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Abstract

ADAPTIVE SLIDING MODE CONTROL FOR PLANTS
WITH UNKNOWN PARAMETERS WITH ADAPTIVE
BOUNDARY LAYER THICKNESS FOR CHATTER

ATTENUATION

Josiah Schlabach

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

Mechanical and Aerospace Engineering

The University of Alabama in Huntsville

August 2024

This thesis presents the development of an adaptive boundary layer sliding

mode control (SMC) methodology tailored for plants with unknown parameters. The

primary challenge addressed is the mitigation of chattering while ensuring robust

performance in systems subject to high disturbances and parameter uncertainties.

The research introduces a control law that combines existing work that dynamically

adjusts the boundary layer thickness with existing work that uses adaptive laws to

estimate unknown plant parameters. The stability of the proposed controller is val-

idated with Lyapunov analysis. Simulation results demonstrate the effectiveness of

the adaptive boundary layer SMC in producing good tracking control in the presence

of high disturbance and unknown plant parameters.
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Chapter 1. Introduction

The Sliding Mode Control (SMC) method is often used in a variety of

control problems when a robust controller is needed such as plants affected by

uncertainties, disturbances, and variations in parameters. This method consists

of defining a sliding surface and using a discontinuous control law to drive the

plant to the sliding surface where it is confined to drive the system errors to zero

[1, 2]. A common problem with SMC controllers is chattering which refers to

the tendency of the control signal to oscillate at a very high frequency once the

plant is near the sliding surface [3, 4]. This can cause problems with real systems

when the physical components of the system cannot handle the high-frequency

oscillations [5, 6, 7]. The chattering is caused by the system overshooting the

sliding surface which triggers the switching function to push it back onto the

sliding surface. This problem has been addressed in multiple ways [6, 8, 9, 10]. A

common method is introducing a constant boundary layer to the control law and

replacing the switching function with a smoother function within the boundary

layer [11, 12, 13]. In other words, the controller is modified to slow down the

system’s convergence once it is within the boundary layer. While effective in

low disturbance scenarios, this method fails under high disturbance [14]. If the

boundary layer is too small, the chattering behaviour could be unaffected or only
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partially attenuated; but, if it is too large, the convergence to the sliding surface

is unnecessarily slowed down so the boundary layer thickness must be tuned. An

adaptive boundary layer offers a solution by adjusting to suppress chattering even

in the presence of high disturbance [14, 15, 16].

Another technique to mitigate chattering is higher-order SMC methods

such as twisting control or fractional-order SMC, which involves taking higher-

order time derivatives of the sliding surface to ensure it reaches zero. However, this

method has drawbacks, including a dependency on accurately known initial con-

ditions and an increase in chattering under disturbance compared to conventional

sliding mode control [17, 18]. Additionally, it requires higher-order state deriva-

tives such as acceleration or jerk for feedback. Using the higher-order derivatives

in the feedback can be detrimental to the controller behaviour because of sensor

noise [19, 20]. Observer-based sliding mode control, which introduces observers

to complement the controller, has also been used in some cases. One example

is the disturbance observer-based SMC which attempts to measure disturbances

but is only successful for some types of disturbance [21]. Additionally, observer-

based SMC can cause the control system to be less robust with respect to plant

uncertainties [3].

The adaptive SMC method is an extension of the conventional SMC that

has often been used for plants with uncertain or varying parameters. Adaptive

SMC uses adaptive laws to estimate parameters when some parameters in the

plant model are varying or otherwise unknown. This allows the engineer to skip

any system identification step which would commonly be used to determine the

2



unknown parameters [22]. Furthermore, the adaptive laws for the parameters

address the problem of plant uncertainties very well. If this can be combined

with an adaptive boundary layer which deals with high disturbances well, then

the resulting SMC method should be quite useful for attenuating chatter in high

disturbance situations with unknown plant parameters.

In this thesis a controller will be derived that combines an adaptive SMC

with an adaptive boundary layer. This will be done in several steps. As seen in

Table 1.1, chapter 2 presents an SMC method with a constant boundary layer

which will need manual tuning for a system with uncertain parameters that have

known bounds. Chapter 3 introduces an adaptive boundary layer to the method

Table 1.1: Chapter organization: SMC methods.

Chapter 2 Chapter 3 Chapter 4

Boundary Layer Constant Adaptive Adaptive

System Parameters Known Bounds Known Bounds Unknown

BL Tuning Manual Adaptive Adaptive

from chapter 2. Both of these chapters primarily reformulate previous work of

other authors [14] in the notation used in this thesis. This provides a basis of

comparison for the method in chapter 4. Chapter 4, the main contribution of

this thesis to existing work, presents an SMC method that uses both the adaptive

3



boundary layer presented in chapter 3 and adaptive laws for unknown parameters.

The stability and successful tracking control of this controller will be validated

by a series of proofs, primarily utilizing Lyapunov analysis. Additionally, the

controller will be applied to a generic system in simulations to further demonstrate

its performance and value in tracking control and to compare it to the SMC

methods from chapters 2 and 3.
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Chapter 2. Constant Boundary Layer Sliding Mode

Controller for a Plant with Uncertain Parameters

The goal of this chapter is to derive a Sliding Mode Control (SMC) method

with a constant boundary layer for a plant in which uncertain parameters are

bounded by known values. This goal is achieved in three consecutive stages.

In section 2.1, as the first stage, an SMC controller with no boundary layer is

proposed for the case in which the plant parameters are known. In section 2.2, as

the second stage, an SMC controller with no boundary layer is proposed for the

case in which the plant parameters are uncertain. As the third stage, the SMC

control law proposed in section 2.2 is modified in section 2.3 to add a constant

boundary layer to address chattering behavior in the plant response.

2.1 SMC with No Boundary Layer for a Plant with Known Parameters

2.1.1 Problem Statement

In this section, an SMC control law is derived that assumes full knowledge

of all the plant parameters. The plant to be analyzed is a n-th order system
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modeled by the equation:

y(n) +
n∑

i=1

αifi = bu+ δ, (2.1)

where y(i) (i = 0, · · · , n− 1) are the states of the plant, u is the control input, δ

is the disturbance to the plant, and the fi are known nonlinear functions of the

system states. The parameters αi and b are the true plant parameters in the above

equation and are assumed to be known. To simplify some of the derivations in this

chapter, the following variables are defined and substituted when appropriate:

h = 1/b, ai =
αi

b
, d = −δ/b. (2.2)

By rearranging the plant dynamics to isolate the input, we obtain the equation

hy(n) +
n∑

i=1

aifi + d = u. (2.3)

2.1.2 Definitions of the Errors

The state error for the system is defined as

e = y − yd, (2.4)

where yd is the desired output. The error dynamics are then

e(n−1) = y(n−1) − y
(n−1)
d . (2.5)

6



This is then used to define the combined error as

s = e(n−1) +
n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i). (2.6)

The above equation guarantees that if s vanishes, then the state error e expo-

nentially approaches 0 for any positive λ. To obtain a more concise notation, the

reference value y
(n)
r is defined as:

y(n)r = y
(n)
d −

n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i+1). (2.7)

Taking the derivative of the combined error equation (2.6) and substituting the

above equation into the result gives the equation for the combined error dynamics:

ṡ = y(n) − y(n)r . (2.8)

By rearranging equation (2.3) for y(n) and substituting it into the above equation,

we get

ṡ =
1

h
(u−

n∑
i=1

aifi − d)− y(n)r . (2.9)

2.1.3 The Proposed Controller and the Proof of Stability

The following control law is proposed:

u = hy(n)r − ksgn(s) +
n∑

i=1

aifi, (2.10)

7



where k has the same sign as h.

