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Abstract

APPLICATION OF A SCALE RESOLVING
TURBULENCE MODEL TO A JET IN SUPERSONIC

CROSSFLOW

Noah Schwalb

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

Mechanical and Aerospace Engineering

The University of Alabama in Huntsville

May 2024

The Partially-Averaged Navier-Stokes (PANS) methodology is applied to variable-

density flow to derive the Blended PANS (BPANS) model. A supersonic jet-in-

crossflow problem is numerically simulated using the BPANS model to show its ca-

pabilities in a variable-density flow with complex physics. The shock systems and

vortex structures of this problem observed during experiments are numerically re-

produced. The time-averaged Mach number and streamwise velocity contours show

good agreement compared to LES and experimental data. The streamwise and wall-

normal velocity profiles, wall pressure distribution along the flat plate, and trajectory

of the jet are compared to LES and experimental data to show that BPANS accu-

rately predicts them. The filter control parameter fk is varied to show the effect of

the unresolved to resolved ratio of the turbulent kinetic energy k and the specific

dissipation rate ω. The results show that smaller fk results in better agreement with

LES and experimental data near local extrema.
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Chapter 1. Introduction

Many engineering design problems involve some form of turbulent flow.

It affects many aspects of a design, including the wings of an aircraft, the flow

through an axial compressor, or even the combustion of fuel and oxidizer in an

engine. One specific problem that involves turbulent flow is the high speed jet in

crossflow (JICF). This is relevant to supersonic combustors, where the mixing of

fuel and air is critical to the combustion process. A detailed understanding of the

physics and accurate prediction of the turbulent mixing mechanisms is essential

for combustor design.

A review paper by Mahesh covers the previous work done on high speed

jets in crossflows [5]. Many recent studies are motivated by the application of high

speed JICF to supersonic combustion. Some studies are experimental and include

techniques such as Schlieren photography [24] [32], laser-induced fluorescence [20]

[21] [1], and particle image velocimetry (PIV) [4] [2] [6] [3]. Flow measurements

are very difficult for this type of flow due to the complexity of the flow physics.

As a result, flow visualization has been used to study the turbulent mixing of

the jet, the penetration of the jet, as well as the overall flow physics and shock

structures.
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Some vortical and shock structures have been identified as key features in

a high speed JICF. There is a separation region just upstream of the jet due to

the jet blocking the supersonic crossflow, along with a bow shock just upstream

of that separation. The separation region lifts the boundary layer from the wall,

creating a separation shock just ahead of the aforementioned bow shock [14] [32].

There is also an inclined barrel shock and a Mach disk at the boundary of the

jet plume as it exits the nozzle, which interacts with the crossflow. The vortical

structures that appear are similar to a low speed JICF: jet shear layer vortices,

downstream wake vortices, horseshoe vortices that wrap around the jet column,

and the counter-rotating vortex pair (CVP) far downstream. Fric and Roshko

[10] note that the horseshoe vortices and CVP are usually observed in the mean

flow and have unsteady components, while the shear layer and downstream wake

vortices are inherently unsteady.

Turbulence is chaotic by nature, causing a net increase in mixing within the

fluid and transferring more momentum, heat, and species concentration through-

out a flow [30]. The first to observe a transition from laminar to turbulent flow was

Reynolds [27], who experimentally investigated the subject by injecting dye into a

pipe flow. Through his experiments, he characterized the transition of a flow from

laminar to turbulent using a nondimensional number that has hence been named

after him: the Reynolds number [27]. He later attempted to tackle the problem

of turbulence theoretically by averaging the Navier-Stokes equations to solve for

the mean flow quantities. It is unfortunate that these Reynolds-Averaged Navier

Stokes (RANS) equations introduce new stress terms that contain more unknowns

2



than there are equations. These terms are fittingly named the Reynolds stresses

and must be modeled in order to close the RANS equations and obtain a solution.

Boussinesq tackled this challenge by introducing the idea of an eddy vis-

cosity [33], which models the transport of the Reynolds stresses similar to the

viscosity transporting the momentum of a fluid. It is a quantity that is formed

such that it may be written as the product of a length and velocity scale. Prandtl

built on this concept in the form of a mixing length model (a one-equation model)

[31], where the eddy viscosity is proportional to the mean velocity gradient and a

mixing length squared. This length scale requires a-priori knowledge of the flow

geometry and thus is a major disadvantage of the model. Kolmogorov proposed

the first two-equation model, where the turbulent kinetic energy and turbulent

frequency are obtained using a transport equation for each variable [36]. Others

have built on this concept, with the (k−ϵ) model [17] being developed to solve for

the turbulent kinetic energy and turbulent dissipation. Wilcox developed another

model called the (k − ω) model [41] due to the poor performance of the (k − ϵ)

model near the wall, which did yield improved predictions as intended [42]. It

is important to note, however, that the (k − ω) model is extremely sensitive to

the freestream turbulence boundary conditions, which can significantly impact

the results [22]. Menter built on the benefits of those two-equation models by

blending them together, reducing to a form that is equivalent to (k−ω) near the

wall and (k − ϵ) far from the wall [22].

These models fail to capture the unsteady, three-dimensional turbulent

structures due to Reynolds-Averaging over all scales. Other methods are capable
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of resolving the turbulent motions within a flow at a much higher computational

cost such as Direct Numerical Simulation (DNS). It works as the name suggests:

the full Navier-Stokes equations are solved without models or simplifying as-

sumptions. This results in highly accurate predictions of the flow physics at an

extremely high computational cost. The cost is so high due to the requirement

for the grid spacing to be on the order of the Kolmogorov scale–proportional to

Re−3/4. Even with the large jump in computational power in recent years, DNS

is limited to research cases as it requires too much compute time for practical

engineering design [8].

Richardson proposed the idea of the energy cascade, where energy is trans-

ferred from large eddies to small eddies until the eddies become small enough that

dissipation due to viscous effects becomes significant. Kolmogorov hypothesized

that since the large eddies are anisotropic due to the boundary conditions and

geometry, some eddies are small enough that they are locally isotropic and have

universal characteristics that can be modeled [30].

Smagorinsky developed the Large Eddy Simulation (LES) methodology

during his study of meteorological phenomena [34]. LES introduces a spatial filter

with width ∆ which separates the flow variables into their resolved and unresolved

components. Eddies larger than ∆ are considered large eddies and eddies smaller

than ∆ are considered unresolved and are modeled using a sub-grid scale (SGS)

model [8]. It is a powerful method that extracts the detailed turbulent flow

features, although the grid and time step requirements for wall-bounded flows are
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computationally expensive. This trade-off has led to the development of a class

of methods called hybrid RANS/LES methods.

