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Abstract

INTERLACING UNSTRUCTURED DATA WITH DEEP
NEURAL NETS FOR PREDICTING PERVIOUS AND

IMPERVIOUS LAND COVER TYPES

Srivani Athmakur

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

Computer Science

The University of Alabama in Huntsville

May 2024

This research delves into the intricate task of delineating land cover types in

Tallahassee-Leon County, emphasizing the need for detailed granularity beyond ex-

isting classification systems. Utilizing cutting-edge GIS [5] data, the study harnesses

the power of deep learning algorithms, including U-net [13], UNetPlusPlus [17], FPN-

net [7], and DeepLabV3Plus [3]. A unique approach, ”Interlacing Unstructured Data

with Deep Neural Nets,” integrates shapefiles and Tiff images to enhance classifica-

tion metrics such as mean intersection over union, pixel accuracy, and loss functions.

The research aspires to significantly improve the precision of land cover classifica-

tion, holding implications for urban planning and environmental management. By

innovatively integrating unstructured data, the study aims to offer valuable insights

and tools for informed decision-making, contributing to urban development and en-

vironmental sustainability in Tallahassee-Leon County. The expected outcomes of

this research carry profound implications for advancing our understanding of urban

landscapes and fostering sustainable development practices.
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Chapter 1. Introduction

In the era of burgeoning technologies, the potential for transformative ad-

vancements through deep learning is undeniable. However, as we embark on

the challenge of land cover classification in Tallahassee-Leon County, a complex

dilemma surfaces — the inherent imbalance within the datasets. How do we ef-

fectively navigate the intricate landscape, grappling not only with the delicate

balance between impervious and pervious surfaces but also with the enigma pre-

sented by unlabeled or undefined areas?

Conventional approaches to land cover classification may falter when faced

with the nuanced distinctions between impervious, pervious, and undefined sur-

faces. The challenge lies not only in leveraging growing technologies but also in

formulating a nuanced strategy to address the intricate dance of unbalanced data.

How can we ensure that our models accurately discern between urban structures

and natural landscapes, especially when confronted with areas that defy easy

categorization or lack definitive labels?

This chapter transcends a mere exploration of cutting-edge technologies

such as deep learning [6] enhancements and neural networks. It delves into the

intricacies of imbalanced data landscapes, where impervious, pervious, and unde-

fined elements coalesce. My aim is twofold: to refine the precision of land cover
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classification and to disentangle the complexities introduced by regions that defy

clear delineation. As we advance, our objective crystallizes: to deepen our under-

standing of the local terrain, thereby contributing to the blueprint of sustainable

urban development and resource management.
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Chapter 2. Contextualizing the Landscape

2.1 Navigating Unbalanced Land Cover Data through Advanced Geospa-

tial Techniques

To navigate the intricate landscape of Tallahassee-Leon County’s land

cover, we turn to an arsenal of cutting-edge technologies and a wealth of geospa-

tial data. The Geographic Information System (GIS) [5] datasets at our disposal,

including Shapefiles and Tiff images, serve as the cornerstone of our exploration.

These datasets are not just collections of pixels and vectors; they are a digital

representation of the county’s diverse topography and land cover features.

The richness of our data is derived from a regularly updated LiDAR and

digital orthophotography product, stemming from source imagery captured by a

Trimble TAC80 multispectral scanner and LAS data acquired by a Leica ALS50

Phase 2+ LiDAR sensor during a window from January 29, 2012, to February 12,

2012. This temporal snapshot ensures that our dataset encapsulates the dynamic

nature of the landscape during that period.

The purpose behind compiling such a comprehensive dataset is clear:

Tallahassee-Leon County’s Geographic Information System (TLCGIS) consis-

tently utilizes digital orthophotos and planimetric/hydrographic/topographic data.

This application extends across a spectrum of functions, from supporting regula-
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tory processes to aiding in land management and acquisition, as well as facilitating

planning, engineering, and habitat restoration projects.