Theorem: If the proposed controller in equation (2.10) is applied to the

plant in equation (2.3), the combined error s as defined in equation (2.6) ap-

proaches zero in a finite time, causing the error e to exponentially approach zero

provided that:

k = η +D, (2.11)

where η > 0 and D ≥ |δ| is the bound of the disturbance.

Proof: Consider the positive definite Lyapunov function as follows:

V =
1

2
hs2. (2.12)

The time derivative of this Lyapunov function is

V̇ = hsṡ. (2.13)

Then substituting equation (2.9), we get:

V̇ = hs(
1

h
(u−

n∑
i=1

aifi − d)− y(n)r ). (2.14)

Substituting the control law from equation (2.10) leads to

V̇ = hs(
1

h
(hy(n)r − ksgn(s) +

n∑
i=1

aifi −
n∑

i=1

aifi − d)− y(n)r ). (2.15)
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Most of the terms cancel out leaving only:

V̇ = −k|s| − ds. (2.16)

Assuming a bounded disturbance, we have D ≥ |d|, so converting the above

equation to an inequality gives:

V̇ ≤ −k|s|+D|s|. (2.17)

Using the chosen k from equation (2.11) reduces the above equation to

V̇ ≤ −η|s|. (2.18)

Because V̇ is always negative for all s, V will decrease until |s| = 0, at which point

the state error e will approach zero according to equation (2.6). This concludes

the proof of the theorem.

2.2 Case of a Plant with Uncertain Parameters

The true plant is defined in equation (2.3). Here, the case where the

parameters ai and h are uncertain is considered. Since the parameters ai and h

are uncertain, the control law in equation (2.10) is not implementable. The plant

equation needs to be modified to use the nominal parameters âi and ĥ shown in

9



the nominal plant below:

ĥy(n) +
n∑

i=1

âifi + d = u. (2.19)

2.2.1 Bounds on Uncertain Parameters

In the nominal system, âi and ĥ are the estimates of ai and h. These

estimates are bounded by known values. The parameter h is bounded as

0 < hmin ≤ h ≤ hmax. (2.20)

If ĥ is defined as ĥ =
√
hmaxhmin, then

0 <
hmin

ĥ
≤ h

ĥ
≤ hmax

ĥ
, (2.21)

which leads to

0 <
hmin√

hmaxhmin

≤ h

ĥ
≤ hmax√

hmaxhmin

. (2.22)

The reduces algebraically to

√
hmin

hmax

≤ h

ĥ
≤

√
hmax

hmin

. (2.23)

Let β =
√

hmax

hmin
so that

β−1 ≤ h

ĥ
≤ β (2.24)

10



and

β−1ĥ ≤ h ≤ βĥ. (2.25)

In addition to the bounds on the parameter estimates, the magnitude of the

disturbance is known to be bounded by some maximum D:

|d| ≤ D. (2.26)

Finally, the error in the ai parameters is bounded by:

∣∣∣∣∣
n∑

i=1

(âi − ai)fi

∣∣∣∣∣ ≤ F. (2.27)

2.2.2 Control Law for the Plant with Uncertain Parameters

The proposed control law from equation (2.10) is modified to:

u = ĥy(n)r − ksgn(s) +
n∑

i=1

âifi. (2.28)

This accounts for the fact that the parameters used in the control law were not

certain, so they could not be used in the control law for the nominal system.

Theorem: If the proposed controller in equation (2.28) is applied to the

plant that is described by equation (2.3) and estimated by equation (2.19), then s

approaches zero in a finite time causing e to exponentially approach zero provided

that:

k = |β − 1|ĥ
∣∣y(n)r

∣∣+ F +D + η, (2.29)

11



where η > 0 and the values F , D, and β are defined by the bounds on unknown

parameters as discussed in section 2.2.1.

Proof: Consider the positive definite Lyapunov function as follows:

V =
1

2
hs2. (2.30)

The time derivative of this Lyapunov function would clearly be:

V̇ = hsṡ. (2.31)

Substituting the equation (2.9) for ṡ gives:

V̇ = hs(
1

h
(u−

n∑
i=1

aifi − d)− y(n)r ). (2.32)

Use the control law from equation (2.28) for the Lyapunov analysis in the above

equation:

V̇ = hs(
1

h
(ĥy(n)r − ksgn(s) +

n∑
i=1

âifi −
n∑

i=1

aifi − d)− y(n)r ). (2.33)

Distributing and rearranging terms leads to

V̇ = s(ĥy(n)r − ksgn(s) +
n∑

i=1

(âi − ai)fi − d− hy(n)r ), (2.34)

12



which can be further reduced to

V̇ = s((ĥ− h)y(n)r − ksgn(s) +
n∑

i=1

(âi − ai)fi − d). (2.35)

Clearly, s sgn(s) will be positive whether s is positive or negative so it can be

written as |s|. Also, the bounds of the nominal parameters defined in section

2.2.1 are applied. Then, the equation is converted to an inequality with the

knowledge that ab ≤ |a||b|. This leads to:

V̇ ≤ |s|
∣∣∣ĥ− h

∣∣∣∣∣y(n)r

∣∣− k|s|+ F |s|+D|s|. (2.36)

But the worst case scenario for h is βĥ. Also note that |β − 1| = |1− β| so

V̇ ≤ |s|(|β − 1|ĥ
∣∣y(n)r

∣∣+ F +D)− k|s|. (2.37)

Plug in equation (2.29) for k to get:

V̇ ≤ |s|(|β − 1|ĥ
∣∣y(n)r

∣∣+ F +D)− (|β − 1|ĥ
∣∣y(n)r

∣∣+ F +D + η)|s|. (2.38)

Most of the terms cancel out, leaving only:

V̇ ≤ −|s|η. (2.39)

13



Because η is positive, V̇ is negative definite. Therefore, V will vanish; hence, the

combined error s and by extension the output error e will approach 0 exponen-

tially. This concludes the proof of the theorem.

2.3 Control Law with a Boundary Layer

A disadvantage to the control law in equation (2.28) is that it will produce

chattering behavior. As the combined error approaches zero, it will overshoot,

causing it to have to correct, which will again overshoot. The error dynamics force

the error to rapidly oscillate near zero, which can have detrimental effects when

the real-world system, such as a motor for example, cannot handle the chattering

behavior. This is addressed by modifying the control law from equation (2.28)

to:

u = ĥy(n)r +
n∑

i=1

âifi − ksat(
s

ϕs

), (2.40)

where ϕs > 0 is the boundary layer for s and k is defined by equation (2.29). The

saturation function is defined as

sat(
s

ϕs

) =


sgn( s

ϕs
) if |s| ≥ ϕs

s
ϕs

if |s| ≤ ϕs

. (2.41)

Theorem: If the proposed controller in equation (2.40) with k from equa-

tion (2.29) is applied to the plant that is described by equation (2.3) and estimated

14



by equation (2.19), then s enters the boundary layer and decreases until:

|s|ss ≤
Aϕs

A+ η
< ϕs, (2.42)

where

A = (β − 1)ĥ
∣∣y(n)r

∣∣+ F +D (2.43)

and |s|ss is the steady state |s|.

