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Abstract

AMBIENT TEMPERATURE MODELLING WITH
ECOSTRESS AND PRIVATE WEATHER STATIONS

Gaurav Khatri

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

Computer Science

The University of Alabama in Huntsville

May 2024

This thesis explores the development and application of a novel data archi-

tecture for predicting ambient temperatures across US cities, focusing on integrating

multi-source data i.e., ECOSTRESS land surface temperatures, urban surface proper-

ties, and crowdsourced weather data. The methodology is designed for scalability and

adaptability across different urban regions, employing rigorous data quality control

to enhance prediction accuracy. The validation of this model across diverse urban

settings, demonstrated through rigorous RMSE comparisons and spatial mapping,

validates its superiority over traditional models. Through experiments in diverse cli-

matic conditions in Madison, Wisconsin, and Las Vegas, Nevada, the study assesses

the model’s generalizability and effectiveness in capturing spatio-temporal tempera-

ture variations. This study aims to contribute to urban heat island mitigation and

sustainable urban planning, setting a benchmark for future research in urban clima-

tology.

ii



iii



Acknowledgements

I am truly grateful to everyone who has played a part in bringing this project to

fruition. I want to express my heartfelt thanks to my supervisors, Dr. Huaming Zhang

and Dr. Leiqiu Hu for their invaluable mentorship, unwavering support, and constant

motivation throughout this project. With their vast expertise, immense patience, and

unwavering dedication, they have played a pivotal role in shaping the direction of my

research and guiding me through any obstacles I faced. Without their invaluable

contributions, this study would not have been possible. Their invaluable perspectives

have enriched my understanding and added depth to my research findings. I am truly

grateful for their generosity and willingness to be a part of this project.

I would like to express my sincere gratitude to The Department of Computer

Science for their generous provision of resources, facilities, and infrastructure, which

have greatly contributed to the successful completion of my project.

The accommodating research environment and collaborative atmosphere have

played a crucial role in my achievements. In addition, I would like to extend my

appreciation to my colleagues, friends, and family members for their unwavering

support, encouragement, and understanding. Their constant presence and patience

have been a source of motivation and inspiration throughout my journey.

Finally, I am deeply thankful to the authors, researchers, and scholars whose

previous work has paved the way for my study. Their valuable insights, discoveries,

and contributions have been invaluable in shaping my research.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Background and Related Works . . . . . . . . . . . . . 8

2.1 Supervised Machine Learning . . . . . . . . . . . . . . . . . . 8

2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . 9

v



2.4 Spatial Regression . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Temporal Regression . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Geographically Weighted Regression (GWR) . . . . . . . . . . 12

2.7 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Related Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Dataset and Processing Pipeline . . . . . . . . . . . . . . . . . 20

3.2.1 Data Ingestion Layer . . . . . . . . . . . . . . . . . . . 22

3.2.2 Data Processing Layer . . . . . . . . . . . . . . . . . . 24

3.2.3 Data Modeling / Visualization Layer . . . . . . . . . . 31

Chapter 4. Experiments and Results . . . . . . . . . . . . . . . . 42

4.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Gradient Boosting Regression . . . . . . . . . . . . . . . . . . 48

4.4 XG Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Hybrid Architecture . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 63

vi



Chapter 5. Conclusions and Future Work . . . . . . . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix A. Hourly Results for LasVegas: June . . . . . . . . . . . 73

vii



List of Figures

3.1 Pipeline Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Anomaly Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Outliers Diagram 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Quantile Deviation Diagram . . . . . . . . . . . . . . . . . . . . . 32

3.5 Temperature pattern after Quantile filtering . . . . . . . . . . . . 33

3.6 Random Forest Algorithm . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Sample Output Domain Map for Madison . . . . . . . . . . . . . 41

4.1 Linear Regression: Predicted Vs Actual Temperature . . . . . . . 43

4.2 Linear Regression: Hourly Root Mean Square Error . . . . . . . . 44

4.3 Hourly Deviation in True Temperature . . . . . . . . . . . . . . . 44

4.4 Random Forest: Hourly Root Mean Square Error . . . . . . . . . 46

4.5 Random Forest: Feature Importance Diagram . . . . . . . . . . . 47

4.6 Random Forest: Output Map . . . . . . . . . . . . . . . . . . . . 47

4.7 Gradient Boosting: Hourly Root Mean Square Error . . . . . . . 48

4.8 Gradient Boosting: Feature Importance Diagram . . . . . . . . . 49

4.9 Gradient Boosting: Output Map - 1 am . . . . . . . . . . . . . . . 49

4.10 Gradient Boosting: Output Map - 10 am . . . . . . . . . . . . . 50

4.11 XGB: Output Map - 1 am . . . . . . . . . . . . . . . . . . . . . . 51

4.12 XGB: Output Map - 10 am . . . . . . . . . . . . . . . . . . . . . 52

4.13 Hybrid Training Architecture . . . . . . . . . . . . . . . . . . . . 54

viii



4.14 Hybrid Architecture RMSE . . . . . . . . . . . . . . . . . . . . . 55

4.15 Hybrid Architecture Output - 7 am . . . . . . . . . . . . . . . . . 56

4.16 Hybrid Architecture Output - 9 am . . . . . . . . . . . . . . . . . 57

4.17 Hybrid Architecture Output - 6 pm . . . . . . . . . . . . . . . . . 58

4.18 Hybrid Architecture Zoomed - 7 am . . . . . . . . . . . . . . . . . 59

4.19 Hybrid Architecture Zoomed - 10 am . . . . . . . . . . . . . . . . 60

4.20 Hybrid Architecture Zoomed - 3 pm . . . . . . . . . . . . . . . . . 61

4.21 Neural Network RMSE . . . . . . . . . . . . . . . . . . . . . . . . 64

4.22 Neural Network Output Map . . . . . . . . . . . . . . . . . . . . 65

A.1 Hybrid Architecture Output - 01 am . . . . . . . . . . . . . . . . 73

A.2 Hybrid Architecture Output - 04 am . . . . . . . . . . . . . . . . 74

A.3 Hybrid Architecture Output - 07 am . . . . . . . . . . . . . . . . 75

A.4 Hybrid Architecture Output - 10 am . . . . . . . . . . . . . . . . 76

A.5 Hybrid Architecture Output - 1 pm . . . . . . . . . . . . . . . . . 77

A.6 Hybrid Architecture Output - 4 pm . . . . . . . . . . . . . . . . . 78

A.7 Hybrid Architecture Output - 7 pm . . . . . . . . . . . . . . . . . 79

A.8 Hybrid Architecture Output - 10 pm . . . . . . . . . . . . . . . . 80

ix



List of Tables

3.1 Initial Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Urban Surface Properties . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 LST Dataset Attributes . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Aggregated Data Count : Madison . . . . . . . . . . . . . . . . . 27

4.1 Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



Chapter 1. Introduction

1.1 Background

Understanding and predicting the spatio-temporal variations in the ur-

ban canopy layer is critical for mitigating the adverse effects of urban heat is-

lands (UHIs) and ensuring sustainable urban development. High air temperature

within hot summer months poses significant challenges to human health, energy

consumption, and environmental quality [15]. Global warming has resulted in

higher extreme temperatures worldwide and will likely continue to increase the

extreme temperatures in the future[14]. Such extreme conditions have pronounced

effects on our society such as increased mortality rates, disruptions in energy in-

frastructures, and risk of accidents[32]. Accurately predicting these variations at

higher resolutions enables proactive measures to be taken, such as issuing heat-

wave warnings, implementing urban greening strategies, and optimizing energy

use. This study examines the current advancements in spatio-temporal predic-

tion of urban temperature, focusing on data sources, prediction methods, and key

challenges.