As we embark on the journey of land cover classification, the robustness

of our dataset becomes a catalyst for our methodologies. How can we leverage

the intricate details captured by LiDAR and multispectral scanners to refine our

classification models? How do we harness the power of Tiff images to unravel the

complexities of impervious, pervious, and undefined areas? In the chapters that

follow, we delve into the intricacies of our geospatial data, aiming not only to

classify land cover accurately but also to glean invaluable insights for sustainable

urban development and resource management.

2.2 Understanding the Geospatial Framework

Our exploration into Tallahassee-Leon County’s land cover intricacies is

anchored in a robust geospatial framework. At the heart of this framework lies

a meticulously designed grid system, a structured amalgamation of 200 rows and

540 columns. Each cell, measuring 5000 by 5000 feet, serves as the elemental

building block, providing a standardized approach for organizing data collected

through orthophotography, LiDAR, and various mapping projects.

Stretching across the panhandle of Florida, this expansive grid encapsu-

lates the northern peninsula and extends its reach southward to include Levy

and Marion Counties. Its influence doesn’t stop at the shoreline, as it boldly

extends into the Gulf of Mexico and the Atlantic Ocean, facilitating the mapping

of underwater topography through bathymetric analysis.
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Figure 2.1: GIS and Orthoimage Data of Tallahassee [2012-2013].

Aligned with precision, the grid cells follow the even multiples of 5000-

foot State Plane North Northings and Eastings, ensuring ease of use in geospatial

analyses. The uniqueness of each cell is encapsulated in an identifier, a sequen-

tial numbering system that initiates at 1 in the northwest corner and gracefully

concludes at 108,000 in the southeast corner. The identifiers progress incremen-

tally from west to east within each row, with the westernmost cell marking the

successor to the easternmost cell of the preceding row.
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This grid is not just a spatial arrangement; it’s a critical tool that tran-

scends geographic boundaries. Its intentional extension beyond the region typ-

ically defined by the State Plane North projection enables its utilization by re-

gional agencies, such as water management districts. Furthermore, it acts as a

common indexing scheme for projects within Florida, fostering improved coordi-

nation among state, regional, and local governments.

From the entire grid, I have selected the data of Tallahassee-Leon County

(Florida).

Figure 2.2: GIS and Orthoimage Data of Tallahassee-Leon County [2024].

2.3 Geographic Information System (GIS) Data and Coordinate Ref-

erence System

The accuracy and precision of spatial analysis heavily rely on the appro-

priate representation of geographic data. In our study, we employed Geographic

Information System (GIS) [4] datasets, including Shapefiles and TIFF images, to

capture the land cover types in Tallahassee-Leon County. The foundation of our

spatial data analysis lies in a defined Coordinate Reference System (CRS) that

ensures consistent and accurate spatial relationships.
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2.3.1 Coordinate Reference System (CRS)

The spatial data in our study adhere to the NAD 1983 HARN StatePlane

Florida North FIPS 0903 Feet coordinate reference system. This system utilizes

the Lambert Conformal Conic projection with parameters specifying the datum,

spheroid, central meridian, standard parallels, latitude of origin, and units of

measurement. The key components of the CRS [15] are as follows:

• Datum: North American Datum 1983 with High Accuracy Reference Net-

work (HARN) adjustment

• Spheroid: Geodetic Reference System 1980 (GRS 1980) with a semi-major

axis of 6378137.0 and inverse flattening of 298.257222101

• Projection: Lambert Conformal Conic

• Central Meridian: -84.5 degrees

• Standard Parallels: 30.75 and 29.5833333333333 degrees

• Latitude of Origin: 29.0 degrees

• False Easting: 1968500.0 feet

• False Northing: 0.0 feet

• Unit: US survey foot
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2.3.2 CRS Explanation

CRS provides accurate and consistent spatial representation for our land

cover classification and analysis in the Tallahassee-Leon County region. Under-

standing and adhering to the defined CRS [15] is crucial for maintaining the

integrity of spatial relationships and ensuring the reliability of my findings.