Proof: Outside the boundary layer, sat( s
ϕs
) = sgn( s

ϕs
) = sgn(s) so equation

(2.40) is equivalent to equation (2.28) outside the boundary layer. Hence, by the

previous theorem, the control law still converges to the boundary layer the same

way. Inside the boundary layer, sat( s
ϕs
) = s

ϕs
so within the boundary layer,

equation (2.40) is equivalent to

u = ĥy(n)r +
n∑

i=1

âifi − k
s

ϕs

. (2.44)

Consider the following Lyapunov function

V =
1

2
hs2 (2.45)

with the time derivative of

V̇ = hsṡ. (2.46)
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Using equation (2.9) for ṡ, this becomes

V̇ = hs(
1

h
(u−

n∑
i=1

aifi − d)− y(n)r ). (2.47)

Distributing the h term and plugging in the equation (2.44) for the controller

with the boundary layer, we get

V̇ = s(ĥy(n)r +
n∑

i=1

âifi − k
s

ϕs

−
n∑

i=1

aifi − d− hy(n)r ), (2.48)

and

V̇ = s((ĥ− h)y(n)r +
n∑

i=1

(âi − ai)fi − k
s

ϕs

− d). (2.49)

Note that for the worst case, ĥ−h = ĥ−βĥ = (1−β)ĥ. Applying this as well as

the bounds on the parameters and disturbance as defined in section 2.2.1, we get

V̇ ≤ |s||1− β|ĥ
∣∣y(n)r

∣∣+ F |s|+D|s| − k
s2

ϕs

. (2.50)

Because β > 1, we have |1− β| = β − 1 and choosing A according to equation

(2.43), then

V̇ ≤ A|s| − k
s2

ϕs

. (2.51)

Substituting for k from equation (2.29) and simplifying, we get:

V̇ ≤ A|s| − (A+ η)
s2

ϕs

. (2.52)

16



Clearly, V̇ ≤ 0 (and by extension s is decreasing) for all values of s if:

A|s| − (A+ η)
s2

ϕs

< 0, (2.53)

which leads to

A− (A+ η)
|s|
ϕs

< 0, (2.54)

A < (A+ η)
|s|
ϕs

, (2.55)

and finally,

Aϕs

A+ η
< |s|. (2.56)

Note that while |s| > Aϕs

A+η
, V̇ < 0 so V (and by extension s) decreases. Thus, |s|

will decrease until it becomes equal to Aϕs

A+η
, at which point V̇ = 0 so |s| will stay

at the steady state value |s|ss = Aϕs

A+η
which is within the boundary layer since

A
A+η

< 1. Also note that this steady state error could theoretically be decreased

by using a smaller ϕs or a higher η.

2.4 Simulation

To demonstrate the results of this chapter, the control law was applied to

a system in a simulation. The implementation of the simulation is shown below

in Figure 2.1 with the relevant equations from this chapter.
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Figure 2.1: Block diagram of control law implementation.

2.4.1 Definition of Values

The system chosen for simulation was the stable fourth-order system:

(p+ λf )
4y =

1

h
u, (2.57)

where p is the Laplace operator and both λf and h are greater than zero. This

expands to the time-domain equation:

y(4) + 4λfy
(3) + 6λ2

fy
(2) + 4λ3

f ẏ + λ4
fy =

1

h
u. (2.58)

The functions and parameters of this system corresponding to equation (2.3) are

listed in the table below, along with the estimated parameters. The parameter

λf was chosen as λf = 0.25 and the final parameter h was estimated as hmax = 1.4

and hmin = 0.9. The desired trajectory for y was

yd = 2 cos(t)− sin(t/3) +
1

12
. (2.59)

The actual disturbance was chosen as d = 20 for the time period 7 < t < 9 and

d = 0 elsewhere. In the process of tuning the ϕs values, it was discovered that

18



Table 2.1: System functions with actual and estimated parameters.

i 1 2 3 4

f y ẏ y(2) y(3)

a λ4
f 4λ3

f 6λ2
f 4λf

â 1.5λ4
f 3λ3

f 8λ2
f 2λf

Table 2.2: Initial conditions and control parameters.

y(0) ẏ(0) ÿ(0) y(3)(0) η λ D ϕs

Case 1 25
12

−1
3

−1.74 1
27

0.05 3 21 0.05

Case 2 25
12

−1
3

−1.74 1
27

0.05 3 21 0.3

a boundary layer greater than approximately 0.25 was necessary to completely

eliminate chatter, although a smaller boundary layer did still attenuate the chatter

significantly. Two separate cases with a smaller and a larger boundary value

are compared in the results section. In both cases, the actual plant state was

initialized to have zero error for e, ė, and e(3) but with an error in the acceleration

of ë = 0.26. The initial conditions as well as the gain values are listed in table

2.2.
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2.4.2 Simulation Results

Figure 2.2 shows that the controller does indeed provide tracking control

for both the smaller and the larger boundary value. It can be seen in Figure 2.3

Figure 2.2: Actual and desired system state vs time.

that the control input does not suffer from chattering in the second case as would

commonly affect an SMC using sgn(s) instead of our sat(s). However, the first

case, with the smaller boundary value, does still have chatter at several points,

particularly when the disturbance is present. Figure 2.4 demonstrates that s

does converge to the boundary layer, as expected for both cases. Even when the

disturbance is added, s stays within the boundary layer. Because of the steep

convergence of s, Figure 2.5 shows a more detailed plot of the first 0.5 seconds for

both cases. When outside the boundary layer, both cases converge at the same

rate, which would be expected as the only difference is the size of the boundary

layer. Case 2 does reach the larger boundary layer sooner, which slows it down

earlier than case 1. The result is slightly slower convergence within the boundary

20



Figure 2.3: Control input vs time.

Figure 2.4: Combined error vs time (the whole simulation duration).

layer. Finally, the state error, plotted in Figure 2.6, does converge to a steady-

state value near zero quite quickly for both cases. The disturbance does affect the

second case error significantly more than the first because s has not converged

as much for the second case when the disturbance is added. Theoretically, both

the combined error and the state error should converge to smaller steady-state

values for the first case, according to the theorem in section 2.3. This was not

the case in the simulation, however. As Table 2.3 shows, we did have a smaller
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Figure 2.5: Combined error vs time (the first 0.5 seconds).