While the rural landscape is dominated by the same homogeneous cover

of vegetation and soil, the urban area has a higher level of both spatial and tem-

poral heterogeneity in the surface properties. This diversity is not only confined
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to structures with different thermal properties, non-absorbent roadways, and in-

termittent green spaces, but it also involves the interaction of energy absorption,

reflection, and re-radiation. Due to this effect, which is called the ”urban heat

island”, the temperature in some areas can be much higher than in the neigh-

boring environments [15]. Also, the ”canyon effect” caused by high buildings

renders heat and reduces airflow which makes the temperature contrast within

the urban canopy worsen[5]. Furthermore, anthropogenic heat sources such as

transportation and industrial processes contribute to elevated urban tempera-

tures. The interplay of these factors, along with complex microclimates within

urban canyons, results in larger and more dynamic temperature variations com-

pared to rural areas [3]. Due to these complex processes and their interactions,

accurately predicting urban temperature at higher resolutions presents significant

challenges.

1.2 Research Problem

Although traditional weather stations are really useful for understanding

large-scale temperature patterns, they lack the complexity to adapt to the high-

resolution needs of urban areas. The accurate depiction of urban temperature

requires the proper modeling of various spatial and temporal properties discussed

above. However, the weather stations are unevenly distributed and situated in

non-representative places such as rooftops and across larger distances, that do

not capture the micro-climate variations within and among the urban settings[6].
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As a result, the continuous field of urban temperature cannot be interpreted from

the limited data points hindering the overall analysis and prediction.

Recent methodologies such as remote sensing provide valuable insights into

surface properties and land use [27], and the use of mobile sensor networks helps

to fill gaps in traditional networks. Through a combination of traditional methods

with cutting-edge technologies, we can get to a place where urban temperature

can be assessed properly for informed planning against heat stress, construction

of heat mitigation strategies, and better public health, particularly in our rapidly

changing cities. In recent years, the availability of low-cost weather devices has

also enabled the prospect of utilizing low-cost crowdsourced data to understand

temperature patterns more effectively. This is especially true for urban areas

with a denser network of such weather devices, commonly called “private weather

stations” (pws). However, such private weather stations (pws) are highly prone to

erroneous data i.e., releasing data from faulty devices, devices inside the buildings,

and devices in unusual places, compromising the overall data quality. Cleaning

these data and enriching it with publicly available satellite observations enables

us to predict ambient temperatures across larger regions accurately.

In conclusion, urban temperature modeling is crucial for us to mitigate

the risks of extreme summer temperatures. Traditional methods often fail to

capture the complex spatial and temporal variations within urban landscapes at

higher resolutions. This presents a unique opportunity to utilize remote sensing

data with surface properties and crowdsourced observations from private weather

stations to enhance urban predictions at higher resolutions.
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1.3 Approach

Building upon established research exploring the relationship between Land

Surface Temperature (LST), near-surface air temperature, and urban surface

characteristics, we propose a novel methodology for spatial-temporal prediction

of temperature at a higher resolution of 70 meters and a temporal resolution of 24

hours, that leverages the synergy of these diverse data sources. We use different

regression and ensemble techniques to model temperature accurately and com-

pare the results. At first, the different data sources are processed and combined

into a single source. Given the nature of pws data, they are subjected to system-

atic filtering criteria described in Chapter 3 as specified in the implementations

of CrowdQC package[7]. Once combined, the observations are aggregated at an

hourly level for each month filtering out the noise from lower temporal resolutions.

Due to the diurnal pattern of temperature observations, hour as a fea-

ture will always have a higher weightage in simple models. Hence, residuals are

calculated for each station by subtracting the hourly mean to remove the undue

influence of the hour parameter in the decision trees, as discussed further in Chap-

ter 3.2. This eliminates the higher feature importance for the hour parameter.

Finally, different models are trained and experimented to find the most optimal

parameters for better scores and improved visual representations.

This overall methodology offers several key advancements, including:

1. Multi-source data integration: We utilize Ecosystsem Spaceborne Ther-

mal Radiometer Experiment on Space Station (ECOSTRESS) LST data,

4



urban surface properties, and crowdsourced weather data to develop com-

prehensive regression models, improving the overall prediction accuracy.

ECOSTRESS is an ongoing scientific experiment, launched in 2018 in col-

laboration with Jet Propulsion Laboratory (JPL) in which a radiometer

mounted on the International Space Station (ISS) measures the temper-

ature of plants growing in specific locations on Earth over a solar year.

Through these observations, the experiment intends to understand global

events such as heat waves and their overall impacts.

2. Scalability and adaptability: The architecture is designed to be scal-

able and adaptable to different regions. By combining crowdsourced data,

ECOSTRESS, and Urban Surface data, all of which are publicly available,

we can build models applicable to any city of choice. The residual tem-

perature calculations in combination with the hybrid training architecture

that we designed enable us to utilize the same architecture across different

regions.

3. Rigorous data quality control: We implement a rigorous quality con-

trol pipeline to ensure the accuracy and reliability of the crowdsourced data

before using them in our models. Although there are several frameworks

such as the CrowdQC package available for crowdsourced data, we provide

experimental verification that those procedures are still not enough and sug-

gest additional quality control mechanisms such as Quantile Based Anomaly

removal for improved robustness.
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4. Diurnal Maps: The architecture aims to generate hourly temperature

maps at the monthly level, providing detailed spatiotemporal information.

5. High-resolution prediction: Our goal is to achieve 70-meter resolution

predictions, significantly higher than typical weather predictions. Although

high-resolution predictions are really important to effectively understand

urban climate conditions, conventional weather stations are expensive to

operate at such levels. LST although easily available at higher resolutions,

by itself is not the single most suitable parameter to estimate air temper-

ature as it deviates significantly during extreme conditions and is also not

available at finer temporal resolutions to incorporate urban climate varia-

tions [32]. Hence, the capacity to incorporate these different data sources

presents interesting applications.

To validate our approach, we will initially focus on two contrasting regions:

Madison, Wisconsin - typically cooler and moist, and Las Vegas, Nevada which

is hot and dry. By testing in these diverse environments, we can assess the

generalizability of our model and its ability to handle different climatic and urban

surface conditions.

1.4 Thesis Organization

The overall thesis is organized into six chapters. Chapter 1 deals with the

primary introduction to the research topic, the necessary background, and the

6



research problem. We discuss a bit about our research approach to summarize

how we aim to solve the research problem and the key advancements of this study.

Chapter 2 gives a brief introduction to the relevant literature review and

significant shortcomings of all the studies done till now, based upon which we can

build more complex models. It also gives an overview of the regression techniques

that we discuss in this research and their mathematical foundations.

Chapter 3 goes into great detail about the technique employed for this

research, including the study area. This research work is an application of Com-

puter Science knowledge in the Earth Science domain (i.e., prediction of ambient

temperature). This chapter provides in-depth explanations of computer science

components such as Regression Algorithms, Machine Learning, Random Forests,

Residual Methods, Neural Networks, Ensemble Methods, etc.