One such method is Detached Eddy Simulation (DES) where boundary

layers are treated with a RANS formulation and flow outside the boundary layer

is treated with LES. This significantly reduces the computational cost compared

to pure LES while retaining the ability to resolve the turbulent structures of the

flow [35]. The transition between the RANS and LES formulations is done by

changing the stress model at the interface, which may cause an artificial buffer

layer [13]. In DES, the location of the RANS/LES interface is determined by grid

resolution which may cause issues if this interface is within the boundary layer.

This can cause a phenomenon known as modeled stress depletion which results in

a drop in skin friction coefficient or premature separation of the boundary layer.

Zonal Detached Eddy Simulation (ZDES) and Delayed Detached Eddy Simulation

(DDES) have been developed to ensure that this transition occurs outside of the

boundary layer and avoid the modeled stress depletion [39].

Another hybrid RANS/LES method is the Partially Averaged Navier-

Stokes equations (PANS) introduced by Girimaji [12]. PANS is used to smoothly

transition between RANS and DNS via the variation of the filter control param-

eters, which control how much turbulent kinetic energy and dissipation is being

resolved versus modeled. The formulation for PANS is distinct from LES in that

the flow variables are filtered according to energy content instead of length scale.

In addition, the PANS formulation is identical to the unsteady RANS (URANS)

equations where the model constants differ. Consequently, PANS can be quickly
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implemented into a CFD code with URANS capabilities [12]. Frendi and Harrison

explore the benefits of a blended PANS model [9], similar to Menter’s blended

model, for benchmark incompressible flows. They implement the model in Open-

FOAM [40] and validate it using previous PANS simulations and experimental

data for wall-bounded and free shear flows.

This work extends the blended PANS (BPANS) model to the compressible

regime along with its implementation in the compressible Navier-Stokes solver

in the multi-physics software suite SU2 [28]. The compressible Navier-Stokes

equations are filtered using a density-weighted operator introducing a generalized

central moment term that must be modeled. A parametric study is conducted to

analyze the effect of the ratio of resolved to modeled turbulence variables on the

velocity profiles downstream of the jet.

This work is organized as follows. The governing equations are given in

Chapter 2, along with a rigorous description of the filtering operator and BPANS

model. The simulation conditions and the computational grid are given in Chap-

ter 3. Qualitative and quantitative results are presented and analyzed for flow

physics and compared to high-fidelity and experimental data in Chapter 4. Con-

clusions and future work are provided in Chapter 5.
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Chapter 2. Mathematical Model

2.1 Governing Equations

The governing equations for a compressible flow are the conservation of

mass, momentum, and energy

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = 0, (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij)−

∂

∂xj
(σij) = 0, (2.2)

∂

∂t
(ρE) +

∂

∂xj
((ρE + p)uj)−

∂

∂xj
(uiσij + qj) = 0, (2.3)

where ρ is the density, ui is the ith component of velocity, p is the pressure, σij

is the viscous stress tensor, qj is the heat flux, E is the total energy defined by

E = e+
1

2
ukuk, (2.4)

and e is the internal energy. Assuming the flow is a calorically perfect gas yields

the equation of state
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p = ρRT, (2.5)

and the relation of the temperature T and the internal energy e via the specific

heat at constant volume cv

e = cvT. (2.6)

The ratio of the specific heat at constant pressure cp to cv is defined as the ratio

of specific heats γ

γ ≡ cp
cv
, (2.7)

such that the specific heats are related to the gas constant R

cp − cv = R. (2.8)

An alternate form of the equation of state,

p = ρ (γ − 1)

(
E +

1

2
ukuk

)
, (2.9)

uses the above definitions and relations. The heat flux is defined using Foruier’s

law

qj ≡ −cp
µ

Pr

∂T

∂xj
, (2.10)
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where µ is the dynamic viscosity, Pr is the Prandtl number defined

Pr ≡ cp
µ

κ
, (2.11)

and κ is the thermal conductivity. The viscous stress tensor also involves µ,

however, it is related to the diffusive viscous forces within the flow

σij = 2µ

(
Sij −

1

3

∂uk
∂xk

δij

)
, (2.12)

with the strain-rate tensor Sij

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.13)

2.2 Filtering Operator

We consider a filter operator ⟨·⟩ which is linear and constant preserving,

⟨Ψ1 +Ψ2⟩ = ⟨Ψ1⟩+ ⟨Ψ2⟩, ⟨αΨ⟩ = α⟨Ψ⟩, (2.14)

where Ψ is a variable and α is a constant. It also has spatial and temporal

differential commutativity such that

〈
∂Ψ

∂xi

〉
=
∂⟨Ψ⟩
∂xi

,

〈
∂Ψ

∂t

〉
=
∂⟨Ψ⟩
∂t

. (2.15)

This operator also decomposes an instantaneous flow quantity Ψ into filtered

(resolved) and modeled (unresolved) components,
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Ψ ≡ ⟨Ψ⟩+ ψ, (2.16)

where ⟨Ψ⟩ is the filtered component and ψ is the modeled component. This

operator may be defined as a density-weighted filter,

Ψ ≡ {Ψ}+ ψ∗, (2.17)

where {Ψ} is the density-weighted filtered component and ψ∗ is the modeled

fluctuating component,

{Ψ} ≡ ⟨ρΨ⟩
⟨ρ⟩

, (2.18)

ψ∗ = Ψ− {Ψ} . (2.19)

We choose the primary variables of the filtered compressible Navier-Stokes

equations to be ρ, ui, p, and E. This choice of variables is natural given the form

of the compressible Navier-Stokes equations such that uo and E use a density-

weighted filter while ρ and p use a standard filter. The use of two types of

filtering operators for the primary variables indicates the need for two forms of

the generalized central moment. These are defined

τ 1 (Ψi,Ψj) ≡ {ΨiΨj} − {Ψi} {Ψj} , (2.20)
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τ 2 (Ψi,Ψj) ≡ ⟨ΨiΨj⟩ − {Ψi} ⟨Ψj⟩, (2.21)

such that both arguments of τ 1(Ψi,Ψj) are subject to density-weighted filters

whereas the arguments of τ 2(Ψi,Ψj) are subject to density-weighted and standard

filtering, respectively. These are referred to as the Favre-Filtered Generalized

Central Moments (FFGCM) of the first and second kind. The FFGCMs account

for the modeled turbulence within the resolved (filtered) flow field. The averaging-

invariance property has been investigated by [37] where they demonstrated that

the evolution equations of the FFGCM are invariant to filter width.