Figure 2.6: State error vs time.

steady-state e but had a roughly similar steady-state s. This is likely because of

the chattering, which prevented it from converging to the theoretical steady-state

value due to the simulation using a discrete time step. The smaller boundary

layer has the theoretical advantage of a smaller steady-state error for s and e and

slightly quicker convergence but in practice has the disadvantage of not completely

attenuating chatter. This motivates the search for an adaptive boundary layer
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Table 2.3: Combined and state errors.

sss ess emin emax

Case 1 1.50 ∗ 10−2 0.74 ∗ 10−4 −0.0016 0.0117

Case 2 1.38 ∗ 10−2 4.20 ∗ 10−4 −0.0098 0.0117

that shrinks to reduce the steady-state error, but grows when chatter is present.

This adaptive boundary layer will be derived in chapter 3.
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Chapter 3. Adaptive Boundary Layer Sliding Mode

Controller for a Plant with Uncertain Parameters

In this section, a control method is derived for a plant in which uncertain

parameters are bounded by known values and a sliding mode control method with

a varying boundary layer is used. The goal of using a varying boundary layer is

to make the control law more robust to large disturbances. If large disturbances

are dealt with by increasing η and thus k as well, this increases ṡ which can cause

chattering if too large. A boundary layer that increases when large disturbances to

the system are present can fix this problem. In section 3.1, the problem statement

and control law from the chapter 2 are restated more concisely. In section 3.2, a

lemma for the error behavior required for convergence with a varying boundary

layer is derived. In section 3.3, the control law from chapter 2 is modified and

shown by Lyapunov analysis to produce convergence.
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3.1 Problem Statement and Control Law

3.1.1 Plant Model

The plant to be controlled is defined by the equation:

y(n) +
n∑

i=1

αifi = bu+ δ, (3.1)

where y is the state of the plant, u is the control input, δ is the disturbance to the

plant, and fi are known, nonlinear functions. The parameters αi and b are the

true plant parameters in the above equation, but these are not known, so they

are estimated with the variables α̂i and b̂. The nominal plant model is then:

y(n) +
n∑

i=1

α̂ifi = b̂u+ δ. (3.2)

Like in chapter 2, the plant model can also be rewritten using the following

variables substituted when appropriate:

h = 1/b, ai =
αi

b
, d = −δ/b. (3.3)

The true and nominal plant models then become:

hy(n) +
n∑

i=1

aifi + d = u (3.4)
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and

ĥy(n) +
n∑

i=1

âifi + d = u. (3.5)

The state error for the system is defined as

e = y − yd, (3.6)

where yd is the desired output. The state error dynamics are then

e(n−1) = y(n−1) − y
(n−1)
d . (3.7)

This is used to define the combined error as

s = e(n−1) +
n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i). (3.8)

This guarantees that if the combined error s vanishes, then the state error e

exponentially approaches 0 for any positive λ. The reference value y
(n)
r is again

defined as:

y(n)r = y
(n)
d −

n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i+1). (3.9)

Taking the derivative of the combined error equation (3.8) and substituting the

above equation into the result gives the combined error dynamics as:

ṡ = y(n) − y(n)r . (3.10)
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3.1.2 Bounds on Uncertain Parameters

In the nominal system, the estimates âi and ĥ are bounded by known

values. The error in the ai parameters is bounded by:

∣∣∣∣∣
n∑

i=1

(âi − ai)fi

∣∣∣∣∣ ≤ F. (3.11)

The parameter h is again bounded as

0 < hmin ≤ h ≤ hmax. (3.12)

The same analysis as done in section 2.2.1 leads to:

β−1ĥ ≤ h ≤ βĥ, (3.13)

where β is defined as β =
√

hmax

hmin
> 0. In addition to the bounds on the parameter

estimates, the magnitude of the disturbance is known to be bounded by some

maximum D:

|d| ≤ D. (3.14)

27



3.1.3 Control Law

The control law to control the above system with a constant boundary

layer was found in chapter 2 to be:

u = ĥy(n)r +
n∑

i=1

âifi − ksat(
s

ϕs

), (3.15)

where the gain k was

k = |β − 1|ĥ
∣∣y(n)r

∣∣+ F +D + η (3.16)

with η as a positive constant.

3.2 Required Error Behavior for Varying Boundary Layer

Lemma: Consider the system described in section 3.1 modified to use a

varying boundary layer. For s to approach the boundary layer when outside,

sṡ ≤ (ϕ̇s − η
h
)|s| proves this convergence.

Proof: Suppose s > ϕs > 0. Then s clearly approaches ϕs if and only if:

d

dt
(s− ϕs) ≤ −η

h
, (3.17)

where η > 0. Applying the derivative gives the equation:

ṡ− ϕ̇s ≤ −η

h
, (3.18)
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which leads to:

ṡ ≤ (ϕ̇s −
η

h
). (3.19)

But s > 0, so s = |s| and:

sṡ ≤ (ϕ̇s −
η

h
)|s|. (3.20)

Alternatively, suppose s < −ϕs < 0. Then clearly s approaches −ϕs if and only

if:

d

dt
(s− (−ϕs)) ≥

η

h
, (3.21)

where η > 0. Applying the derivative gives the equation:

ṡ+ ϕ̇s ≥
η

h
, (3.22)

which leads to:

ṡ ≥ (
η

h
− ϕ̇s). (3.23)

But s < 0 so s = −|s| and multiplying by s flips the inequality:

sṡ ≤ (ϕ̇s −
η

h
)|s|. (3.24)

Hence, s converges to the boundary layer if sṡ ≤ (ϕ̇s − η
h
)|s|.
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3.3 Control Law for Varying Boundary Layer

To control the plant using a varying boundary layer, the following control

law is proposed:

u = ĥy(n)r +
n∑

i=1

âifi − k̄sat(
s

ϕs

), (3.25)

where the modified gain is calculated as:

k̄ =


(k − βĥϕ̇s) if ϕ̇s ≤ 0

(k − β−1ĥϕ̇s) if ϕ̇s ≥ 0

(3.26)

using the original gain from (3.16).

3.3.1 Outside the Boundary Layer

Theorem: If the SMC control law from equations (3.25) and (3.26) is

applied to the plant described by equation (3.4) and estimated by equation (3.5),

then s approaches the boundary layer in a finite time.

Proof: As the lemma in the previous section demonstrated, the goal is

to show that sṡ ≤ (ϕ̇s − η
h
)|s| when outside the boundary layer. From equation

(3.10) with y(n) from equation (3.4), the error dynamics becomes:

ṡ =
1

h
(u−

n∑
i=1

aifi − d)− y(n)r . (3.27)
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Plugging in the value for u from equation (3.25) gives

ṡ =
1

h
(ĥy(n)r +

n∑
i=1

âifi − k̄sat(
s

ϕs

)−
n∑

i=1

aifi − d)− y(n)r . (3.28)

Algebraically manipulating the equation allows us to write this as

ṡ =
1

h
(ĥ− h)y(n)r +

1

h
(

n∑
i=1

(âi − ai)fi − k̄sat(
s

ϕs

)− d). (3.29)

Then, to get an equation of the correct form to be compared to equation (3.24)

from the lemma, the above equation is multiplied by s and maximized to get an

inequality:

sṡ ≤ |s|1
h

∣∣∣ĥ− h
∣∣∣∣∣y(n)r

∣∣+ |s|1
h

∣∣∣∣∣
n∑

i=1

(âi − ai)fi

∣∣∣∣∣− s
1

h
k̄sat(

s

ϕs

) + |s|1
h
|d|. (3.30)