The fourth chapter presents the overall results of the experiments per-

formed across Las Vegas and Madison for the summer months (i.e., June, July,

and August). We implement different algorithms i.e., Linear Regression, Ran-

dom Forest, Gradient Boosting Regression, and Extreme Gradient Boosting to

plot predicted temperature maps for the entire domain and discuss the shortcom-

ings at each step. Then we also discuss a hybrid training procedure that combines

multiple Gradient Boosting to give the best results and explain our reasoning on

why it works much better. We also dive a bit into Artificial Neural Networks

and discuss why additional methods such as Geospatially Weighted Regression

Techniques are not pursued in this study given the nature of our data. Chapter

six finally provides the conclusion of our study and its possible future directions.
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Chapter 2 Background and Related Works

2.1 Supervised Machine Learning

Supervised learning is a fundamental machine learning approach in which

a model learns a mapping between labeled input data and desired outputs. This

”learning” process entails examining labeled training instances, which are made

up of pairs of input data and associated goal values. The model then applies this

information to produce predictions for previously unseen data, to successfully

generalize to new contexts, enabling applications like image recognition, spam

filtering, and house price prediction. While offering interpretability and high

accuracy, supervised learning relies on substantial labeled data, susceptible to

overfitting and inheriting biases if present. Supervised learning can be broadly

categorized into two categories: i.e., classification (predicting categories) and

regression (predicting continuous values).

In our study, the problem of predicting temperature values at unsampled

locations can be modeled as a regression problem. This warrants the use of several

regression algorithms discussed below.
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2.2 Linear Regression

Regression is a supervised learning technique that models the relationship

between a dependent variable (what is predicted) and one or more independent

variables (predictors). This relationship is commonly stated as a continuous func-

tion, which allows us to predict the target value for previously unobserved data

points.

Regression models are classified into several categories, each with its own

set of assumptions and applications. However, the underlying principle for linear

regression, the most popular type, may be described using the following equation:

y = β0 + β1x1 + β2x2 + ...+ βpxp + ϵ, (2.1)

where y is the dependent variable, x1, x2, . . . , xn are the independent variables,

β0, β1, β2, . . . , βn are the regression coefficients, and ϵ is the error term representing

unexplained variability.

2.3 Polynomial Regression

Polynomial regression is a form of regression analysis in which the relation-

ship between the independent variable x and the dependent variable y is modeled

as an n-degree polynomial function [17]. Unlike linear regression, polynomial re-

gression allows us to model nonlinear relationships between the independent and

dependent variables by introducing higher-order terms (e.g., x2, x3, . . . , xn). This

flexibility enables us to capture more complex patterns in the data. Polynomial
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regression can be implemented using various techniques, such as ordinary least

squares (OLS) regression, gradient descent, or polynomial basis functions. The

general equation for polynomial regression is:

y = β0 + β1x+ β2x
2 + . . .+ βnx

n + ε,

where y is the dependent variable, x is the independent variable, β0, β1, . . . , βn

are the coefficients of the polynomial, ε is the error term.

2.4 Spatial Regression

Spatial regression is a statistical technique used to model the relationships

between variables that are observed at different locations in space. It accounts

for the spatial autocorrelation present in the data, which means that nearby ob-

servations tend to be more similar to each other than observations farther apart.

Spatial regression models often incorporate spatial weights matrices to capture the

spatial relationships between observations [4]. These weights matrices specify the

degree of association between observations based on their spatial proximity[20].

Some common methods include Ordinary Least Squares (OLS), Spatial Autore-

gressive (SAR), and Spatial Error Models (SEM). Spatial regression is widely

used in fields such as geography, environmental science, economics, and public

health to analyze spatial data and understand the spatial patterns of phenomena.

The general equation for spatial regression can be written as:

yi = β0 + β1x1i + β2x2i + . . .+ βpxpi + ϵi,
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where yi is the dependent variable at location i, x1i, x2i, . . . , xpi are the indepen-

dent variables at location i, β0, β1, . . . , βp are the coefficients, ϵi is the error term,

which accounts for unexplained variability and spatial autocorrelation.

2.5 Temporal Regression

Temporal regression, similar to spatial regression, is a statistical method

used to model the relationships between variables over time. It accounts for

the temporal autocorrelation present in the data, meaning that observations col-

lected closer in time tend to be more similar to each other than observations

collected further apart. Temporal regression models often incorporate time-series

techniques to account for the sequential nature of the data. Some examples in-

clude autoregressive integrated moving average (ARIMA) models, autoregressive

conditional heteroskedasticity (ARCH) models, and vector autoregression (VAR)

models, among others. The choice of temporal regression model depends on the

specific characteristics of the data, such as trend, seasonality, and stationarity.

The general equation for temporal regression can be expressed as:

yt = β0 + β1x1t + β2x2t + . . .+ βpxpt + ϵt,

where yt represents the dependent variable at time t, x1t, x2t, . . . , xpt are the inde-

pendent variables at time t, β0, β1, . . . , βp are the coefficients, ϵt denotes the error

term, capturing unexplained variability and temporal auto-correlation.
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2.6 Geographically Weighted Regression (GWR)

Geographically Weighted Regression (GWR) is a spatial regression tech-

nique that extends traditional regression by allowing the regression coefficients

to vary locally across space [28]. This means that the relationship between the

dependent and independent variables can differ depending on the location we’re

analyzing. This flexibility makes GWR particularly useful for modeling spatially

non-stationary processes where relationships might change geographically.

GWR estimates separate regression equations for each observation in the

dataset, considering the values of neighboring observations within a defined band-

width. Each neighboring observation contributes to the local regression with a

weight based on its distance from the target observation. Weights typically decline

smoothly with increasing distance, often using a kernel function like Gaussian or

bi-square.

The general form of the GWR model can be expressed as:

yi = β0(ui, vi) +
n∑

j=1

βj(ui, vi)xij + ϵi, (2.2)

where yi is the dependent variable value for observation i, (ui, vi) are the spatial

coordinates of observation i, β0(ui, vi) is the intercept for the local regression at

(ui, vi), βj(ui, vi) are the local regression coefficients for independent variable j at

(ui, vi), xij is the value of independent variable j for observation i, n is the total

number of observations , ϵi is the error term for observation i.
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2.7 Decision Trees

Decision trees are a popular and intuitive machine learning algorithm used

for both classification and regression tasks. They model decisions based on a series

of if-else conditions and are particularly useful for understanding and interpreting

the underlying patterns in the data[19]. The decision tree algorithm recursively

partitions the dataset based on the values of features. It selects the best feature

to split the data at each internal node, aiming to maximize information gain or

minimize impurity. The process continues until certain stopping criteria are met,

such as reaching a maximum depth or having a minimum number of samples in

each node. The ability to model non-linear relationships effectively well enables

Decision Trees to have very high importance in spatial regression[26].

Additionally, there are specific properties of Decision Trees that make them

highly useful for our study. Primarily, the spatial variation in ambient tempera-

ture is highly regulated by a few surface properties such as impervious fraction,

tree fraction, etc., which enables the ability to create robust trees that can easily

depict such relationships[23]. Additionally, it has been observed that some surface

properties such as water fraction will substantially affect Ta only after exceed-

ing a certain threshold[29]. The splitting process in Decision Trees automatically

enables it to recognize these threshold values, thus being able to create general

models for multiple cities.