In the limit of all turbulence scales being modeled, these decompositions

are equivalent to Reynolds-averaging and Favre-averaging,

Ψ = Ψ̄ + ψ′, (2.22)

Ψ = Ψ̃ + ψ′′, (2.23)

where Ψ̄ and ψ′ are the time, spatial, or ensemble-averaged and turbulent compo-

nents of Ψ whereas Ψ̃ and ψ′′ are the density-weighted averaged and fluctuating

portions of Ψ.
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2.3 Filtered Compressible Navier-Stokes Equations

The application of density-weighted and standard filtering operators to

the conservation of mass, momentum, and energy equations for compressible flow

leads to the filtered (partially-averaged) form,

∂

∂t
⟨ρ⟩+ ∂

∂xi
(⟨ρ⟩ {ui}) = 0, (2.24)

∂

∂t
(⟨ρ⟩ {ui}) +

∂

∂xj
(⟨ρ⟩ {uiuj}+ ⟨p⟩δij − ⟨σij⟩) = 0, (2.25)

∂

∂t
(⟨ρ⟩ {E}) + ∂

∂xj
(⟨ρ⟩ {ujE}+ ⟨ujp⟩ − ⟨uiσij⟩+ ⟨qj⟩) = 0. (2.26)

Here, the linear nature of the conservation of mass and the commutative properties

of the filtering operator shine through as the filtering does not change its form.

The same cannot be said for the conservation of momentum, where there is a

closure problem due to the filtering. There is an additional term: the filtered

product of ui and uj written as {uiuj}. This unclosed product is restated in

terms of the product of filtered velocities {ui} {uj} using the FFGCM of the first

kind resulting in

τ 1 (ui, uj) = {uiuj} − {ui} {uj} . (2.27)
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Filtering the conservation of energy equation also leads to a closure problem with

the additional terms {uiE}, ⟨uip⟩, and ⟨uiσij⟩. Since the filters for both uj and E

are chosen as density-weighted, the first unclosed term {ujE} is restated in terms

of the product of filtered velocity and total energy {uj} {E} using the FFGCM

of the first kind

τ 1 (uj, E) = {ujE} − {uj} {E} . (2.28)

This same process is done for the unclosed terms {ujp} and {uiσij}, however, each

term contains one variable that is subjected to standard filtering. To account for

this, an FFGCM of the second kind is substituted for each term

τ 2 (uj, p) = ⟨ujp⟩ − {uj} ⟨p⟩, (2.29)

τ 2 (ui, σij) = ⟨uiσij⟩ − {ui} ⟨σij⟩. (2.30)

Using these FFGCMs to substitute into the conservation of momentum and energy

equations yields

∂

∂t
(⟨ρ⟩ {ui}) +

∂

∂xj

(
⟨ρ⟩ {ui} {uj}+ ⟨p⟩δij − ⟨σij⟩ − ⟨ρ⟩τ 1 (ui, uj)

)
= 0, (2.31)
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∂

∂t
(⟨ρ⟩ {E}) + ∂

∂xj
(⟨ρ⟩ {uj} {E}+ {uj} ⟨p⟩ − {ui} ⟨σij⟩+ ⟨qj⟩)

+
∂

∂xj

(
⟨ρ⟩τ 1 (uj, E) + τ 2 (uj, p)− τ 2 (ui, σij)

)
= 0. (2.32)

We also apply the density-weighted filtering operation to the total energy

{E} = {e}+ 1

2
{ukuk} , (2.33)

and an FFGCM of the first kind for the filtered product of velocities {ukuk}

results in the filtered total energy

{E} = {e}+ 1

2
{uk} {uk}+

1

2
τ 1 (uk, uk) . (2.34)

In both the filtered conservation of momentum and energy equations, the viscous

stress tensor is filtered such that

⟨σij⟩ = 2µ

(
{Sij} −

2

3

∂

∂xk
{uk} δij

)
, (2.35)

where {Sij} is the filtered strain rate tensor

{Sij} =
1

2

(
∂

∂xj
{ui}+

∂

∂xi
{uj}

)
. (2.36)
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The choice of Sij to be subjected to density-weighted filtering is natural due to

its definition being a function of velocity gradients. The heat flux is subjected to

a standard filter

⟨qj⟩ = −cp
µ

Pr

∂

∂xj
⟨T ⟩ (2.37)

and a similar procedure is conducted for the equation of state resulting in its

filtered form

⟨p⟩ = ⟨ρ⟩ (γ − 1)

(
{E} − 1

2
{ukuk}

)
, (2.38)

and substituting the unfiltered velocity times itself with the FFGCM of the first

kind yields

⟨p⟩ = ⟨ρ⟩ (γ − 1)

(
{E} − 1

2
{uk} {uk} −

1

2
τ 1 (uk, uk)

)
, (2.39)

where the unresolved turbulent kinetic energy ku is defined as

ku =
1

2
τ 1 (uk, uk) . (2.40)

For thoroughness, the equation of state with ku is given

⟨p⟩ = ⟨ρ⟩ (γ − 1)

(
{E} − 1

2
{uk} {uk} − ku

)
. (2.41)
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2.4 Constitutive Relationships

Multiple FFGCMs are unclosed within the filtered compressible Navier-

Stokes equations and must be modeled to ensure closure of the system of equa-

tions. This is accomplished for the τ 1 (ui, uj) term using the Boussinesq approxi-

mation [33], which establishes a relationship between the transfer of momentum

from the molecular gas and turbulent motion

τ 1 (ui, uj) ≡ 2
µt

⟨ρ⟩

(
{Sij} −

1

3

∂

∂xk
{uk}

)
− 2

3
kuδij. (2.42)

The turbulent viscosity µt is commonly referred to as the eddy viscosity and rep-

resents the dissipative viscosity of the unresolved (modeled) eddies. The following

constitutive relationship

⟨ρ⟩τ 1 (uj, E) + τ 2 (uj, p) ≡ cp
µt

Prt

∂

∂xj
⟨T ⟩+ ⟨ρ⟩ {ui} τ 1 (ui, uj) (2.43)

results from an expansion of the total energy and pressure terms and a gradient

approximation for the turbulent correlation between the velocity and temperature.