2.4 Comprehensive Metadata Overview: Spatial Attributes, Subtypes,

and Feature Characteristics

In the given metadata, the dataset includes information about geographi-

cal features with attributes such as ”Shape Area” and ”Shape Length,” indicating

the area and length of each shape, respectively. The dataset is categorized into

various subtypes, each representing a different land use or feature type. These

subtypes, such as ”OPEN LAND,” ”BUILDING,” ”UNFINISHED-BUILDING,”

”RUIN,” ”SIDEWALK,” and others, are associated with specific codes and ad-

ditional attributes defining impervious characteristics, including type, DXF layer

[16] name, and surface type. Additionally, the dataset contains an attribute

labeled ”ORIG FID” with integer values. Notably, there are subtypes like ”WA-

TERBODY,” ”PAVED ROAD OVER BRIDGE,” each with its own set of associ-

ated attributes. This metadata provides a comprehensive overview of the spatial

and categorical characteristics of the dataset, facilitating the interpretation and

analysis of geographic features in a GIS [4] [5] context.
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Information of objectID with the label information which connects with

x,y, width, and Height values of ObjectID

2.5 A Symphony of Shapefiles and Tiff Images

In our dataset, a comprehensive geospatial ensemble takes the form of

shapefiles, each comprising a set of files (.shp, .shx, .dbf, .prj, and .cpg). The

first four files collectively encapsulate both spatial and attribute data of various

geographic features, while the last one, .cpg, ensures the accurate encoding of

attribute data characteristics.

Shapefiles, the backbone of our vector data, elegantly store the trifecta of

location, shape, and attributes of geographic features. Their versatile geometry

can seamlessly represent points, lines, or polygons, accommodating the diverse

spectrum of spatial features.

Accompanying these shapefiles are Tiff images (Tagged Image File For-

mat), serving as the custodians of raster data in GIS applications. These images

boast a resolution of 10000x10000, and each comprises one or more bands repre-

senting distinct spectral channels. This feature makes Tiff images ideal for storing

and conveying geospatial imagery, including satellite imagery, aerial photographs,

and other raster data.

Data preprocessing, I began by meticulously selecting distinct featured

images from the Tiff image dataset. The dimensions of each image were revealed

to be an impressive 10000x10000 resolution. Leveraging the valuable information

stored in the .dbf file, which neatly organizes county data through OBJECTID,
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we proceeded to crop the data of a specific image. This extracted data was

then judiciously labeled based on the SURFACE attribute, distinguishing between

pervious and impervious surfaces. The intricate layers of geospatial data reveal

the symbiotic relationship between shapefiles and Tiff images, and demonstrate

the meticulous preprocessing steps taken to derive meaningful insights from this

rich dataset.”

Utilizing the insights derived from the shapefile data, I precisely extracted

the region of interest aligned with the Tiff image. Employing this curated subset,

I seamlessly overlaid the map image onto Folium, a dynamic mapping library,

facilitating a meticulous cross-verification process. The subsequent representation

encapsulates the Tiff image’s detailed information, meticulously annotated with

associated labels. This integrative approach not only enhances the accuracy of

our geospatial analyses but also provides a visually comprehensive understanding

of the labeled features within the context of the broader geographic landscape.
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Figure 2.3: Information of x,y, width, and Height along with object ID [2024].
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Figure 2.4: Information of objectID with the label info [2024].

Figure 2.5: Geometry of polygon values of the Image [2024].
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Figure 2.6: Geometry of polygon values of the Image [2024].
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Chapter 3. Geospatial Data Integration and Preprocessing

3.1 From Pixel Unveil to Interactive Maps

In the quest for comprehensive geospatial insights, I embarked on a mul-

tifaceted journey, integrating the OBJECTID, TYPE, Shape Area, and Shape

Length from the shapefile to visualize the polygon shapes of each unique OB-

JECTID. Armed with a Tiff image boasting a resolution of 10000x10000 pixels

and the accompanying shapefile, I delved into the meticulous task of pixel-by-pixel

examination and coordination.