In our study, we will mostly explore ensemble-based methods which com-

bine multiple Decision Trees, since a single decision tree has stability and capacity
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issues. We implement different ensemble-based methods such as Random Forest,

Gradient Boosting, and Extreme Gradient boosting which aggregate multiple

weak decision trees in different ways, which is discussed in Chapter 3.

2.8 Related Study

Traditionally, weather stations by themselves offer limited spatial coverage,

hindering high-resolution spatio-temporal prediction of temperature in complex

urban environments. Relevant studies such as Li et al. [13] have specifically high-

lighted the need for multiple data sources for proper modeling of such spatiotem-

poral variations. They emphasized the potential of dense networks for capturing

local variations in temperature, providing valuable insights into the heterogene-

ity of the urban thermal environment. Approaches to high-density temperature

monitoring have also been tried, including methods such as vehicle-mounted tem-

perature sensors [21], but these methods are costly to maintain and scale across

regions. These limitations have driven researchers toward adopting alternative

data sources for accurate predictions. Venter et al. [24] and Shandas et al. [22]

acknowledged the value of satellite data (LANDSAT, LiDAR) for high-resolution

temperature mapping, offering a broader spatial perspective and enabling the

identification of large-scale thermal patterns. Land Surface Temperature (LST)

observations have also been used to aid high-resolution studies [18], offering valu-

able information for temperature modeling enabling us to develop more accurate

and comprehensive models. However, LST by itself is not the best parameter to

estimate extreme temperatures as its relationship with air temperature deviates
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significantly during peak summer months [9]. Moreover, satellites have an ob-

servational duration of weeks to months at infrequent time intervals, making it

difficult to have a continuous overview of the LST patterns over a region. This is

where the choice of ECOSTRESS observations improves the quality of the input

data in our study since ECOSTRESS overpasses the same location at different

hours within a few days, resulting in a more comprehensive LST pattern for input

[11].

Additional research has been done by Zumwald et al. [31] to explore the

use of Private Weather Station (PWS) data for urban temperature monitoring,

providing valuable ground-level information but requiring careful consideration

of potential uncertainties and biases inherent in such data. As PWS data are

highly prone to errors, providing a scalable system for data assessment and qual-

ity control is crucial. Significant research has been done by Fenner et al. [7]

to establish a general framework to control the quality of crowdsourced air tem-

perature observations, which we have implemented as a primary quality control

scheme. However, their approach only considers the fact that errors in temper-

ature measurements are independent of other features, which is not always the

case. During our experiments, it became evident that rejecting anomalous tem-

perature observations based on feature values is important to improving model

accuracy as discussed in Chapter 3.

In addition to these data sources, various methods have been researched

over the years for spatio-temporal temperature prediction. Traditional methods

including physical models based on physical principles are highly accepted but
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have the drawback of incurring high computational cost and a coarse resolution,

thus limiting the applicability [12]. These studies are highly dependent on ob-

servations from available weather stations which limits the application of these

studies to only areas with denser observation networks. Statistical interpolation

via methods such as Kriging [16] seemed promising in different domains, yet en-

countered issues in correctly reproducing non-linear spatio-temporal behaviors for

climate applications as discussed by Federico et al. in their study [2].

With the advent of Machine Learning (ML) and cheaper computing power,

several studies have been done to adapt common ML models for spatio-temporal

predictions. Although different models ranging from Multiple Linear Regression

to Decision Trees and Neural Networks have been tried, tree-based models have

usually outperformed the other methodologies in 60% of the studies[26]. Simpler

methods such as Linear Regression are unable to model the complex non-linear

relationship between different urban properties. Neural Networks tend to work

well for temporal predictions, but these models require large training data to

prevent overfitting. Additionally, the lack of long-term historical observations

limits their applicability for a lot of regions that lack such data. However, Decision

Trees and their variations have a great capacity to model non-linear relationships

in spatial predictions effectively given the fact that spatial variation is highly

regulated by few features enabling decision trees to make optimal splits and also

the inherent capacity of decision trees to model the threshold relationship of

temperature and independent features [29] [23].
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However, most of the studies are focused on limited areas and do not pro-

vide sufficient demonstrations of applicability across regions of different geograph-

ical properties and periods [26]. Stenka et al. [25] have extensively focused on

nighttime predictions within Germany combining crowdsourced temperature data

with LST obtained from LANDSAT and geodata to train ML models. However

daytime predictions are extremely important for creating urban mobility policies

to support regions with extreme temperatures. From a Computer Science point

of view, tree-based models tend to underestimate high temperatures observed

during day-time hours and overestimate low temperatures observed during night-

time hours [32][30], resulting in larger error values during certain hours of the

day, resulting in practical difficulty to develop a robust ML model that provides

accurate predictions for different hours of the day across different regions.

Zumwald et al. [32] demonstrated the applicability of machine learning to

generate high-resolution (10 m x 10 m) urban air temperature by using PWS data

with spatial and meteorological predictors for 1 day. Additional works by Fed-

erico et al. [2] have been done to further explore the use of deep learning networks

for spatio-temporal prediction for synthetic datasets and a real-world study that

uses complex meteorological station networks. Although the framework is promis-

ing, the real-world application needs further validation using diverse real-world

environmental datasets.

Our study expands on these recent approaches and provides significant

advances in terms of prediction errors and applicability across diverse geographi-

cal regions. This study provides diurnal predictions at a monthly level providing
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stable results for further study of urban climate conditions such as heat index,

pollutant study, and environmental justice. We build upon the quality control

mechanism for crowdsourced data provided by Fenner et al. [8] and implemented

by recent studies by Zumwald et al. [31] and Federico et al. [2], by incorpo-

rating feature-based anomaly detection to remove extensive outliers, resulting in

improved prediction errors compared to previous studies. We then build and

compare several ensemble models to suggest a novel ensemble architecture for

this application. Based on this model, we produce spatiotemporal diurnal maps

for 70-meter resolution levels at monthly levels for June, July, and August across

multiple years and multiple US cities (i.e., Madison, Las Vegas).
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Chapter 3. Methodology

3.1 Study Area

For this study, we focus on two areas, Madison, Wisconsin (43.07N, -

89.38E), and Las Vegas, Nevada (36.17N, -115.14E). The Madison downtown area

is situated alongside two lakes: Lake Mendota and Lake Monona. This presents

an interesting challenge for the study, as the diurnal temperature pattern of water

and nearby land bodies is expected to show different behaviors during different

hours of the day. For example, during nighttime, water bodies are comparatively

warmer compared to the surrounding landmass. Similarly, during peak after-

noons, water bodies are relatively cooler compared to the landmass. This ensures

that the model will be easily scalable across areas with different surface conditions

and also enables easy visual analysis of the model prediction.

We also make a conscious choice of using LST data from NASA’s Ecosys-

tem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)

observations as it provides detailed temperature images of the Earth’s surface at

a high resolution of 70 meters [11]. Additionally, it is a low-orbit satellite, with

frequent observations at different timestamps, unlike LANDSAT measurements.

This lets us capture the diurnal variations in surface measurements over multiple

years, improving the model capacity.
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Our study will be focused only on peak summer months, i.e., June, July,

and August.