The first term is is interpreted as the turbulent heat flux, hence the use of µt and

the turbulent Prandtl number Prt. It is important to note that the second term

involves an FFGCM, however, the constitutive relation for this term has been

discussed above and is not addressed further.
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The term τ 2 (ui, σij) is interpreted as the interaction of the turbulent ki-

netic energy and the viscosity of the unresolved scales, thus it is natural to ap-

proximate using a gradient expression of the form

τ 2 (ui, σij) ≈ (µ+ σ∗µt)
∂ku
∂xj

, (2.44)

where σ∗ is a coefficient. It is argued, however, that this term may be neglected

if the turbulent kinetic energy is small compared to the filtered enthalpy

ku << ⟨h⟩, (2.45)

where the enthalpy h is related to temperature via h = cpT . This holds true for

most flows below the hypersonic regime, which is considered in this work, thus

the term is neglected. The resulting filtered compressible Navier-Stokes equations

with the defined constitutive relations are given

∂

∂t
(⟨ρ⟩ {ui}) +

∂

∂xj
(⟨ρ⟩ {ui} {uj}+ ⟨p⟩δij − ⟨σij⟩)

− ∂

∂xj

(
2µt

(
{Sij} −

1

3

∂

∂xk
{uk}

)
− 2

3
kuδij

)
= 0, (2.46)
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∂

∂t
(⟨ρ⟩ {E}) + ∂

∂xj

(
⟨ρ⟩ {uj} {E}+ {uj} ⟨p⟩+ ⟨qj⟩+ ⟨q∗j ⟩⟩

)
− ∂

∂xj

(
{ui} ⟨σij⟩+ 2µt

(
{Sij} −

1

3

∂

∂xk
{uk}

)
− 2

3
kuδij

)
= 0, (2.47)

where q∗j is the turbulent heat flux

⟨q∗j ⟩ ≡ −cp
µt

Prt

∂

∂xj
⟨T ⟩. (2.48)

These equations may be simplified further using the definitions of the viscous

stress tensor and heat fluxes such that

∂

∂t
(⟨ρ⟩ {ui}) +

∂

∂xj
(⟨ρ⟩ {ui} {uj}+ ⟨p⟩δij)

− ∂

∂xj

(
2 (µ+ µt)

(
{Sij} −

1

3

∂

∂xk
{uk}

)
− 2

3
kuδij

)
= 0, (2.49)

∂

∂t
(⟨ρ⟩ {E}) + ∂

∂xj

(
⟨ρ⟩ {uj} {E}+ {uj} ⟨p⟩ − cp

(
µ

Pr
+

µt

Prt

)
∂

∂xj
⟨T ⟩

)
− ∂

∂xj

(
{ui} ⟨σij⟩+ 2 (µ+ µt)

(
{Sij} −

1

3

∂

∂xk
{uk}

)
− 2

3
kuδij

)
= 0. (2.50)
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The conservation of energy equation still contains a term with the temperature,

which can be simplified using the filtered equation of state to attain a form with

the filtered pressure and density

∂

∂t
(⟨ρ⟩ {E})+ ∂

∂xj

(
⟨ρ⟩ {uj} {E}+ {uj} ⟨p⟩ −

γ

γ − 1

(
µ

Pr
+

µt

Prt

)
∂

∂xj

(
⟨p⟩
⟨ρ⟩

))
− ∂

∂xj

(
2 {ui} (µ+ µt)

(
{Sij} −

1

3

∂

∂xk
{uk}

)
− 2

3
kuδij

)
= 0. (2.51)

In the limit of all turbulence being modeled, the filtered compressible Navier

Stokes equations are exactly equivalent to the Favre-Averaged Navier-Stokes

equations

∂

∂t
(ρ̄) +

∂

∂xj
(ρ̄ũj) = 0, (2.52)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj + p̄δij − σ̄ij) = 0, (2.53)

∂

∂t

(
ρ̄Ẽ

)
+

∂

∂xj

(
ρ̄ũjẼ + ũj p̄+ q̄j + q̄∗j − ũkσ̄kj

)
= 0, (2.54)

with the appropriate equation of state.
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2.5 Filter Control Parameter

In classical Large Eddy Simulation (LES), the resolution of the resolved

scales is inversely proportional to the grid size. Thus, the physical resolution

is closely coupled to the resolution of the numerical methods. In PANS, and

analogously RANS, the closure model is decoupled from the numerical resolution

and in the case of PANS is directly related to the filter control parameters. These

parameters fk and fϵ must be specified for each simulation depending on the

desired physical resolution and computational cost associated with it.

In PANS modeling, it is paramount to have knowledge of the turbulent

kinetic energy and turbulent dissipation a-priori to determine the length, velocity,

and time scales of the largest unresolved scales, as well as the same scales for the

unresolved dissipative motion [29]. In these relations, the ratio of unresolved to

resolved turbulent kinetic energy and turbulent dissipation are defined as

fk ≡
ku
k
, (2.55)

fϵ ≡
ϵu
ϵ
, (2.56)

which are used to quantify the extent of PANS filtering. fk and fϵ are the partial-

average quantification and, thus, referred to as the filter control parameters. The

turbulent physics dictate that the large scales contain most of the kinetic energy

and most of the dissipation occurs in the smallest scales, dictating the inequality

0 ≤ fk ≤ fϵ ≤ 1. This corresponds to DNS when fk = 0 and RANS when fk = 1.
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A value of 1 for fϵ implies that the unresolved scales of PANS and RANS are

identical, thus smaller values of fϵ require the resolution of the dissipative scales.

It may be desirable to vary the values of the filter control parameters through

space and time, however, in this work, their variation is assumed to be smaller

than that of the flow variables and are assumed constant.

2.6 PANS Model Development

The goal is now to develop a model that accurately reflects the physics

characterized by scales smaller than the filter width. The averaging invariance

principle [37] allows the use of LES or RANS-like closure models. Some of the

most popular LES closure models are algebraic, dubbed zero-equation models,

and are best suited for wave number cutoffs in the small inertial scales of motion.

RANS models, however, are developed with averaging over all scales of motion and

thus contain sufficient physics to represent the partially-averaged fields. Given

the purpose of PANS being used at all degrees of resolution ranging from RANS

to DNS, it is argued that there must be at least as much physics as in some of

the two-equation RANS models. Therefore, the PANS models used in this work

are based on the RANS two-equation models.

A few commonly used RANS models are the (k − ϵ) [41] and (k − ω) [17]

models which are great at handling free shear and wall-bounded flows, respec-

tively. The (k − ω) SST [22] model was derived as a blending between the two

models to make use of each of their strengths. This blending function is directly

dependent on the wall distance, holding values between zero and one to represent
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which form the model takes at that point in the spatial domain. Effectively, the

SST model takes a (k − ω) form when near the wall and a (k − ϵ) form when

far away from the wall. These two-equation models solve for two turbulence vari-

ables, namely the turbulent kinetic energy k and either the specific dissipation

rate ω or turbulent dissipation ϵ. These models all take advantage of the concept

of the eddy viscosity, which is defined as

µt = ρ̄
ku
ωu

, (2.57)

for a (k−ω) model. This is the definition used in this work, though it is common

to use the magnitude of the strain or vorticity tensors in a limiting sense when

calculating the eddy viscosity. The idea of blending two models similar to the

SST model is taken into the PANS framework. We start with the (k − ϵ) PANS

model from [12]

∂

∂xj
(ρ̄ku) +

∂

∂xj
(ρ̄ũjku) = P − ρ̄ϵu +

∂

∂xj

(
(µ+ σk2µt)

∂ku
∂xj

)
, (2.58)