With precision, I meticulously extracted pixel values and x, and y points,

creating a mosaic of 125 Excel sheets, each containing 8,00,000 cells, meticulously

covering the vast expanse of the Tiff image. The pixel coordinates danced across

the sheets, illuminating the intricate details of the geospatial landscape.

Harnessing the power of the folium library, I transformed the abstract

data into an interactive symphony of maps, visually rendering each block of the

Tiff image. This interactive masterpiece allowed for a nuanced comparison and

verification of the accuracy of the county’s data.

The geographical coordinates of the image corners became the key to un-

locking the spatial puzzle. Calculating Latitude and Longitude through a meticu-

lous formula involving minimum latitude, maximum latitude, minimum longitude,

14



maximum longitude, and the dimensions of the image, I bridged the gap between

pixel coordinates and real-world geography.

Venturing into the realm of image manipulation, I implemented a masking

technique, using shapefile data to create masks on the Tiff image. With each

polygon and its four corners intricately connecting in the dance of element-wise

multiplication, the masks unfolded the true essence of the geospatial landscape.

Breaking down the Tiff input image into smaller sub-images, I harnessed

Python’s prowess to save them individually, each bearing a unique geographic

fingerprint. The marriage of geographic coordinates and label information birthed

a matrix representation of the image, a visual symphony of data and imagery.

In the pursuit of accuracy amid the greenery and shadows, I honed the

focus on relevant image portions, subjecting them to meticulous scrutiny. The

intricate dance of data and images unfolded, as each pixel found its place in the

grand mosaic of geospatial exploration.

3.1.1 Google Earth Pro’s Image Loading Odyssey

Embarking on the comprehensive exploration of geospatial data through

Google Earth Pro unravels a panorama enriched with high-resolution satellite im-

agery, intricate 3D terrains, and interactive maps. However, the task of loading

considerable TIFF images within this sophisticated platform poses intricate chal-

lenges, necessitating the allocation of substantial system resources. The intricate

process of loading high-resolution TIFF images entails the judicious utilization

of memory resources by Google Earth Pro, a critical aspect of rendering detailed

15



Figure 3.1: Google Earth Pro view of the entire labeled data [2024].

imagery accurately. Notably, this process grapples with prolonged loading times,

particularly when confronted with images of considerable dimensions, exempli-

fied by dimensions such as 10000x10000 pixels. The efficiency of this operation

is intricately linked to the computational prowess and available Random Access

Memory (RAM) of the host system, underscoring the complex interplay of hard-

ware capabilities in the face of demanding geospatial data requirements.
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Figure 3.2: View of the Tiff image in the Google Earth Pro [2024].

However, the process of loading large TIFF images in Google Earth Pro can

be demanding on system resources. When you attempt to load a high-resolution

TIFF image, the software needs to allocate a significant amount of memory to

render the detailed imagery accurately.

The loading time for TIFF images in Google Earth Pro can be extended,

especially when dealing with images of substantial resolution, such as those with

dimensions of 10000x10000 pixels. The computer’s performance, specifically its

processing power and available RAM, plays a crucial role in this operation.

The loading time and memory requirements depend on the image size,

and Google Earth Pro may struggle with larger TIFF files due to the intensive

17



processing needed for rendering and displaying high-quality geospatial data. Users

may experience delays and longer loading times, and in some cases, the software

may even face limitations in handling extremely large images.

The efficiency of Google Earth Pro in handling large TIFF files hinges on

the computer’s ability to cope with the intensive processing required for rendering

and displaying high-quality geospatial data. Users may encounter delays, longer

loading times, and, in extreme cases, limitations in managing exceptionally large

images.

3.2 A Comparative Analysis of Folium and Google Earth Pro for TIFF

Image Visualization

In the realm of geospatial exploration, both Folium [2] and Google Earth

Pro stand out as powerful tools for visualizing TIFF images. Folium, [2] a Python

library, offers an interactive and customizable mapping experience. With Folium,

[2] users can dynamically display data on Leaflet maps, providing a seamless way

to visualize and analyze spatial information.