3.2 Dataset and Processing Pipeline

One major component of this study is to build a config-driven scalable data

pipeline that can be migrated across any region within the US to produce a reliable

data source for any location and period of choice. The entire pipeline downloads

the relevant data for the region of choice, processes the data, aggregates it, and

combines it with multiple sources to be ready for final modeling. The overall

workflow of this pipeline is shown in Figure 3.1.

The different layers of this pipeline are described below.
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Figure 3.1: Pipeline Diagram.
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3.2.1 Data Ingestion Layer

In this layer, are primarily focused on gathering required data at a reason-

able speed. The overall working of this layer can be described as follows:

1. Download Tpws Data: At first, we acquire ground-based near-surface

air temperature data (Tpws) for the chosen location and year from Wun-

derground API (eg. Madison, 2021). This data needs to be cleaned for

erroneous stations i.e., missing data, invalid values, etc. For the clean-

ing, we incorporate primary data cleaning based on the methodologies de-

scribed in the Crowd QC+ paper [7] to flag anomalous values based on

gross error,spike-dip test, temporal consistency, and visual check proce-

dures. Additionally, the initial data is in 15-minute frequency, which is

then aggregated on an hourly basis, making the data more robust to outlier

observations. Each observation is identified by Station ID, Date, Times-

tamp, and Temperature value. The data summary from this step is shown

in 3.1.

2. Download ECOSTRESS Data: The pipeline retrieves satellite-based

land surface temperature (LST) data from the ECOSTRESS mission for

the same location and year and stores it as GeoTIFF files. For unifor-

mity, the temperature is converted to Celsius degrees. Values are assigned

as N/A for either the cloudy/cloud-contaminated pixels or missing values.

ECOSTRESS images are known for issues of geometric distortions and some
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Table 3.1: Initial Dataset.

Location Month Total Observations Number of Stations

Madison

June,2021 77967 118

July,2021 85364 121

August,2021 84539 119

Las Vegas

June,2021 113837 169

July,2021 124782 173

August,2021 124753 172

images are not well aligned. Thus, we georeference these images to make

sure that they are well in line with the rest of the images.

3. Download Urban Surface Data: The grid products are then gener-

ated for the urban land surface properties dataset, including, impervious

fraction, tree canopy fraction, land cover categories, building footprint frac-

tion, and building height, for each single city using National Land Cover

Dataset (NLCD)[1] products of 30-meter spatial resolution. Because of the

differences in spatial resolution and grids between ECOSTRESS images and

NLCD products, the NLCD products were aggregated to match the spatial

resolution (70 meters) as well as the grids of ECOSTRESS images. The Ur-

ban Surface Data was aggregated from the NLCD Land Cover dataset, Mi-

crosoft Building Footprints, and Microsoft Building Footprints with Heights

data sources. This results in one GeoTIFF file for each surface property.
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The descriptions of these fields are given in Table 3.2.

Table 3.2: Urban Surface Properties.

Field Name Field Description

Latitude Latitude in degree format

Longitude Longitude in degree format

valueImperviousfraction Impervious fraction of surface

valueTreefraction Tree fraction of surface

valueBuildingheight Height of building if available

valueNearestDistWater Distance to nearest water source

valueWaterfraction Fraction of water surface

valueLandcover Land cover ratio

valueBuildingfraction Building area ration

3.2.2 Data Processing Layer

This stage deals we deal with the further processing of the different data

sources such that they can be easily aggregated into a unified data source that

can be fed to machine learning models. The ground and satellite observations are

handled separately owing to the nature of the data, which is summarized below:
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3.2.2.1 ECOSTRESS Data Processing

The Land Surface Temperature data is arranged such that we have 78

image files for Las Vegas ranging from the year 2019-2022. Similarly, Madison

has 45 such files which accounts for clear surface observations. The files are

then transformed into the same dimensions (681*681 pixels) and aggregated at

an hourly level, which results in 24 image files. This enables us to understand

diurnal pattern variations more easily. Since each of the original files corresponded

to different dates and weather conditions, we calculate the spatial deviation in

the feature and use it to train our models instead of the original LST value. The

calculation is done as follows :

LSTadjusted = LST− LSTmean,

Any missing hour will be interpolated via average such that we have 24

image files for the entire domain, giving us the complete diurnal pattern for Land

Surface Temperature. Each pixel in the image file corresponds to a 70m resolution

and now has the following attributes as described in Table 3.3.
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Table 3.3: LST Dataset Attributes.

Data Attribute Attribute Description

Hour Hour of the day

Latitude Latitude value

Longitude Longitude value

Adjusted LST LST deviation

The Dataset from Table 3.3 will be combined with the dataset from Table

3.2 to give us a comprehensive urban dataset with hourly LST variations.

3.2.2.2 PWS Data Processing

In this step, the pws data is aggregated by station, month, and hour, such

that each station has 24 observations for each month. This is done because the

daily variation in temperature is highly volatile and hence it becomes really dif-

ficult to fine-tune models at a daily level. Hence, using monthly aggregated data

and using it to spatially interpolate temperature for 24 hours creates stable mod-

els. The aggregated datasets obtained at the end of this step can be summarized

below in Table 3.4.

We then create a new feature called ‘closest station temperature’ which

is the average of recorded temperature for 3 closest observation stations for that

timestamp. The introduction of this new feature is a very clever mechanism for us

to integrate spatial relations into the model, which highly weights the temperature
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values of nearby regions. This extra feature is really important for test data, as

the test data will not have any recorded temperature values. Then we utilize a

two-step data cleaning operation in this layer to filter out erroneous data. Finally,

we use the distance tree and the aggregated dataset to prepare training data as

described below.

Table 3.4: Final Data Count.

Location Month Total Observations

Madison

June,2021 2592

July,2021 2616

August,2021 2592

Las Vegas

June,2021 3552

July,2021 3960

August,2021 3888

3.2.2.3 KD Tree Construction

A KD tree, or ”K-dimensional tree,” is a data structure used to organize

points in a K-dimensional space. It is especially useful for doing nearest-neighbor

searches and range queries on multidimensional datasets. The general algorithm

for KD Tree works as follows :

1. Partitioning Space: The first step in building a KD tree involves parti-

tioning the space along alternating axes.
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2. Selecting Splitting Plane: At each level of the tree, a splitting plane is

selected perpendicular to one of the coordinate axes.

3. Dividing Data Once the splitting plane is chosen, the data points are

divided into two subsets based on their positions relative to the splitting

plane

4. Recursive Construction: The process of partitioning and subdividing

continues recursively until each partition contains a small number of points

or until a certain depth of the tree is reached

The total time complexity of building the K-D tree is O(n log n) and the

total complexity of the nearest neighbor search in a K-D tree is O(log n) on

average, where n is the number of points in the tree. This search complexity is a

huge boost for test data, where we need to find the nearest neighbors for 463,761

data points in each domain.

3.2.2.4 Data Cleaning

In this step, we perform exploratory data analysis to analyze the overall

training data pattern for a given location. Given the erroneous nature of pri-

vate weather stations, there could be outlier stations as shown in Figure 3.2 for

Madison. So, we employ a two-step procedure to remove these outliers.

1. Statistical Outlier Detection: In this step, any station whose mean val-

ues differ by more than 20% from the nearest 3 stations will be automatically

removed.
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Figure 3.2: Outliers in Training Data for Madison.