Because this is outside the boundary layer, sat( s
ϕs
) = sgn( s

ϕs
) = sgn(s). This and

the bounds from (3.11), (3.14), and (3.13) are used to reduce the inequality to

sṡ ≤ |s| ĥ
h
|β − 1|

∣∣y(n)r

∣∣+ |s|1
h
F − |s|1

h
k̄ + |s|1

h
D. (3.31)

This can now be set equal to the equation (3.24) from the lemma:

(ϕ̇s −
η

h
)|s| = |s| ĥ

h
|β − 1|

∣∣y(n)r

∣∣+ |s|1
h
F − |s|1

h
k̄ + |s|1

h
D. (3.32)
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Dividing everything by |s| and isolating k̄ leads to

k̄ = ĥ|β − 1|
∣∣y(n)r

∣∣+ F +D + η − hϕ̇s. (3.33)

Plugging in the equation (3.16) for k then results in

k̄ = k − hϕ̇s. (3.34)

Note that the value of h is unknown. However, we know the lower bound and

the upper bound of h using equation (3.13). We use the bounds to maximize k̄

all the time for faster convergence to the sliding surface. To that end, if ϕ̇s > 0,

we use the lower bound of hmin = β−1ĥ instead of h, and, if ϕ̇s < 0, we use the

upper bound of hmax = βĥ instead of h. This can be written as

k̄ =


(k − βĥϕ̇s) if ϕ̇s ≤ 0

(k − β−1ĥϕ̇s) if ϕ̇s ≥ 0

. (3.35)

This concludes the proof of the theorem.

3.3.2 Deriving the Boundary Layer Adaptation Law

Note that when s is within the boundary layer, it decays exponentially.

This rate of decay should be greater than the rate of decay for e.
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Theorem: The following boundary layer adaptation law for ϕs defined by:

ϕ̇s =


kd
βĥ

− λϕs if kd
βĥ

≤ λϕs

βkd
ĥ

− λβ2ϕs if kd
βĥ

≥ λϕs

, (3.36)

where kd = k(yd) satisfies the requirement for a greater rate of decay of s than

the rate of decay for e.

Proof: Inside the boundary layer, sat( s
ϕs
) = s

ϕs
so equation (3.29) becomes

ṡ =
1

h
(ĥ− h)y(n)r +

1

h
(

n∑
i=1

(âi − ai)fi − k̄
s

ϕs

− d). (3.37)

Because this is inside the boundary layer, the errors are considered small, and it

is reasonable to assume that y(n) ≈ y
(n)
d . Also, all the output errors ei are near

zero, so y
(n)
r ≈ y

(n)
d . Then, assuming the disturbance is close to zero, ṡ becomes

ṡ ≈ 1

h
(ĥ− h)y

(n)
d +

1

h
(

n∑
i=1

∆aifi − k̄
s

ϕs

) (3.38)

ṡ = H(yd) +O(ϵ)− 1

h
k̄(yd)

s

ϕs

. (3.39)

In the above equation, H(yd)+O(ϵ) is the combined effect of all the uncertainties

in the system. This error is bounded, since both the true parameters and the

estimates of those parameters are bounded. The equation is a stable first order

filter with H(yd) + O(ϵ) as the input and s as the output. Because the input is

bounded, the output must be bounded as well. The decay of s is then determined
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based on the coefficient on the s term. The rate of decay of s within the boundary

layer is:

1

h

k̄(yd)

ϕs

= λs. (3.40)

To make λs (the rate of decay of s) greater than λ (the rate of decay of e),

λs =
hmax

h
λ. (3.41)

Substituting λs from equation (3.40) in the above equation and noting that hmax =

βĥ, we get:

k̄(yd)

ϕs

= λβĥ. (3.42)

Solving this for the gain,

k̄(yd) = λβϕsĥ, (3.43)

and then plug this into equation (3.35) for ϕ̇s ≤ 0 for the first case to get

λβϕsĥ = k(yd)− βĥϕ̇s for ϕ̇s ≤ 0 (3.44)

and for ϕ̇s ≥ 0 for the second case to get

λβϕsĥ = k(yd)− β−1ĥϕ̇s for ϕ̇s ≥ 0. (3.45)

Solving (3.44) and (3.45) for ϕ̇s results in
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ϕ̇s =


kd
βĥ

− λϕs if kd
βĥ

≤ λϕs

βkd
ĥ

− λβ2ϕs if kd
βĥ

≥ λϕs

, (3.46)

where kd = k(yd). This, then, will be the control law for the boundary layer.

3.3.3 Steady-State Boundary Layer Thickness

Lemma: Using the control law for the boundary layer as defined in equa-

tion (3.46) will cause the boundary layer to converge to the steady-state value

{ϕs}ss = k

βĥλ
.

Proof: If kd
βĥ

≤ λϕs, then using equation (3.46) we can see that ϕ̇s =

kd
βĥ

− λϕs. When kd
βĥ

< λϕs, then ϕ̇s < 0. Therefore, ϕs will decrease until ϕ̇s = 0.

Setting ϕ̇s = 0, we get

kd

βĥ
− λϕs = 0. (3.47)

Solving for ϕs, we get

ϕs =
kd

βĥλ
. (3.48)

Similarly, when kd
βĥ

≥ λϕs, then using equation (3.46) we can see that ϕ̇s =

βkd
ĥ

− λβ2ϕs. When kd
βĥ

> λϕs, then
βkd
ĥ

> λβ2ϕs so ϕ̇s > 0. Therefore, ϕs will

increase until ϕ̇s = 0. Setting ϕ̇s = 0, we get

βkd

ĥ
− λβ2ϕs = 0. (3.49)
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Solving for ϕs, we get

ϕs =
kd

βĥλ
. (3.50)

Thus, according to equations (3.48) and (3.50), the boundary layer does reach a

steady state value where ϕ̇s = 0 when

{ϕs}ss =
kd

βĥλ
. (3.51)

Note that increasing λ decreases the steady-state boundary layer thickness.

3.3.4 Steady-state s inside the Boundary Layer

Theorem: If the SMC control law from equations (3.25), (3.26), and (3.36)

is applied to the plant described by equation (3.4) and estimated by equation

(3.5), then, once it initially reaches the boundary layer, s will stay within the

boundary layer and converge to a steady-state value |s|ss ≤
A

βĥλ
where A is defined

as A = ĥ(β − 1)
∣∣∣y(n)r

∣∣∣+ F +D.