On the other hand, Google Earth Pro, the process of loading large TIFF

images in Google Earth Pro may demand substantial system resources and time.

Comparatively, Folium, [2] being a Python library, offers a lightweight

alternative with a focus on simplicity and flexibility. It excels in quickly rendering

maps with interactive features, making it a favorable choice for certain geospatial

tasks. For me, Folium [2] Library worked to explore the labeled objective IDs.

This Python library provides a dynamic and interactive platform for users to delve

18



into geospatial data, making it a valuable tool for exploring and understanding

the intricacies of labeled ObjectIDs.

Labeled ObjectIDs serve as key identifiers in geospatial datasets, offering

insights into the characteristics of geographic features.

Figure 3.3: Folium View of Tif Image Data [2024].

3.3 Rastering of an Image

In this pivotal stage of our geospatial exploration, the focus shifts to the in-

tricate process of translating pixel coordinates into their geographic counterparts

for precise mapping. The latitude and longitude calculations are anchored in the

19



geographical coordinates of the image’s corners, skillfully reconciling pixel coor-

dinates with the overall dimensions of the image. Augmenting this, the bounding

box information emerges as a critical asset, facilitating the precise assignment of

labels to specific coordinates. For those occasions demanding a more nuanced un-

derstanding, transformations of pixel coordinates come into play, such as resetting

the top-left corner to (0,0) and aligning with the y-axis’s downward increase.

A crucial facet of our methodology involves masking, a technique harness-

ing the power of element-wise multiplication. This is exemplified through the

delineation of polygonal regions and the subsequent connection of values within

these defined areas. As we delve deeper into the intricacies of our data, our at-

tention turns to the TIFF image’s segmentation into smaller, more manageable

sub-images. Python libraries are instrumental in this process, with the dimen-

sions of the image guiding the determination of the requisite rows and columns

for creating a structured grid of sub-images.

Once this segmentation is achieved, a crucial step involves the alignment

of geographic coordinates and label information onto these smaller image com-

ponents. This strategic move allows for a comprehensive matrix representation,

offering a dynamic perspective on the spatial distribution of labeled features. In

the initial phases of our experimentation, we explore label assignment techniques

based on color mapping, leveraging masking methodologies to selectively empha-

size essential components of the image.

• For Latitude = minimum latitude+(y/h)x(maximum latitude-minimum lat-

itude)

20



• For Longitude = minimum longitude+(x/w).(maximum longitude - mini-

mum longitude)

• If we need only pixel coordinates then by considering the top left corner of

the image which is 0,0 and the y-axis increases downwards, so get this y

pixel = height - 1-y, and for x it will be the x pixel.)

• I(masked) = I(original).mask(x,y) which is element-wise multiplication, let’s

say we have a polygon of four corners ((x,y), (x+k,y), (x,y+l), (x+k,y+l))

to connect a line from x to x+k it will implement the concept of element-

wise multiplication. Then collect the inside elements and connect the values

inside the polygon also here while plotting the values we have shape file data

and tif image data to coordinate in between and make a mask on the tiff

image.

In the next phase of our data processing pipeline, we seamlessly integrate

geographic coordinates and corresponding label information into the image, en-

abling a comprehensive matrix representation of the spatial distribution of labeled

features. An initial approach involves label assignment through color mapping,

leveraging the powerful masking technique. This method not only refines the

visual representation of the image but also serves as a foundation for subsequent

analytical processes.

Given the dataset’s inherent complexity, marked by abundant vegetation

and shadows, a meticulous curation strategy is employed. We selectively extract

pertinent regions of the image, focusing on areas essential for our analyses. This
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strategic curation process is a crucial precursor to feeding these refined image

components into our analytical models. The goal is to enhance the dataset’s

relevance and accuracy, setting the stage for more nuanced geospatial analyses

without compromising the integrity of the original information.

Figure 3.4: Labeled data on the original Tiff Image and Masked image where white
surface indicates undefined/ unlabeled part [2024].