∂

∂t
(ρ̄ϵu) +

∂

∂xj
(ρ̄ũjϵu) = Cϵ1P

ϵu
ku

− C∗
ϵ2ρ̄

ϵ2u
ku

+
∂

∂xj

(
(µ+ σϵµt)

∂ϵu
∂xj

)
, (2.59)

where ϵu is the turbulence dissipation rate. The production terms P are evaluated

via
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P = τ 1(ui, uj)
∂ũi
∂xj

, (2.60)

where the constitutive relation 4.2 is used for the FFGCM. In this PANS form,

there are the coefficients C∗
ϵ2, σϵ, and σk2

C∗
ϵ2 ≡ Cϵ1 +

fk
fϵ

(Cϵ2 − Cϵ1) , (2.61)

σϵ ≡
1

σϵR

fϵ
f 2
k

, (2.62)

σk2 ≡
1

σkR

fϵ
f 2
k

, (2.63)

which are defined as functions of the filter control parameters fk and fϵ. The other

constants have values of Cϵ1 = 1.42, Cϵ2 = 1.92, σkR = 1.0, and σϵR = 1.3 where

the subscript R refers to the coefficient from the corresponding RANS model.

The ϵu equation is rewritten in a form with the specific turbulent frequency ωu

using the relation

ϵu = β∗kuωu. (2.64)

This leaves the temporal and convective terms in the following form

∂

∂t
(ρ̄ϵu) = β∗

(
ku
∂

∂t
(ρ̄ωu) + ωu

∂

∂t
(ρ̄ku)

)
, (2.65)
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∂

∂xj
(ρ̄ũjϵu) = β∗

(
ku
∂

∂t
(ρ̄ujωu) + ωu

∂

∂t
(ρ̄ujku)

)
, (2.66)

and a similar procedure for the production terms yields

Cϵ1P
ϵu
ku

= Cϵ1Pβ
∗ωu, (2.67)

C∗
ϵ2ρ̄

ϵ2u
ku

= C∗
ϵ2ρ̄β

∗kuω
2
u. (2.68)

The viscous term has a slightly more complex form due to the gradient terms,

but nonetheless is treated the same as above

∂

∂xj

(
(µ+ σϵµt)

∂ϵu
∂xj

)
= β∗ku

∂

∂xj

(
(µ+ σϵµt)

∂ωu

∂xj

)
+ β∗ωu

∂

∂xj

(
(µ+ σϵµt)

∂ku
∂xj

)
+ 2β∗ (µ+ σϵµt)

∂ku
∂xj

∂ωu

∂xj
, (2.69)

where it is important to note the extra cross-diffusion term. This extra term is

key to the form of the blended model, which will be seen shortly. Substituting

this all back into the original equation and doing some rearranging results in
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β∗ωu

[
∂

∂xj
(ρ̄ku) +

∂

∂xj
(ρ̄ũjku)− P + β∗ρ̄kuωu −

∂

∂xj

(
(µ+ σk2µt)

∂ku
∂xj

)]
+ β∗ku

[
∂

∂t
(ρ̄ωu) +

∂

∂xj
(ρ̄ũjωu)

]
= (Cϵ1 − 1)Pβ∗ωu − (C∗

ϵ2 − 1)ρ̄β∗2kuω
2
u

+ β∗ku
∂

∂xj

(
(µ+ σϵµt)

∂ωu

∂xj

)
+ 2β∗ (µ+ σϵµt)

∂ku
∂xj

∂ωu

∂xj
. (2.70)

Since the first bracketed term is the original ku equation it can be taken as zero,

which simplifies the transformed equation to

∂

∂t
(ρ̄ωu) +

∂

∂xj
(ρ̄ũjωu) = (Cϵ1 − 1)P

ωu

ku
− (C∗

ϵ2 − 1)ρ̄β∗ω2
u

+
∂

∂xj

(
(µ+ σϵµt)

∂ωu

∂xj

)
+

2

ku
(µ+ σϵµt)

∂ku
∂xj

∂ωu

∂xj
, (2.71)

where the cross-diffusion term has both the dynamic and turbulent viscosity.

According to [23], the dynamic viscosity can be neglected in the cross-diffusion

term which yields

∂

∂t
(ρ̄ωu) +

∂

∂xj
(ρ̄ũjωu) = (Cϵ1 − 1)P

ωu

ku
− (C∗

ϵ2 − 1)ρ̄β∗ω2
u

+
∂

∂xj

(
(µ+ σϵµt)

∂ωu

∂xj

)
+ 2

ρ̄σϵ
ωu

∂ku
∂xj

∂ωu

∂xj
, (2.72)
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by substituting the relation for the eddy viscosity 4.2. The coefficients of the

production terms are redefined as the model coefficients

γ2 ≡ Cϵ1 − 1, (2.73)

β2 ≡ β∗ (C∗
ϵ2 − 1) , (2.74)

which when substituted into the transformed ϵu equation yields the ωu equation

∂

∂t
(ρ̄ωu) +

∂

∂xj
(ρ̄ũjωu) = γ2P

ωu

ku
− β2ρ̄ω

2
u

+
∂

∂xj

(
(µ+ σϵµt)

∂ωu

∂xj

)
+ 2

ρ̄σω2
ωu

∂ku
∂xj

∂ωu

∂xj
. (2.75)

The (k − ω) PANS model [19] is given as

∂

∂xj
(ρ̄ku) +

∂

∂xj
(ρ̄ũjku) = P − β∗ρ̄kuωu +

∂

∂xj

(
(µ+ σk1µt)

∂ku
∂xj

)
, (2.76)

∂

∂t
(ρ̄ωu) +

∂

∂xj
(ρ̄ũjωu) = γ1P

ωu

ku
− β1ρ̄ω

2
u +

∂

∂xj

(
(µ+ σω1µt)

∂ωu

∂xj

)
, (2.77)

where the model coefficients are defined

26



γ1 ≡ α, (2.78)

β1 ≡ αβ∗
(
1− fk

fϵ

)
+ β

fk
fϵ
, (2.79)

σk1 ≡
1

σkR
, (2.80)

σω1 ≡
1

σωR

fϵ
f 2
k

. (2.81)

There are several constants used to calculate these coefficients, including α = 5/9,

β∗ = 0.09, σkR = 2.0, and σωR = 2.0. Finally, the (k − ϵ) PANS transformed

into ωu form and the (k− ω) PANS are bridged together into the Blended PANS

(BPANS) model. This is done by defining a blending function F

F = tanh arg4, (2.82)

arg = min

(
max

( √
ku

β∗ωuy
,
500µ

ρ̄ωuy2

)
,
4ρ̄σω2ku
CDkωy2

)
, (2.83)