Proof: Consider the positive definite Lyapunov function

V =
1

2
hs2 (3.52)

with the time derivative of

V̇ = hsṡ. (3.53)
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Plugging in equation (3.10) for ṡ with equation (3.4) for y(n) gives us

V̇ = hs(
1

h
(u−

n∑
i=1

aifi − d)− y(n)r ). (3.54)

Using our control input from equation (3.25),

V̇ = hs(
1

h
(ĥy(n)r +

n∑
i=1

âifi − k̄sat(
s

ϕs

)−
n∑

i=1

aifi − d)− y(n)r ), (3.55)

which leads to

V̇ = s((ĥ− h)y(n)r +
n∑

i=1

(âi − ai)fi − k̄sat(
s

ϕs

)− d). (3.56)

Inside the boundary layer, sat( s
ϕs
) = s

ϕs
so this becomes

V̇ = s((ĥ− h)y(n)r +
n∑

i=1

(âi − ai)fi − k̄
s

ϕs

− d). (3.57)

Maximizing the right-hand side of the equation produces the inequality as follows:

V̇ ≤ |s|
∣∣∣ĥ− h

∣∣∣∣∣y(n)r

∣∣+ |s|

∣∣∣∣∣
n∑

i=1

(âi − ai)fi

∣∣∣∣∣− k̄
s2

ϕs

+ |s||d|. (3.58)

Using the bounds from section 3.1.2, we arrive at

V̇ ≤ |s|ĥ(β − 1)
∣∣y(n)r

∣∣+ |s|F − k̄
s2

ϕs

+ |s|D. (3.59)
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Then choose A = ĥ(β − 1)
∣∣∣y(n)r

∣∣∣+ F +D so that

V̇ ≤ |s|A− k̄
s2

ϕs

. (3.60)

So the Lyapunov derivative is less than zero if

|s|A− k̄
s2

ϕs

≤ 0. (3.61)

This implies that

Aϕs ≤ k̄|s|. (3.62)

Case 1: Decreasing Boundary Layer

If the boundary layer is decreasing, then ϕ̇s < 0 so the gain is k̄ = k −

βĥϕ̇s > 0. Thus, equation (3.62) becomes

Aϕs

k̄
≤ |s|. (3.63)

Plugging in k̄ gives us

Aϕs

k − βĥϕ̇s

≤ |s|. (3.64)

Then substituting for ϕ̇s for case 1 results in

Aϕs

k − βĥ(β
−1

ĥ
k − λϕs)

≤ |s|. (3.65)
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Simplifying this, we get

A

βĥλ
≤ |s|. (3.66)

Case 2: Increasing Boundary Layer

If the boundary layer is increasing, then ϕ̇s > 0 so the gain is k̄ = k −

β−1ĥϕ̇s. Thus, equation (3.62) becomes

Aϕs ≤ (k − β−1ĥϕ̇s)|s|. (3.67)

Then substituting for ϕ̇s for case 2, we get

Aϕs ≤ (k − β−1ĥ(
β

ĥ
k − λβ2ϕs))|s|. (3.68)

Simplifying this, we arrive at

A

βĥλ
≤ |s|. (3.69)

Therefore, whether ϕs is increasing or decreasing, V̇ is negative definite for any

|s| ≥ A

βĥλ
. Hence, |s| will converge to some steady-state value |s|ss =

A

βĥλ
. Note

that this steady-state error can be reduced by using a larger λ. This concludes

the proof of the theorem.

Lemma: Using the control law from equations (3.25), (3.26), and (3.36),

the combined error s will stay within the boundary layer once it has converged

to its steady-state value.

Proof: According to the previous theorem, the combined error converges

to the steady-state value |s|ss =
A

βĥλ
. According to the lemma in section 3.3.3, the
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boundary layer converges to the steady-state value {ϕs}ss = k

βĥλ
. From equation

(3.16), k = |β − 1|ĥ
∣∣∣y(n)r

∣∣∣+ F +D + η = A+ η. Thus, the steady-state value for

ϕs can be written as

{ϕs}ss = |s|ss +
η

βĥλ
. (3.70)

Because η is greater than zero, the steady-state value for ϕs is greater than the

steady-state value for s. In other words, the combined error converges to a steady-

state value within the boundary layer.

3.4 Simulation

To demonstrate the results of this chapter, the control law was applied to

a system in a simulation. The implementation of the simulation is shown below

in Figure 2.1 with the relevant equations from this chapter.

Figure 3.1: Block diagram of control law implementation.

The same system and desired trajectory from section 2.4.1 were used with

the same gain values and parameters. Additionally, the same set of initial condi-
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tions were used. The only modification to note is that the varying boundary value

was initialized at ϕs(0) = 1 instead of the constant 0.05 or 0.3 in the previous

chapter.

Table 3.1: Initial conditions and control parameters.

y(0) ẏ(0) ÿ(0) y(3)(0) η λ D ϕs(0)

25
12

−1
3

−1.74 1
27

0.05 3 21 1

Figure 3.2 shows that the controller does indeed provide tracking control.

It can be seen in Figure 3.3 that the control input once again does not suffer

Figure 3.2: Actual and desired system state vs time.

from chattering due to our use of sat( s
ϕs
) instead of sgn(s). As mentioned in the

previous chapter, a boundary layer greater than approximately 0.25 was neces-

sary to completely eliminate chatter, although a smaller boundary layer did still

dampen the chatter significantly. Even though we initialized our boundary layer

at ϕs(0) = 1, our adaptive law for the boundary layer decreased it to a value
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Figure 3.3: Control input vs time.

that reduced the steady-state error but still eliminated chatter. Figure 3.4 plots

Figure 3.4: Combined error vs time (left: entire duration, right: first 0.5 seconds).

the combined error over the whole 16 seconds and also over just the first 0.5 sec-

onds. In the first plot, we can see that s does converge to the boundary layer

as expected. The second plot shows more detail of the first 0.5 seconds. From

this, we can see that s converges approximately as quickly as the second case in

chapter 2. Figure 3.4 shows that combined error still stays within the boundary

layer even with the disturbance. Finally, the state error, plotted in Figure 3.5,
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Figure 3.5: State error vs time.

does converge to its steady-state value near zero quite quickly but is affected by

the disturbance. The steady-state errors as well as the minimum and maximum

Table 3.2: Combined and state errors.

sss ess emin emax

1.34 ∗ 10−2 3.91 ∗ 10−4 −0.0086 0.0117

error listed in Table 3.2 are all similar to the results from the case 2 simulation

in chapter 2 so our chapter 3 control law successfully reproduces the results from

chapter 2 without manually tuning the boundary layer.
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Chapter 4. Adaptive Boundary Layer Sliding Mode

Controller for a Plant with Unknown Parameters

4.1 Problem Statement

In this section, the work from the previous section is modified and extended

to a plant with unknown parameters. A variable boundary layer is used in this

section as well. The plant model is a n-th order system again described in the

equation below as:

y(n) +
n∑

i=1

αifi = bu+ δ. (4.1)

The functions fi for all i are known, but the system parameters b and αi for all i

are unknown, so the following system models the actual plant with estimates of

the unknown parameters:

y(n) +
n∑

i=1

α̂ifi = b̂u+ δ. (4.2)

The equation parameters defined as:

h = 1/b, ai =
αi

b
, d = −δ/b (4.3)
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allow us to manipulate the equations (4.1) and (4.2) into the forms:

hy(n) +
n∑

i=1

aifi + d = u (4.4)

ĥy(n) +
n∑

i=1

âifi + d = u. (4.5)