2. Null Value Handling: Any station with more than 35% of missing values

will be removed.

As a result, we get a better temperature distribution after this step as

shown in Figure 2.3.

3.2.2.5 Residual Data Correction

Upon initial data examination, we observed a pronounced diurnal pat-

tern in temperature, consistent with expectations as seen in Figure 3.3. Notably,

specific hours of the day exhibit higher temperatures than others. While this
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Figure 3.3: Removed Outliers in Training Data.

pattern is inherent, it can unduly influence predictive models, leading to inflated

temperature attributions during certain hours. Consequently, temperature maps

derived from such data may inaccurately reflect true temperature distributions.

To mitigate this, we recalibrated our temperature values by subtracting the hourly

mean values corresponding to each station. This correction yielded more accurate

and reliable results in our output images, enhancing the fidelity of our temper-

ature predictions. Furthermore, following the aforementioned data adjustment,

the importance of the hour variable diminished. This refinement enabled us to

employ a unified comprehensive model across different hours, thereby enhancing

the efficiency and effectiveness of our modeling approach.
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Residualhour−i = Temperature(x, y)− Average(Temperature(x, y))

3.2.3 Data Modeling / Visualization Layer

In this section, we present a comprehensive overview of the data visual-

ization and modeling layer, delineating its operational framework and iterative

processes. Initially, the layer undertakes anomaly detection to filter out aberrant

stations, ensuring data integrity and reliability. Following this, machine learning

models are trained on the refined dataset to uncover underlying patterns and

relationships. The details of machine learning models used are presented in the

following sections. Subsequently, the layer generates output maps in the form

of temperature heatmaps based on the model predictions, facilitating visual in-

terpretation of spatial trends. Integral to the process, the Root Mean Square

Error scores and output maps are rigorously validated to assess accuracy and

inform re-calibration if discrepancies arise. This iterative approach ensures con-

tinual refinement and optimization of the models and outputs, with re-calibration

prompting a return to the initial stage to refilter and process until desired results

are obtained.

3.2.3.1 Anomalous Station Filtering

In this step, additional data filtering is performed based on quantile devi-

ations for each of the urban features and temperature values. If we take a closer

look at mean temperature variations across stations based on input features, we

can see that some stations always deviate significantly from other stations as
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shown in Figure 3.4. So we apply a systematic filter that flags such anomalous

stations across all 24 hours, ensuring consistency and comprehensiveness in the

analysis. Specifically, stations exhibiting outlier characteristics outside of [3,97]

quantile ranges for respective hours are identified. This is then aggregated across

all the hours in the present study and the top 4 outliers across all stations are

systematically excluded from the dataset. This meticulous curation process not

only enhances the quality of the dataset but also facilitates more nuanced insights

into temperature variations and environmental influences across the study area.

Based on different experiments, we observed that such data filtering enabled us

to get rid of rural hot spots in the prediction map.

Figure 3.4: Stations Outside Quantile Range: Madison.

As a result, we get an even better representation of the diurnal temperature

across stations, resulting in a robust temperature as shown in Figure 3.5.

32



Figure 3.5: Temperature pattern after Quantile filtering.

3.2.3.2 Training Models

In this step, the output data from quantile filtering will be finally fed into

different machine learning algorithms of choice. The following machine learning

algorithms have been experimented within this study :

3.2.3.2.1 Random Forest

Random Forest is a versatile and powerful machine-learning algorithm that is

widely used for both classification and regression tasks. It belongs to the ensem-

ble learning family, which combines multiple base learners to make predictions.
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Random Forest operates by constructing a multitude of decision trees during the

training phase. Each decision tree is built using a subset of the features and

a bootstrap sample of the training data, introducing randomness to the model.

During prediction, the Random Forest aggregates the predictions of individual

trees to arrive at the final output. This ensemble approach improves the robust-

ness and generalization ability of the model, mitigating overfitting and capturing

complex relationships in the data. Random Forest is known for its flexibility,

scalability, and resistance to overfitting, making it a popular choice for various

machine learning tasks across domains such as finance, healthcare, and natural

language processing. A sample Random Forest is shown in Figure 3.6.

3.2.3.2.2 Gradient Boosting

Gradient Boosting Algorithm (GBM) is a powerful technique for machine learn-

ing, used for both regression and classification tasks. It is an ensemble method

that combines predictions from many weak learners, like decision trees, to create a

stronger learner. Unlike Random Forest, which uses independent trees in parallel,

GBM builds trees sequentially. Each new tree learns from the errors of the pre-

vious trees. GBM minimizes a loss function by adding trees to the ensemble one

at a time, where each tree corrects errors made by prior trees. This is explained

further in Equation 3.7. By repeatedly minimizing the loss function, Gradient

Boosting creates a more accurate learning model.

3.2.3.2.3 eXTreme Gradient Boosting (XGBoost)

XGBoost (Extreme Gradient Boosting) is a powerful and efficient machine

34



Figure 3.6: Random Forest Algorithm.
Source: https://tikz.net/random-forest

learning algorithm used for supervised learning tasks, especially in structured/tabular

data scenarios. It belongs to the family of boosting algorithms, known for their

high predictive performance and ability to handle large datasets. XGBoost it-

eratively builds a strong predictive model by combining the outputs of multiple

weak learners, usually decision trees, to improve predictive accuracy as shown in

Figure 3.8.

The basic algorithm for XGBoost works as follows :
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Figure 3.7: Gradient Boosting Algorithm.
Source: https://www.researchgate.net/publication/351542039

1. Initialize with a constant value: XGBoost starts by initializing the

model with a constant value, usually the mean of the target variable for re-

gression problems, or the logarithm of the odds ratio for binary classification

problems.

2. Iterative tree building: XGBoost builds a series of decision trees se-

quentially, with each subsequent tree trying to correct the errors made by

the previous ones. It uses a gradient-boosting framework where each tree

is fitted on the residuals (the differences between the predicted and actual

values) of the preceding trees.
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Figure 3.8: XGBoost Algorithm.
Source: https://www.researchgate.net/publication/351542039.

3. Optimization of the objective function: XGBoost optimizes a specific

objective function, typically a combination of a loss function and a regu-

larization term, to find the best split points in each decision tree and to

prevent overfitting. The objective function guides the model to minimize

prediction errors and complexity simultaneously.

4. Pruning and regularization: XGBoost incorporates techniques like prun-

ing and regularization to prevent overfitting and improve generalization per-

formance. Regularization parameters control the complexity of individual

trees and the overall ensemble, helping to achieve a balance between bias

and variance.
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5. Gradient descent optimization: XGBoost uses a gradient descent op-

timization algorithm to minimize the objective function iteratively. It up-

dates the model parameters in the direction that reduces the value of the

objective function, gradually converging towards the optimal solution.

Overall, XGBoost’s ability to handle complex interactions, deal with miss-

ing values, and optimize computational efficiency makes it a popular choice for

a wide range of machine learning tasks, including classification, regression, and

ranking problems. It has become a standard tool in many data science compe-

titions and real-world applications due to its exceptional performance and scala-

bility.

3.2.3.2.4 Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models inspired by the

structure and function of biological neural networks in the human brain. ANNs

consist of interconnected nodes, called neurons, organized in layers. Each neuron

performs a simple computation, and the network as a whole can learn complex

patterns and relationships from data through a process called training.