CDkω = max

(
2
ρ̄σω2
ωu

∂ku
∂xj

∂ωu

∂xj
, 10−20

)
, (2.84)
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where CDkω is the cross-diffusion between the two turbulence fields and y is the

distance to the nearest wall. This function is used to blend the coefficients of each

model such that

ψ = Fψ1 + (1− F )ψ2, (2.85)

where each ψ represents the corresponding coefficient from each model. The

blending is done by multiplying the (k−ω) PANS equations by F and the trans-

formed (k − ϵ) PANS equations by (1− F ),

∂

∂xj
(ρ̄ku) +

∂

∂xj
(ρ̄ũjku) = P − β∗ρ̄kuωu +

∂

∂xj

(
(µ+ σkµt)

∂ku
∂xj

)
, (2.86)

∂

∂t
(ρ̄ωu) +

∂

∂xj
(ρ̄ũjωu) = γP

ωu

ku
− βρ̄ω2

u

+
∂

∂xj

(
(µ+ σϵµt)

∂ωu

∂xj

)
+ 2 (1− F )

ρ̄σω
ωu

∂ku
∂xj

∂ωu

∂xj
. (2.87)

This is the final BPANS model, where the model coefficients γ, β, σk, and σω

are blended coefficients. Upon inspection, the form of the BPANS equations is

the same as the SST model with different values for the model coefficients. In

BPANS, they are directly dependent on the values of the filter control parameters

and thus the coefficients must be recalculated prior to a new simulation. This is
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useful, as this model can be implemented into a CFD software that already has

the SST model quite easily [12]—it is only a change of coefficients.
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Chapter 3. Numerical Model

The open-source multi-physics software Stanford University Unstructured

(SU2) [28] is used to setup and solve the numerical model. SU2 is a finite volume

based solver that utilizes a standard edge-based data structure on a dual grid

with vertex-based schemes. The convective and viscous fluxes are evaluated at

the midpoint of an edge. SU2 is developed and maintained by a group of dedicated

individuals from the SU2 Foundation, along with many other contributors on their

Github. There is a large suite of methods available to solve complex multi-physics

problems and the ones used are discussed here.

For viscous, compressible flow, SU2 solves the Favre-Averaged Navier-

Stokes (FANS) equations given in Eq. 2.52, 2.53, and 2.54. The equations are

implemented in a density-based solver in residual form

R(V̄ ) =
∂V̄

∂t
+∇ · F̄ c(V̄ )−∇ · F̄ v(V̄ ,∇V̄ )− Q̄ = 0, (3.1)

where V̄ are the conservative variables, ∇ · F̄ c(V̄ ) are the convective fluxes, and

∇ · F̄ c(V̄ ,∇V̄ ) are the viscous fluxes. The conservative variables
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V̄ =


ρ̄

ρ̄ũi

ρ̄Ẽ


, (3.2)

are the working variables of the solver, while the convective and viscous fluxes

are given as

F̄ c(V ) =


ρ̄ũi

ρ̄ũiũj + p̄δij

ρ̄ũjẼ + p̄ũj


, (3.3)

F̄ v(V,∇V ) =


·
σ̄ij

ũkσ̄kj + q̄j + q̄∗j


, (3.4)

and Q̄ is the source term vector. The convective fluxes are discretized using the

JST [16] central scheme with 0.5 and 0.0 as the second and fourth-order dissipation

coefficients, respectively. The gradients are reconstructed using a nodal Green-

Gauss method and the BPANS model is discretized using an upwind method.

3.1 Simulation Setup

The freestream conditions are set given the crossflow Mach number and

Reynolds number based on the jet diameter
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ReD =
ρ∞U∞D

µ∞
, (3.5)

where ρ∞ is the freestream density, U∞ is the freestream velocity, µ∞ is the

freestream viscosity, and D is the diameter of the jet exit. The target Reynolds

number is ReD = 5.9× 104 and the free stream Mach number is 1.6. The ratio of

densities between the nozzle chamber and the crossflow is ρ0j/ρ∞ = 5.5 and the

ratio of pressures between the nozzle chamber and the crossflow is p0j/p∞ = 8.4.

This results in a jet-to-crossflow momentum flux ratio

J =
ρjU

2
j

ρ∞U2
∞

=
γjpjM

2
j

γ∞p∞M2
∞

(3.6)

of 1.7. The diameter of the jet exit is 4 millimeters. The stagnation pressure

of the jet p0j is 476 kpa, the stagnation temperature of the jet is T0j is 295 K,

and the freestream velocity U∞ is given as 446 m/s. These conditions result in

the freestream viscosity µ∞ = 3.09086× 10−5 kg/(m s), where the viscosity is a

function of temperature according to Sutherland’s law [38], the freestream tem-

perature T∞ = 193.1548 K. The Sutherland coefficient is set to S = 110.4, the

reference viscosity and temperature are set to the respective freestream conditions

µref = µ∞ and Tref = T∞. The domain is assumed to only have air, which has

a ratio of specific heats γ = 1.4, a gas constant R = 287.058 J/(kg K), laminar

Prandtl number Pr = 0.72, and turbulent Prandtl number Prt = 0.90.

It is important to note that the Reynolds number for the experimental data

used in Chapter 4 is ReD = 2.4 × 105, which is four times the Reynolds number
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of the problem setup in this work. This is done due to the computational cost

of setting up high Reynolds number LES. Kawai and Lele [18] used a Reynolds

number 1/10 of the experimental data and still obtained reasonable agreement

of the mean quantities, thus it is assumed that reducing the Reynolds number

should not affect the flow structures and mean quantities of the jet in crossflow.

At the inlet of the jet, the total conditions and direction of the velocity

vector are specified using a total inlet boundary condition. The total pressure and

temperature are specified as 476 kPa and 295 K to match the jet exit conditions

from the experimental data. The crossflow is assigned a supersonic inlet boundary

condition with a constant velocity profile of 446 m/s and a total pressure and

temperature of 56.667 kPa and 193.155 K. The bottom wall surrounding the jet

exit and the walls of the jet are treated as no-slip walls with zero heat flux. The

outlet is set as a pressure outlet with a static pressure of 1 Pa, since setting it to

0 Pa crashes the solver. The top of the domain is set to a freestream condition

and the sides are assigned periodic boundary conditions.

Dual time stepping is the temporal scheme used for the unsteady flow, with

an implicit Euler scheme for the five sub-iterations. An implicit Euler scheme is

also used for the BPANS model. The unsteady simulations are initialized using

a steady solution with the SST model. Starting from this solution, an unsteady

simulation is run until the transient phenomena have settled into a statistically-

steady state. Once that state is reached, the BPANS model is turned on and

run with the scheme and time step previously specified. The time step used is

∆t = 5.575D/U∞ , and is advanced for 1000 time steps. The unsteady results
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are averaged over all 1000 time steps to conduct an analysis of the averaged flow

statistics.