Additionally, it is again assumed that the disturbance is bounded by some known

value as:

|d| ≤ D. (4.6)

However, the bounds to the coefficients are no longer assumed to be known. The

state error for the system is defined as

e = y − yd, (4.7)

where yd is the desired output. The error dynamics are then

e(n−1) = y(n−1) − y
(n−1)
d . (4.8)

This is then used to define the combined error as

s = e(n−1) +
n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i). (4.9)

The above equation guarantees that if s vanishes, then the state error e expo-

nentially approaches 0 for any positive λ. To obtain a more concise notation, the
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reference value y
(n)
r is defined as:

y(n)r = y
(n)
d −

n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i+1). (4.10)

Taking the derivative of the combined error equation (4.9) and substituting the

above equation into the result yields:

ṡ = y(n) − y(n)r . (4.11)

4.2 Error Behavior

Lemma: If the control law

u = ĥy(n)r − ksat(
s

ϕs

) +
n∑

i=1

âifi (4.12)

with k > 0 is applied to plant (4.4), then the closed loop response of the sliding

variable s inside the boundary layer, in the absence of external disturbance, will

be as follows:

hϕs

k
ṡ+ s = ρ, (4.13)

where

ρ =
ϕs

k
((ĥ− h)y(n)r +

n∑
i=1

(âi − ai)fi). (4.14)
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Proof: Solving equation (4.4) for y(n) and substituting into equation (4.11)

gives:

ṡ =
1

h
(u−

n∑
i=1

aifi − d)− y(n)r . (4.15)

Similar to the previous chapters, the control law would then ideally be chosen as:

u = hy(n)r − ksat(
s

ϕs

) +
n∑

i=1

aifi. (4.16)

However, because the coefficients are unknown, the input is modified to:

u = ĥy(n)r − ksat(
s

ϕs

) +
n∑

i=1

âifi, (4.17)

where k > 0. Again substitute equation (4.12) into equation (4.1) with d = 0 to

get:

hy(n) +
n∑

i=1

aifi = ĥy(n)r − ksat(
s

ϕs

) +
n∑

i=1

âifi. (4.18)

Then add and subtract hy
(n)
r to get:

hy(n) +
n∑

i=1

aifi = ĥy(n)r − hy(n)r + hy(n)r − ksat(
s

ϕs

) +
n∑

i=1

âifi, (4.19)

which leads to:

hy(n) − hy(n)r + ksat(
s

ϕs

) = ĥy(n)r − hy(n)r +
n∑

i=1

âifi −
n∑

i=1

aifi. (4.20)
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Thus, inside the boundary layer where sat( s
ϕs
) = s

ϕs
, the dynamics of the combined

error is then:

hϕs

k
ṡ+ s = ρ, (4.21)

where

ρ =
ϕs

k
((ĥ− h)y(n)r +

n∑
i=1

(âi − ai)fi). (4.22)

In fact, ρ is the effect on s of the error from using the parameter estimations

instead of the real, unknown parameters.

Lemma: According to equation (4.21), if s is within the boundary layer,

then ρ is small.

Proof: When s is within the boundary layer, the state errors are small.

Thus, by equation (4.10), the reference value y
(n)
r is approximately equal to y

(n)
d .

Then, by equation (4.11), ṡ must be small since y(n) ≈ y
(n)
d within the boundary

layer. Therefore, by equation (4.21), ρ must be small because both s and ṡ are

small.

4.3 Constant Boundary Layer

Theorem: Consider the system described by equation (4.4) and estimated

by equation (4.5). The system parameters h and ai for all i are unknown. The

disturbance is bounded by (4.6). The control law is defined by equation (4.12)

with k defined as:

k = D + η, (4.23)
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where η > 0. If the following adaptation laws

˙̂
h = −γ2

0sy
(n)
r (4.24)

˙̂ai = −γ2
i sfi (4.25)

are used, then, as time passes, s approaches the boundary layer.

Proof: For the stability analysis, choose the Lyapunov function as:

V =
1

2
(hs2 + (

ĥ− h

γ0
)2 +

n∑
i=1

(
âi − ai

γi
)2). (4.26)

Take the derivative as:

V̇ = hsṡ+
˙̂
h

γ2
0

(ĥ− h) +
n∑

i=1

˙̂ai
γ2
i

(âi − ai). (4.27)

Using equation (4.15) for ṡ, we get

V̇ = hs(
1

h
(u−

n∑
i=1

aifi − d)− y(n)r ) +
˙̂
h

γ2
0

(ĥ− h) +
n∑

i=1

˙̂ai
γ2
i

(âi − ai). (4.28)

Plug in the control law (4.12) and combine terms to get the following form:

V̇ = (ĥ− h)(sy(n)r +
˙̂
h

γ2
0

) +
n∑

i=1

(âi − ai)(sfi +
˙̂ai
γ2
i

)− sd− sksat(
s

ϕs

). (4.29)
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Then taking the adaptive laws as

˙̂
h = −γ2

0sy
(n)
r (4.30)

˙̂ai = −γ2
i sfi, (4.31)

the Lyapunov derivative reduces to

V̇ = −sksat(
s

ϕs

)− sd. (4.32)

Outside the boundary layer, sat( s
ϕs
) is equivalent to sgn(s) and ssgn(s) is clearly

|s| so we can rewrite this as

V̇ = −|s|k − sd. (4.33)

We convert this to the inequality below:

V̇ ≤ −|s|k + |s|D. (4.34)

Choosing k = D + η where η > 0 leads to

V̇ ≤ −η|s|. (4.35)

Hence, V̇ is always negative outside the boundary layer so it will decrease until s

reaches the boundary layer.
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4.4 Time-Varying Boundary Layer

4.4.1 Required Error Behavior for Varying Boundary Layer

Lemma: Consider the system described in section 4.1 with the controller

described in section 4.3 modified to use a varying boundary layer. For s to ap-

proach the boundary layer when outside, sṡ ≤ (ϕ̇s− η
h
)|s| proves this convergence.

Proof: Suppose s > ϕs > 0. Then s clearly approaches ϕs if and only if:

d

dt
(s− ϕs) ≤ −η

h
(4.36)

where η > 0. Applying the derivative gives the equation:

ṡ− ϕ̇s ≤ −η

h
, (4.37)

which leads to:

ṡ ≤ (ϕ̇s −
η

h
). (4.38)

But s > 0, so s = |s| and:

sṡ ≤ (ϕ̇s −
η

h
)|s|. (4.39)

Alternatively, suppose s < −ϕs < 0. Then clearly s approaches ϕs if and only if:

d

dt
(s− (−ϕs)) ≥

η

h
(4.40)
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where η > 0. Applying the derivative gives the equation:

ṡ+ ϕ̇s ≥
η

h
, (4.41)

which leads to:

ṡ ≥ (
η

h
− ϕ̇s). (4.42)

But s < 0 so s = −|s| and multiplying by s flips the inequality

sṡ ≤ (ϕ̇s −
η

h
)|s|. (4.43)

Hence, s converges to the boundary layer if sṡ ≤ (ϕ̇s − η
h
)|s|.