Let’s denote the input to the neural network as x, and the output as ŷ.

The neural network consists of multiple layers, including an input layer, one or

more hidden layers, and an output layer. Each layer l contains n[l] neurons, and

the output of neuron j in layer l is denoted as a
[l]
j .

The computation in each neuron is represented by the following equations:
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j = g(z

[l]
j ),

where w
[l]
ij is the weight connecting neuron i in layer l − 1 to neuron j in layer l,

b
[l]
j is the bias of neuron j in layer l, and g(·) is the activation function.

The output of the neural network is computed as ŷ = a
[L]
1 , where L is the

index of the output layer.

The training of neural networks is typically performed using an algorithm

called backpropagation, which involves the following steps:

1. Forward Propagation: Compute the output of the network for a given

input by propagating the input forward through the network.

2. Compute Loss: Calculate the difference between the predicted output ŷ

and the actual output y, using a suitable loss function.

3. Backward Propagation: Compute the gradients of the loss function with

respect to the weights and biases of the network using the chain rule of

calculus.

4. Update Parameters: Update the weights and biases of the network in

the opposite direction of the gradients to minimize the loss function using

optimization algorithms such as gradient descent.
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5. Repeat: Repeat the process with different input samples until the network

converges to a satisfactory solution.

The success of artificial neural networks in various applications, includ-

ing image recognition, natural language processing, and pattern recognition, has

made them one of the most widely used machine learning techniques today.

3.2.3.3 Preparing Raster Outputs

Once the model is trained, the goal is to predict the temperature for each

pixel of size 70 meters in the entire domain. Since our output image resolution is

set at 681*681 pixels, this accounts for a total of 463,761 predictions. We generate

one such image for each hour, resulting in 24 images of size 681*681 pixels. This

is accomplished in two steps. At first, the visualization layer creates a prediction

table for each unique latitude and longitude value of the entire domain. Once

the table is calculated, we create an empty image array of required dimensions.

Then the entire prediction matrix will be mapped to each pixel in the map one

by one. Once the pixel mapping is completed, the final output map is plotted as

in Figure 3.9.
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Figure 3.9: Sample Output Domain Map for Madison.
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Chapter 4. Experiments and Results

In this section, we provide a complete comparative analysis of various ma-

chine learning models used in our study to predict temperature values. Each

model was rigorously trained and evaluated on the monthly aggregated dataset.

Except as otherwise stated, the results reported herein are specific to Madison

City in June 2021. Additional thoughts and deductions are given in the appendix

section. Each model’s performance was evaluated using the Root Mean Square

Error (RMSE), which provided crucial insights into its effectiveness and applica-

bility within the context of our research.

The standard training procedure for all the algorithms tested works as

follows :

1. Fetch aggregated training data for a given location, month, and year.

2. Split the dataset for training and testing in a 4:1 ratio. Furthermore, the

train data would be split for cross-validation. Additionally, for different

algorithms, the train-test split is done with the same random seed for con-

sistent result comparisons.

3. Plot the RMSE diagram, average temperature diagram, and feature impor-

tance diagram (if available) and readjust the data processing pipeline based

on this.
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4. Run predictions for the entire domain and visualize the raster diagrams for

24 hours for a visual check on the quality of results.

4.1 Linear Regression

We use the aggregated dataset to construct a simple Linear Regression

model to act as a baseline. This would give us a good starting point before

approaching more complex methods. The average RMSE score is 0.72. The

results of this step can be summarized in Fig 4.1 and Fig 4.2.

Figure 4.1: Linear Regression: Predicted Vs Actual Temperature.
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Figure 4.2: Linear Regression: Hourly Root Mean Square Error.

Figure 4.3: Hourly Deviation in True Temperature.
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From Figure 4.2 it is evident that daytime hours have a higher error score

on average. To confirm that this is not a modeling issue, we plotted the standard

deviation in temperature for each hour as in Figure 4.3, which validates that the

true temperature for the Madison region itself has a higher deviation in peak

daytime hours.

4.2 Random Forest

In this step, we proceed with further experimentation on Random Forest.

It is evident from the findings presented by Han Wang et al. [26] that tree-

based models such as Random Forest work well with spatial interpolation. As

expected we get a much better RMSE value as shown in 4.4. If we look at the

feature importance plot in Figure 4.5, we can see that features such as Impervious

fraction, tree fraction, and closest station temperature have a higher impact on

prediction values as expected.
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Figure 4.4: Random Forest: Hourly Root Mean Square Error.

If we look at the feature importance plot in Figure 4.5, we can see that

features such as Impervious fraction, tree fraction, and closest station tempera-

ture have a higher impact on prediction values as expected. Similarly, as expected

from our Residual Temperature design, hour as a feature has a weaker impact as

discussed in Section 3.2. However, the random forest predictions fail to incorpo-

rate the spatial patterns of temperature when we look at the generated domain

map in Figure 4.6. Ideally during the night, the relative temperature of water

bodies is supposed to be warmer compared to the landmass, which is not observed

in this case.
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Figure 4.5: Random Forest: Feature Importance Diagram.

Figure 4.6: Random Forest: Output Map.
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4.3 Gradient Boosting Regression

Gradient Boosting is a type of ensemble learning method that combines

the predictions of several weak learners, typically decision trees, to create a strong

learner. Unlike Random Forest, this model builds upon the previous trees and

corrects the errors at each step, enabling the models to capture complex patterns

in the data.

The overall RMSE, feature importance values, and output map are shown

in Figure 4.7, 4.8, and 4.9 respectively.

Figure 4.7: Gradient Boosting: Hourly Root Mean Square Error.
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Figure 4.8: Gradient Boosting: Feature Importance Diagram.

Figure 4.9: Gradient Boosting: Output Map - 1 am.
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Figure 4.10: Gradient Boosting: Output Map - 10 am.

If we analyze the pictures in Figure 4.9 and 4.10, we can see that although

the land-water temperature contrast is perfectly captured for Gradient boosting,

certain hours around 8-11 am have a lot of hotspots in rural areas. This marks

possible areas for improvement and alternative architectures as proposed in the

following sections.
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4.4 XG Boost

XGBoost, short for Extreme Gradient Boosting, is a highly efficient and

scalable implementation of gradient boosting. It builds upon the principles of

gradient boosting by employing a more regularized model and enhancing its per-

formance through parallel computing.

Figure 4.11: XGB: Output Map - 1 am.
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Figure 4.12: XGB: Output Map - 10 am.

Similar to Gradient Boosting, XGBoost iteratively improves the perfor-

mance of weak learners to create a robust predictive model. The hourly RMSE

errors for XGBoost are comparable to Gradient Boosting. However, from the

generated domain maps in Figure 4.11, and Figure 4.12, we can see that this algo-

rithm is regularizing the pixels with higher temperatures to remove the hotspots.

However, this causes an undue influence on the relative temperature difference of

landmass and water bodies which is specifically prominent during night hours.
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4.5 Hybrid Architecture

From multiple experiments on GB and XGB variations, it was evident

that a single model doesn’t work perfectly for all 24 hours. It was also evident in

the findings of Hjort et al. [10] for spatial predictions that the same tree models

performed differently based on the period. Given the nature of the results, it

is easy to infer that the models are either being highly regularized, resulting in

loss of warm signals in the domain map such as Figure 4.11, or overfitting and

resulting in significant rural hotspots as seen in Figure 4.10. Overestimation of

low temperatures and underestimation of high temperatures have also been a

known issue with tree-based models as reported in several studies [32]. Similarly,

the different data filtering mechanisms during our ingestion and processing layer

also act as external regularizers, further explaining the possible reasons why the

XGB models are underestimating warmer surfaces.