3.2 Computational Mesh

Figure 3.1: Central plane of grid for numerical simulations.

The computational mesh and domain for the numerical simulation of the

high speed JICF problem is shown in Figure 3.1. The origin of the coordinates is

set at the center of the jet exit, with the domain spanning 40D, 20D, and 30D

in the streamwise, wall-normal, and spanwise directions, respectively. These also

correspond to the x, y, and z directions in the domain. In [5] they claim that

preliminary computations show that the domain is large enough such that the

confinement effect of the boundaries is not seen in the flow.

34



Figure 3.2: Grid refinement inside the jet nozzle.

blockMesh [40] is used to generate multi-block, structured grids which

are converted to work with SU2. This is done by reading in the points, faces,

neighbor, and boundary files output by blockMesh, then building the cells and

their connectivity. Since SU2 is an unstructured solver, the order of the points and

cells, as well as their connectivity and the boundary markers, is irrelevant. The

points, cells, connectivity, and boundary markers are then output in the specific

format that is readable by SU2. It is important to note that SU2 has a unique file

format that no other software uses. gmsh [11] is an open-source meshing software

that does have the capability to output in the SU2 format, however, a structured

mesh was desired so the mesh conversion process from blockMesh was approached

instead.

The grid has a total of approximately 6.5 million hexahedral cells. It is

refined within the critical regions of the flow, such as the surface of the flat plate,

the wall of the jet nozzle, and the field near the jet stream. The streamwise

spacing just downstream of the jet is set to ∆x ≈ 0.03D to ensure a fine enough
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Figure 3.3: Refined area of grid near the jet exit.

resolution to analyze the flow structures and is stretched towards the outlet. The

boundary layer on the flat plate is resolved using a stretched layer with 20 cells

with a first cell thickness of 0.000025D. A similar stretched layer is used for the

walls of the jet, with the same first cell thickness and 15 cells instead of 20. These

stretched layers achieve the target nondimensionalized wall distance y+ on the

order of one, and there are a few points within the viscous sublayer (y+ ≤ 5)

to capture the boundary layer profile. Outside of the boundary layer, the wall-

normal cell spacing is set to ∆y ≈ 0.03D and is stretched towards the freestream.

The spanwise spacing is dictated by the angular spacing of cells within jet nozzle,

which is also set to ∆z ≈ 0.03D. The cell spacing in all directions near the jet

exit outside of the boundary layer results in low aspect ratio cells. Within the jet

nozzle, an O-grid is used to achieve the circular geometry with a stretched layer

near the walls, as previously mentioned, and stretched cells near the center of the

nozzle. Zoomed-in views of the grid in both the jet nozzle and the region near

the jet exit are provided in Figure 3.2 and 3.3, respectively.

36



3.3 Filter Control Parameter Estimation

The filter control parameter fk is estimated a-priori to ensure that the

computational mesh can resolve the scales dictated by fk. This is done using the

relation

fk ≥
(
∆

Lt

) 2
3

, (3.7)

where ∆ is the local grid sizing defined as the cube root of the cell volume and

Lt is the local turbulent length scale defined as Lt ≡
√
ku

β∗ωu
. The values of fk are

manually inspected in the regions of interest to determine if the grid resolution is

fine enough for the desired fk value of 0.2. The simulations are run on increasingly

refined grids until the current iteration, which resolves the JICF case with fk =

0.2.
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Chapter 4. Results and Discussion

4.1 Flow Physics

The highly unsteady JICF produces many types of structures that con-

struct the flow physics of this problem. The Q-criterion [15] is used to visualize

these structures and is defined as the second invariant of the velocity gradient

tensor

Q =
1

2

[(
∂ũi
∂xi

)2

− ∂ũi
∂xj

∂ũj
∂xi

]
, (4.1)

Figure 4.1: Numerical schlieren on the central plane (z/D = 0) showing the different
shock structures: 1. bow shock, 2. weak lambda shock, 3. strong lambda shock, 4.
inclined barrel shock, 5. Mach disk, 6. separation bubble.
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where areas with values greater than zero are classified as vortices. Figure 4.1

shows the shock structures of the JICF using a numerical schlieren (magnitude

of the density gradient) and Figure 4.2 shows the vortical structures of the JICF

using iso-surfaces of the Q-criterion.

Figure 4.2: Iso-contours of Q-criterion downstream of jet exit colored by instantaneous
velocity depicting the main vortex structures: 1. barrel shock and Mach disk shear layer
vortices, 2. Kelvin-Helmholtz instability shear layer vortices, 3. CVP.

The crossflow travels from the inlet to the jet exit, where it encounters

the jet as an obstacle and forms a bow shock in front of it. There is also a

recirculation region that forms just upstream of the jet that induces compression

waves, which converge together into a strong separation shock. This shock then

acts as a ramp for the crossflow which creates compression waves that form a

weak separation shock upstream of the strong separation shock. Upon exiting

the nozzle, the sonic jet tries to push through the crossflow and expands creating

an inclined barrel shock with a Mach disk at the end. The fluid that passes

through the barrel shock and Mach disk produces a shear layer, which rolls up
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into a pair of vortices. These vortices detach from the jet and combine with the

other shear layer originating from the Kelvin-Helmholtz instabilities near the jet

exit to form the CVP downstream. This pair of vortices is the dominant flow

structure downstream of the jet, as shown in the left side of Figure 4.2. The

aforementioned flow physics are visualized and labeled in Figure 4.1 and 4.2.

Figure 4.3 shows the contour of the streamwise skin friction coefficient on

the flat plate (bottom wall) of the domain. It is defined

Cf ≡ µw

ρ∞U2
∞

∂ũ

∂y
, (4.2)

where µw is the viscosity near the wall, ũ is the time-averaged streamwise compo-

nent of velocity, ρ∞ is the freestream density, and U∞ is the freestream velocity.

Upon visual inspection of the contour, the skin friction decreases upstream of the

jet due to the separation region from the boundary layer approaching the jet and

interacting with the shock structures. However, the flow becomes stagnant just

upstream of the jet which results in a region with a low skin friction coefficient.

The sides of the jet have a high skin friction coefficient, due to the acceleration of

the crossflow passing by the jet. This region extends downstream, following the

shape of a horseshoe until about x = 3.5D. There is a small region about x = 5D

downstream of the jet that has a higher skin friction coefficient.