Figure 3.5: Tiff Image with Color Mask with White, Red, and Green [2024].
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Chapter 4. Deep Learning Models

4.1 Evaluating Image Metrics

In pursuit of precise image classification, our focus extends to evaluating

key metrics that underscore the performance of our deep-learning models [8].

The Intersection over Union (IoU) [12] serves as a pivotal measure, calculated

individually for each class (0, 1, 2) and, subsequently, averaged to obtain the

mean IoU. This metric gauges the overlap between predicted and ground truth

segmentations [6], providing a nuanced understanding of classification accuracy

at the class level.

Pixel accuracy emerges as another crucial metric, offering a straightfor-

ward assessment of the number of correctly classified pixels in relation to the

total pixels. This provides a more granular perspective on the model’s ability to

accurately delineate distinct features within the Tiff image.

Furthermore, the loss of the Tiff image becomes a pivotal consideration in

assessing the efficacy of our deep-learning models. This loss metric encapsulates

the disparity between predicted and ground truth labels, serving as a quantitative

indicator of the model’s ability to minimize errors and optimize accuracy.

Collectively, these metrics not only furnish a comprehensive evaluation

framework for our image classification endeavors but also inform the refinement
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and optimization strategies essential for enhancing the overall performance of our

deep learning models.

The Mean Intersection over Union (mIoU) is calculated as the average IoU

across all classes [12]:

mIoU =
1

N

N∑
i=1

IoUi. (4.1)

Here, mIoU is the Mean Intersection over Union, N is the total number

of classes, and IoUi is the Intersection over Union for class i.

The Intersection over Union (IoU) for each class is calculated using the

formula:

IoUi =
TPi

TPi + FPi + FNi

. (4.2)

Here, IoUi represents the IoU for class i, TPi is the True Positive for class

i, FPi is the False Positive for class i, and FNi is the False Negative for class i.

4.2 Models

In the pursuit of accurate semantic segmentation, I employed various deep

learning models, including DeepLabV3+, U-Net, U-Net++, and FPNNet. These

models were pivotal in generating meaningful insights from both the original

and masked images, enabling a comprehensive evaluation of their segmentation

performance [9] [14] [8].

24



4.2.1 DeepLabV3+

DeepLabV3+ is a state-of-the-art deep learning model designed for seman-

tic image segmentation. It employs a deep convolutional neural network (CNN)

with an atrous convolutional backbone, which allows the network to capture multi-

scale contextual information effectively. DeepLabV3+ utilizes a powerful decoder

module and employs atrous spatial pyramid pooling to gather information from

multiple scales. This architecture enables precise pixel-level segmentation and is

particularly well-suited for handling large-scale and high-resolution images, mak-

ing it a popular choice for geospatial applications and detailed image analysis

[3].

4.2.2 U-Net

U-Net, a widely recognized and versatile architecture for image segmen-

tation, is characterized by its unique U-shaped network structure. The model

features a contracting path for capturing context and a symmetric expanding

path for precise localization. U-Net’s skip connections between the corresponding

encoder and decoder layers facilitate the retention of fine-grained details during

the upsampling process. This makes U-Net particularly effective in medical image

segmentation and tasks where preserving spatial information is crucial [13].
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4.2.3 U-Net++

U-Net++, an extension of the U-Net architecture, introduces nested skip

pathways to further enhance the segmentation performance. By incorporating

multiple skip connections within the encoder and decoder blocks, U-Net++ aims

to capture hierarchical contextual information at various scales. This architecture

has shown improvements in segmentation tasks with complex and diverse struc-

tures, making it a valuable choice when dealing with images containing intricate

details or multiple objects [17].

4.2.4 FPNNet

FPNNet [7], or Feature Pyramid Network, is designed to address challenges

related to scale variations in object detection and segmentation. FPNNet utilizes

a top-down architecture with lateral connections to build a feature pyramid from

a backbone network. This pyramid allows the model to capture context at differ-

ent scales, enhancing its ability to handle objects of varying sizes in the image.