Taking all of this into account, we created a new architecture as shown

in Figure 4.13. We propose this architecture based on the assumption that the

regularized Gradient Boosting (with filtered data) will penalize the hotspots. In

contrast, the unregularized Gradient Boosting will accurately map the water sur-

face temperature. As a result, the average model should perform well. We actively

refrain from using more than two models as the ensemble approach that averages

multiple base models unintentionally removes sharp signals [26]. This vastly im-

proves the scalability of the entire pipeline and enables us to easily utilize this

architecture for different regions and different periods shown in the Appendix.
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Figure 4.13: Hybrid Training Architecture.
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The overall results of this novel approach can be summarized with the

overall RMSE plot and domain map, which are shown in Figure 4.14 and the

corresponding domain plots.

Figure 4.14: Hybrid GB: Hourly Root Mean Square Error.
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Figure 4.15: Hybrid: Output Map - 7 am.
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Figure 4.16: Hybrid: Output Map - 9 am.
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Figure 4.17: Hybrid: Output Map - 6 pm.
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Figure 4.18: Hybrid: Zoomed Map - 7 am.
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Figure 4.19: Hybrid: Zoomed Map - 10 am.
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Figure 4.20: Hybrid: Zoomed Map - 3 pm.
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A comprehensive comparison of RMSE values using this hybrid approach

for the Years 2021 and 2022, for the Las Vegas and Madison Region is shown in

Figure 4.1. Further results for the Las Vegas region and other months of Madison

are available in the Appendix Section.

Table 4.1: Result Summary.

Location Year Month RMSE Mean RMSE Max RMSE Min

Madison 2021 June 0.632641 1.20058 0.367665

Madison 2021 July 0.495472 0.874031 0.312791

Madison 2021 August 0.594227 1.014628 0.350095

Madison 2022 June 0.627906 1.103264 0.33696

Madison 2022 July 0.509939 0.898639 0.35196

Madison 2022 August 0.590122 0.987345 0.328213

LasVegas 2021 June 0.911951 1.523782 0.59236

LasVegas 2021 July 0.864852 1.471548 0.468812

LasVegas 2021 August 0.853442 1.386684 0.597742

LasVegas 2022 June 0.978681 1.335064 0.671556

LasVegas 2022 July 0.940272 1.426065 0.621941

LasVegas 2022 August 0.846949 1.337896 0.560355
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In the summary paper by Wang et al. [26], it was seen that the average

mean RMSE at hourly scale is 1.75◦C, with the mean RMSE being 1.20◦C for all

models for 10-100m resolution level. From Table 4.1, we can see that our mean

RMSE is always less than 1◦C for all of the regions across multiple years and

months. This proves that the architecture we developed is scalable across regions

and beats the benchmark.

4.6 Artificial Neural Networks

At first, GridSearch and Bayesian Hyperparameter search strategies were

completed to find the optimal number of hidden layers and neurons per layer, re-

sulting in a Deep Neural Network of size [20,30,35,15]. The overall RMSE values

were comparable to the previous results as shown in Figure 4.21. However, the

domain raster images for daytime hours lacked a lot of visible clarity achieved

by previous methods and the nighttime temperature patterns for the water sur-

face also showed contradicting patterns as shown in Figure 4.22. Additionally,

the overall difficulty of searching for optimal hyperparameters compared to other

methods adds an extra layer of complexity to generating output images. The

complexity can be inferred from the fact that a good RMSE doesn’t equate to

a good domain image, based on our previous experiments. Hence, we need to

sample output domain images at multiple iterations within the solution space for

each hour, which makes it complicated. Hence, the hybrid Gradient boosting ap-

proach can be established as the best-performing model by comparison. Previous
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studies also point to the fact that tree-based models are highly favored in spatial

predictions compared to neural networks [26].

Figure 4.21: RMSE values for Neural Networks.
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Figure 4.22: Neural Network: Output Map - 2 am.
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Chapter 5. Conclusions and Future Work

The research presented in this thesis demonstrates the feasibility and ef-

fectiveness of using a comprehensive, multi-source data integration approach for

ambient temperature prediction for the diurnal map in urban environments for

70-meter resolution levels at monthly levels for June, July, and August across

multiple years and multiple US cities (i.e., Madison and Las Vegas). The find-

ings indicate that the proposed data architecture, coupled with anomaly removal

and machine learning models, significantly improves the accuracy of temperature

predictions compared to previous studies. We compared different ML algorithms

and found Gradient Boosting architecture to be the best model with a mean

RMSE of 0.58◦C for the Madison region and 1.89◦C for the Las Vegas Region,

which is significantly better than the previous studies for similar resolution levels.

This improvement in error scores can be attributed to our extensive data clean-

ing mechanism, choice of ECOSTRESS-based LST observations, and the hybrid

model architecture that we use for modeling. Additionally, the faster compu-

tational speed of tree-based models presents a strong case for their favorability

across different regions, compared to neural networks which are computation-

ally more expensive. The feature importances of urban surface properties such

as impervious and tree-fraction were relatively higher, indicating the possibil-
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ity of experimenting with more spatial properties as input features. LST was

lower in the feature ranking as expected, verifying the underlying assumption

that it is not the strongest contributor to ambient temperature as mentioned in

the previous studies. Additionally, the higher ranking of our feature-engineered

variable - ”Closest Station Temperature” indicates that there is a good possibility

of improving further by including more geospatially relevant features. There are

also additional opportunities to optimize the overall method by combining other

sources of data and further research on geospatial methods such as Geospatial Re-

gression, Geospatial weighted Neural Networks, and Deep Learning algorithms.

We briefly explored the possibility of implementing Geospatial Neural Networks,

however, the lack of well-tested packages in Python hindered further progress

given the timeline, which can be another significant research contribution in this

domain.

The study’s success in diverse regions i.e., Madison and Las Vegas under-

scores the potential applicability across various urban settings, offering valuable

insights for urban climate studies, heatwave prediction, and urban planning strate-

gies. This research paves the way for more precise and reliable urban temperature

modeling and provides a scalable framework that can be adapted to diverse re-

gions. Future extensions could include combining the results of this study with

other spatial predictions such as pollution, moisture, heat index, etc. to get a

complete picture of urban climate conditions. The high-resolution domain maps

could be used in conjunction with socio-economic data for urban regions to ex-
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pand further into the domain of environmental justice studies and understand

how vulnerable communities are affected by extreme climatic conditions.
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Appendix A. Hourly Results for LasVegas: June

Figure A.1: Hybrid: Output Map - 01 am.
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Figure A.2: Hybrid: Output Map - 04 am.
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Figure A.3: Hybrid: Output Map - 07 am.
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Figure A.4: Hybrid: Output Map - 10 am.

76



Figure A.5: Hybrid: Output Map - 1 pm.
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Figure A.6: Hybrid: Output Map - 4 pm.
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Figure A.7: Hybrid: Output Map - 7 pm.
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Figure A.8: Hybrid: Output Map - 10 pm.
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