasks without relying on manual feature engineering. The ability of

these models to automatically learn robust representations and extract relevant

information directly from the raw signal data enables accurate damage detection

and quantification, even in the presence of noise. This paves the way for robust

SHM methodology development using deep learning techniques.

6.2 Future Work

While this research demonstrated the effectiveness of deep learning for

damage detection using simulated Lamb wave responses, there are many avenues

for further exploration. One key challenge was predicting damage location for

extremely low-level damage in the presence of high-intensity noise. Future stud-

ies could investigate advanced architectures like transformer-based models, which

use attention mechanisms and could improve feature learning. This could lead to
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improved localization performance, particularly in scenarios with very small levels

of damage. Similarly, hybrid approaches could also be explored. The autoencoder

used fully connected layers for the encoder and decoder network. A CNN-based

autoencoder architecture could be explore to enhance feature extraction, dimen-

sionality reduction, and noise resilience.

Other research directions could focus on improving the robustness and

generalizability of the models. The dataset could integrate diverse noise genera-

tion techniques and include real-world sensor data alongside simulated responses.

Our research focused on only single damage scenarios. So another possibility is to

augment the dataset with multiple damage scenarios. This can improve models’

ability to generalize to real-world conditions.

Future work could also focus on developing interpretable architectures. For

example, the future could investigate the connection between the latent represen-

tation learned by the autoencoder and frequency domain features. Furthermore,

explainable AI techniques, such as SHAP analysis could be employed to gain in-

sights into the decision-making process of the models. This could provide more

transparency and foster trust in the SHM system.

By pursuing these future research directions, we can further refine deep

learning models for Lamb wave-based SHM, overcoming current limitations and

achieving greater accuracy, robustness, and interpretability. This will lead to

more reliable and effective SHM systems, assuring the safety and integrity of

infrastructure in real-world applications.
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Appendix A. Training LSTM

This thesis also explored the possibility of using LSTM networks because

of their capability to capture temporal dependencies within sequential data. How-

ever, the training results for LSTM were unsatisfactory. LSTM models with dif-

ferent parameters such as several hidden layers and hidden unit sizes were trained

and tested.

For the LSTM network with two hidden layers with 512 hidden units which

was followed by fully connected layers with sizes 256 and 128, it only achieved a

low R2 score of 0.0017. This is equivalent to predicting the average values.

Several factors could have resulted in the poor performance of the LSTM

model:

• Limited temporal dependence: The wave response for different damage sce-

narios varies by small differences in the notch response. This might not

have contained significant temporal correlations. So, the model only learns

to predict the mean value of different damage scenarios. Exploring differ-

ent types of time-series preprocessing techniques could potentially extract

significant temporal features for the LSTM.

• Small Data size: The LSTM network uses different gating mechanisms due

to which it has a complex architecture. This means it usually requires

a substantial amount of training data to generalize well. However, this

research used a relatively small dataset and as such there are limitations
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in performance. Further data augmentation and increasing datasets could

enhance the performance of LSTM.

• Further Hyperparameter tuning: The selected hyperparameters, such as

the number of layers, hidden unit sizes, activation functions, learning rate,

and training epoch, might not be sufficient for training the LSTM to the

dataset. Applying further hyperparameter tuning, utilizing bi-directional

LSTM with attention, and using better optimization algorithms could po-

tentially lead to better results.

Despite the poor performance results of LSTM in this study, they are still a vi-

able option for SHM applications. LSTM can learn temporal dependence in the

time-series data which can be applied to complex damage scenarios. By con-

ducting further study on the above-mentioned areas, it could lead to the effective

application of LSTMs for Lamb wave-based SHM.
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