Figure 4.4 shows a three-dimensional perspective of the time-averaged

flow field of the JICF. The central plane (left) shows the normalized pressure

contours, the horizontal plane (bottom) shows the Mach contours, and the cross-

plane (right) shows the normalized streamwise velocity contours. Both the central
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Figure 4.3: Streamwise component of the skin friction coefficient in the central plane
on the flat-plate.

and cross-planes also have streamlines projected onto their surfaces to show the

motion of the fluid within those planes. These streamlines show the different

flow physics such as the upstream recirculation region, high pressure just behind

the bow shock and at the upstream near-wall region causing an adverse pressure

gradient. It is this adverse pressure gradient that causes the separation of the

crossflow boundary layer, including a separation shock above and upstream of

the separation bubble. There is also a low-pressure region downstream of the jet,

causing reverse flow and thus a recirculation zone near the wall. The streamlines

on the central plane show that the jet quickly bends due to the barrel shock and

Mach disk. As the flow is turning, there is a source point observed in the near-wall

region which is also found by [25] [26] for an incompressible JICF. This occurs

due to the reattachment of the crossflow after it finishes traveling around the

jet. The cross-plane streamlines show the CVP which is the dominant structure
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Figure 4.4: Three-dimensional perspective of the time-averaged flow field near the jet
exit depicting some flow structures: 1. upstream separation vortex, 2. hovering vortex
just upstream of jet, 3. downstream source point, 4. CVP, 5. separation shock, 6. bow
shock, 7. inclined barrel shock, 8. Mach disk.

downstream of the jet. There is also another pair of vortices near the downstream

wall indicated by the streamlines on the cross-plane.

4.2 Comparison to Experiments

The time-averaged Mach number on the central plane (z/D = 0) of the

domain for BPANS with fk = 0.2 is given in Figure 4.5a and compared to the LES

[5] and experimental [32] data in Figure 4.5b and 4.5c, respectively. Upon close

observation, there is a clear difference between the Mach number distribution of

the boundary layer in the crossflow. This difference is that the BPANS results

have a slightly thicker boundary layer when compared to the LES and experimen-
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(a) fk = 0.2 BPANS

(b) Turbulent inflow refined LES [5]

(c) Experiment [32]

Figure 4.5: Time-averaged Mach number contour in the central plane.

tal results. There is also a slight difference in the shape and inclination angle of

the barrel shock, along with the mach disk. These differences result from the lack

of a fully developed boundary layer in the crossflow inlet, as done in [5] for both

laminar and turbulent cases. Other than this, the BPANS results are qualitatively

similar to the experimental results. Contours of the streamwise velocity in the

central plane are given in Figure 4.6a for BPANS, which is qualitatively similar

to the LES [5] and experimental results [32] in Figure 4.6b and 4.6c, respectively.
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(a) fk = 0.2 BPANS

(b) Turbulent inflow refined LES [5]

(c) Experiment [32]

Figure 4.6: Time-averaged streamwise velocity contour in the central plane.

The distribution of pressure on the flat plate for the JICF is given in Figure

4.7. The BPANS results show good agreement with both the turbulent inflow

refined LES and experimental data. The trajectory of the jet is also studied, which

is defined as the streamline that passes through the center of the jet exit. Figure

4.8 compares the BPANS trajectory against the turbulent inflow refined LES and

experimental data which shows a good agreement. At x/JD = 2 downstream,

BPANS jet trajectory hits a height of y/JD ≈ 1.33 which is slightly shorter than
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Figure 4.7: Time-averaged wall pressure distribution along central plane. The solid
blue line is the fk = 0.2 BPANS data, the dashed red line is the turbulent inflow refined
LES data [5] and the symbols are experimental data [7].

Figure 4.8: Jet trajectory scaled by jet momentum flux ratio. The solid blue line is
the fk = 0.2 BPANS data, the dashed red line is the turbulent inflow refined LES data
[5] and the symbols are experimental data [14].

the LES jet trajectory height of y/JD ≈ 1.42. The BPANS jet trajectory also

has a better agreement with the experimental data until x/JD ≈ 1.0 than the

LES jet trajectory.

The streamwise and wall-normal velocity profiles are extracted at four

locations on the central plane downstream of the jet exit in Figure 4.9: 2D, 3D,

4D, and 5D. The results show good agreement with the experimental data and
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the different LES simulations with laminar and turbulent inflow profiles, along

with a refined grid for the turbulent inflow LES case.

Figure 4.9: Time-averaged velocity profiles at x/D = 2, x/D = 3, x/D = 4, and
x/D = 5. The solid blue line is BPANS data, dot dash green line is the laminar inflow
LES data [5], dotted magenta line is the turbulent inflow LES data [5], the solid red
line is the turbulent inflow refined LES data [5], the filled symbols are experimental
data from [32], and the hollow symbols are LES data from [18].

4.3 Variation of the Filter Control Parameter

The filter control parameter fk is varied to investigate how it affects the

streamwise and wall-normal velocity profiles, along with the Reynolds stress pro-

files, downstream of the jet exit. Figure 4.10 depicts the velocity profiles for the

three different cases. As fk is decreased to 0.2, the trends stay consistent and the

local extrema have better agreement with the experimental [32] and LES data
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[18]. There is a larger deviation between the fk = 0.5 and fk = 0.3333 cases than

the fk = 0.3333 and fk = 0.2 cases, indicating that the fk = 0.3333 case may be

enough to resolve the flow in the area of interest.

Figure 4.10: Time-averaged velocity profiles at x/D = 2, x/D = 3, x/D = 4, and
x/D = 5 for fk of 0.5, 0.3333, and 0.2. The dashed dotted red line is fk = 0.5, the
dashed green line is fk = 0.3333, the solid magenta line is fk = 0.2, the filled symbols
are experimental data from [32], and the hollow symbols are LES data from [18].

47



Chapter 5. Conclusions

The extension of the Blended Partially-Averaged Navier-Stokes (BPANS)

model to variable-density flow has been presented. The new model was derived

from the existing (k−ω) and (k− ϵ) PANS models using the approach of Menter

with the assumption of a variable density. The results of numerical simulations

for the supersonic jet-in-crossflow (JICF) problem were conducted and compared

to LES and experimental data.

The variable-density BPANS model demonstrated the ability to resolve

the main physics of the supersonic JICF problem. The shock structures, shear

layers, and counter-rotating vortex pair (CVP) were visualized and a discussion

was presented about how they dominate the physics of the problem. Variable-

density BPANS also demonstrated the ability to accurately capture the mean

streamwise and wall-normal velocity profiles when compared to higher fidelity

LES and experimental data. The wall pressure on the flat-plate of the domain,

as well as the jet trajectory, are also accurately predicted compared to the LES

and experimental data.

The filter control parameter fk was varied for the supersonic JICF problem.

The value of fk = 0.2 had the best agreement with the LES and experimental

data, but fk = 0.3333 only slightly deviated from the fk = 0.2 curves. As fk was
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lowered, the variable-density BPANS model showed better agreement with the

experimental data near local extrema.
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