FPNNet [7] has demonstrated effectiveness in scenarios where objects exhibit con-

siderable size differences, making it suitable for tasks like instance segmentation

and object detection in computer vision applications [7].

4.3 Approach of Work with Dataset and Models

The construction of a specialized dataset tailored for training deep learning

models on ortho-sliced images. Importing essential libraries for data handling,
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image processing, and deep learning, such as PyTorch, OpenCV, NumPy, and

Albumentations. Rooted in the PyTorch [11] [10] framework, this dataset is

meticulously crafted to incorporate original images alongside their corresponding

masks, denoting segmented regions of interest. The dataset harnesses the power

of the Albumentations library to facilitate image augmentations, ensuring robust

model training.

The Segmentation Dataset is adept at efficiently loading and transforming

the image-mask pairs, by offering flexibility through specified transformations. In

the initial case we have used only the basic one, PyTorch DataLoader objects

for streamlined batch processing during model training. This function, crucially,

furnishes insights into the dataset’s composition by divulging pertinent statistics

on image distribution across different sets. To view the images, we have used

Numpy arrays which are converted from PyTorch [11] [10] tensors.

4.3.1 Training, Validation, and Testing

Training: In this loop we are Presenting the input image to the model,

prompting it to generate predictions and evaluating the difference between the

predicted mask and the ground truth mask, resulting in a loss value. The hyper-

parameters that I have used are, for the loss function that we have used CrossEn-

tropyLoss and the optimizer is Adam. By employing back-propagation, which

is a powerful technique that guides the model to adjust its internal parameters,

minimizing the calculated loss. Periodically testing the model’s performance on
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the validation set, tracking metrics like accuracy, loss, and the crucial Intersection

over Union (IoU) [12] to gauge its effectiveness.

Further, in the model performance, I executed the code to extend the

training loop to track class-wise IoU metrics alongside the overall IoU [12]. This

would involve meticulously accumulating true positives, false positives, and false

negatives for each class during each training iteration.

I have examined different learning rates and epochs [August 2023 to March

2024]. This model was working efficiently at a learning rate of 0.0003 [March

2024].

Table 4.1: Results of the Four Models at a Learning Rate = 0.0003 [2024].

Models Train Loss Train Pixel Accuracy Train IOU Validation Loss Validation Accuracy Validation IOU Teat Loss Test Accuracy Test IOU

DeepLabV 3Plus 0.333 0.879 0.779 0.197 0.935 0.855 0.168 0.943 0.838

UNET 0.121 0.955 0.900 0.143 0.946 0.885 0.154 0.943 0.848

UNETPlusP lus 0.085 0.966 0.923 0.239 0.922 0.834 0.115 0.956 0.856

FPNNet 0.130 0.949 0.892 0.169 0.936 0.862 0.151 0.940 0.821

Table 4.2: For 20 Ephocs, Learning Rate = 0.0003 [2024].

Models Train Loss Train Pixel Accuracy Train IOU Validation Loss Validation Accuracy Validation IOU Teat Loss Test Accuracy Test IOU

DeepLabV 3Plus 0.333 0.879 0.779 0.197 0.935 0.855 0.168 0.943 0.838

UNET 0.155 0.944 0.882 0.180 0.933 0.875 0.149 0.946 0.847

UNETPlusP lus 0.085 0.966 0.923 0.239 0.922 0.834 0.115 0.956 0.856

FPNNet 0.125 0.951 0.894 0.170 0.936 0.863 0.153 0.940 0.826
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Chapter 5. Results

5.1 Visualization of Predicted Plots and Results

The accuracy, loss, and intersection over union have a vital role in terms

of training, validation, and testing.

5.1.1 Class-Wise IoU Results

Here, FPN is outperforming the other models [2024].

Table 5.1: For 20 epochs, Learning Rate = 0.0003 [2024].

Models Class IoU for Label 0 Class IoU for Label 1

DeepLabV 3Plus 0.917 0.920

UNET 0.918 0.961

UNETPlusP lus 0.861 0.890

FPNNet 0.961 0.954
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5.1.2 DeeplabV3 Model

The performance of the DeepLabV3Plus model stands out significantly,

demonstrating its effectiveness in handling complex semantic segmentation tasks.

To ensure that the model achieves optimal results without overfitting, an early

stopping mechanism has been incorporated into the training process. we aim to

identify the rate that fosters the most effective convergence during the training

process. This iterative testing process allows us to explore the model’s sensitivity

to different learning rate regimes, enabling us to strike a balance between rapid

convergence and avoiding overshooting or convergence issues.

The observed presence of slight vegetation marks in the predicted im-

ages indicates the model’s ability to capture and reproduce fine-grained details.

Through the testing phase with diverse learning rates, we aim to fine-tune the

model’s training dynamics, optimizing its performance for specific features such

as vegetation.

Figure 5.1: Predicted mask, Loss, Pixel Accuracy, and IOU of DeepLabV3Plus [2024].
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5.1.3 UNET Model

The Unet model has a slight inclination towards overfitting, its ability to

deliver precise segmentation outputs for specific features, such as vegetation and

roads, underscores its effectiveness in tasks where fine-grained spatial information

is crucial. The UNet [13] model, with its tailored architecture, proves to be a

valuable asset in applications where detailed and accurate semantic segmentation

is paramount.

Figure 5.2: Predicted mask, Loss, Pixel Accuracy, and IOU of UNET [2024].

5.1.4 UNET-PlusPlus Model

One notable strength of the UNet++ [17] model lies in its ability to miti-

gate the impact of shadows, a common obstacle in image analysis. Shadows often

introduce complexities in pixel-level predictions, but the UNet++ architecture,

with its skip connections and nested skip pathways, enhances the model’s contex-
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tual understanding. This leads to more accurate segmentation results, especially

in regions affected by shadows.

Figure 5.3: Predicted mask, Loss, Pixel Accuracy, and IOU of UNET-PlusPlus [2024].

5.1.5 Feature Pyramid Network(FPNet Model)

The model exhibits a robust ability to capture intricate details and nuances

within the images, showcasing its effectiveness in handling complex scenes with

varying levels of vegetation and shading.

Figure 5.4: Predicted mask, Loss, Pixel Accuracy, and IOU of FP-Net [2024].
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5.2 Transfer Learning

Here, I utilized the saved FP-Net model, which demonstrated superior

performance compared to other models, to predict the output. Notably, the pre-

dictions reflect the influence of transfer learning, as the model considers features

related to vegetation and shadows in its output.

Figure 5.5: Transfer Learning[1] Result using FP-Net [2024].

In image(5.5), we can see that the predicted mask has more significant

labels than the original image. and if can improve with more convolutional layers

in the architecture then it might help us to achieve the results. By improving the

same with other models, I can get the desired results in the future.
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Chapter 6. Conclusion and Future Work

I have extensively analyzed a novel, proprietary dataset comprising nearly

200 GB of data, employing state-of-the-art deep learning models such as UNet

[13], UNet++ [17], DeepLabV3+ [3], and FPN [7] for semantic segmentation

tasks. Among these models, FPN demonstrated superior performance.

However, in some cases of image patches, I have absorbed that the unet++

[17] model has a tendency towards overfitting and challenges in effectively han-

dling shadows. To address these issues, This could involve experimenting with

additional architectural modifications or leveraging advanced pre-processing tech-

niques to reduce the impact of shadows.

Furthermore, I developed an algorithmic framework for data pre-processing,

aimed at optimizing the semantic segmentation [6] process. Utilizing deep learn-

ing models, I conducted training, validation, and testing procedures several times

on a dataset, extending evaluations to an alternative image dataset.

Additionally, I aim to develop an adaptive model capable of dynamically

adjusting its complexity level based on scene characteristics. This approach in-

volves experimenting with advanced pre-processing techniques and incorporating

adaptive architectural modifications to improve overall model performance and

robustness.
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