4.4.2 Derivation of the Control Law

Theorem: Consider the system described by equation (4.4) and estimated

by equation (4.5) where the system parameters h and ai for all i are unknown,

and the disturbance is bounded by (4.6). Using the adaptation laws (4.24) and

(4.25) and the control law:

u = ĥy(n)r − k̄sat(
s

ϕs

) +
n∑

i=1

âifi (4.44)

with k̄ = k − ĥϕ̇ where k = D + η for η > 0, then s approaches the time-varying

boundary layer.

Proof: As the lemma in the previous section demonstrated, the goal is

to show that sṡ ≤ (ϕ̇s − η
h
)|s| when outside the boundary layer. From equation
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(4.11) with y(n) from equation (4.4), the error dynamics becomes:

ṡ =
1

h
(u−

n∑
i=1

aifi − d)− y(n)r . (4.45)

Plugging in the value for u from equation (4.44) gives

ṡ =
1

h
(ĥy(n)r − k̄sat(

s

ϕs

) +
n∑

i=1

âifi −
n∑

i=1

aifi − d)− y(n)r . (4.46)

Algebraically manipulating the equation allows us to write this as

ṡ =
1

h
((ĥ− h)y(n)r +

n∑
i=1

(âi − ai)fi)−
1

h
k̄sat(

s

ϕs

)− 1

h
d. (4.47)

We can plug in equation (4.14) with k̄ so

ṡ =
k̄

ϕsh
ρ− 1

h
k̄sat(

s

ϕs

)− 1

h
d. (4.48)

Then, when there is no disturbance, assuming k̄ > 0, then the theorem from

section 4.3 would guarantee that s does converge to the boundary layer. Then,

by the second lemma from section 4.2, ρ must decrease to some small value. The

above equation will then reduce to

ṡ ≈ −1

h
k̄sat(

s

ϕs

)− 1

h
d. (4.49)
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To get an equation of the correct form to be compared to equation (4.43) from the

lemma, the above equation is multiplied by s and maximized to get an inequality:

sṡ ≤ −s
1

h
k̄sat(

s

ϕs

) +
1

h
|s|D. (4.50)

Outside the boundary layer, sat( s
ϕs
) = sgn(s) and ssgn(s) = |s| so

sṡ ≤ −1

h
k̄|s|+ 1

h
|s|D. (4.51)

This can now be set equal to the equation (3.24) from the lemma:

(ϕ̇s −
η

h
)|s| = −1

h
k̄|s|+ 1

h
|s|D. (4.52)

Dividing everything by |s| and isolating k̄ leads to

k̄ = η +D − hϕ̇s. (4.53)

Using our estimate for h and plugging in k = D + η, we obtain

k̄ = k − ĥϕ̇s. (4.54)

Of important note, this analysis is dependent on the fact that k̄ > 0. Equation

(4.49) is only valid if ρ does indeed decrease to a small value which, in section

4.2, was shown to be dependent on having a gain value greater than zero. Later,
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using a lemma at the end of section 4.4.3, it is shown that, by the correct choice

of ϕ̇s, k̄ is, in fact, positive.

4.4.3 Derivation of the Boundary Layer Adaptation Law

Theorem: If λs, the rate of decay of s, is set equal to λ, the rate of decay

of e, then the following boundary layer adaptation law is found:

ϕ̇s =
k

ĥ
− λϕs. (4.55)

Proof: From equation (4.11) with y(n) from equation (4.4), the error dy-

namics becomes:

ṡ =
1

h
(u−

n∑
i=1

aifi − d)− y(n)r . (4.56)

Plugging in the value for u from equation (4.44) gives

ṡ =
1

h
(ĥy(n)r − k̄sat(

s

ϕs

) +
n∑

i=1

âifi −
n∑

i=1

aifi − d)− y(n)r . (4.57)

Inside the boundary layer, we can replace sat( s
ϕs
) with s

ϕs
:

ṡ =
1

h
(ĥy(n)r − k̄

s

ϕs

+
n∑

i=1

âifi −
n∑

i=1

aifi − d)− y(n)r . (4.58)

Combining terms leads to

ṡ =
1

h
(ĥ− h)y(n)r +

1

h

n∑
i=1

(âi − ai)fi −
1

h
k̄
s

ϕs

− 1

h
d (4.59)
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so we can substitute ρ from equation (4.14):

ṡ =
k̄

ϕsh
ρ− 1

h
k̄
s

ϕs

− 1

h
d. (4.60)

Once again assuming that k̄ > 0 we can say that ρ is small which reduces our

equation to

ṡ ≈ −1

h
k̄
s

ϕs

− 1

h
d. (4.61)

Estimating h as our ĥ we get

ṡ ≈ −1

ĥ
k̄
s

ϕs

− 1

ĥ
d. (4.62)

The disturbance is bounded so s will be bounded as well, and the coefficient on

the s term will drive the rate at which s decays. Thus, we set this rate λs equal

to λ, the rate at which e decays:

λs =
k̄

ĥϕs

= λ. (4.63)

Plugging in k̄ and solving for ϕ̇s leads to the result:

ϕ̇s =
k

ĥ
− λϕs. (4.64)

An important note is that the ĥ estimate must be hard-coded to stay above some

minimum value greater than zero or ϕ̇s could become unbounded. This can be

justified based on the knowledge that h is known to be greater than zero.
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Lemma: The adaptation law (4.64) for ϕs ensures that k̄ is always positive.

Proof: We can now substitute our adaptation law (4.64) into equation

(4.54) to get

k̄ = k − ĥ(
k

ĥ
− λϕs). (4.65)

The k terms cancel out so we are left with

k̄ = ĥλϕs. (4.66)

Therefore, with this adaptive law, k̄ is indeed always greater than zero so the

analysis in this section and section 4.4.2 are in fact valid.

4.5 Simulation

To demonstrate the results of this chapter, the control law was applied to

a system in a simulation. The implementation of the simulation is shown below

in Figure 4.1 with the relevant equations from this chapter. The same system and

desired trajectory from section 2.4.1 was used with the same initial conditions and

gain values listed in Table 4.1. The estimates of the parameters, that is ĥ and

Table 4.1: Control parameters and initial state for both cases.

y(0) ẏ(0) ÿ(0) y(3)(0) η λ D ϕs(0)

25
12

−1
3

−1.74 1
27

0.05 3 21 1

âi for i = 1, ..., n, are no longer constant for this chapter so they were initialized
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Figure 4.1: Block diagram of control law implementation.

at the values listed in Table 4.2. Two cases were simulated with differing initial

conditions for the parameter estimates. Case 1 initialized the parameters at the

values that were used in the chapters 2 and 3 for the constant parameter estimates.

Case 2 initializes all five unknown parameters at 25. The λf parameter is still 0.25

as in the earlier chapter so the initial parameter estimates in case 2 are clearly

all incorrect by orders of magnitude. The gains for the adaptive laws for the

parameter estimates were set to γ0 = 7 and γi = 14 for i = 1, ..., 4 after some

tuning. In both cases, ĥ was hard-coded to be greater than or equal to 0.1.

Figure 4.2 shows that the controller does indeed provide tracking control

in both cases despite not knowing the true plant parameters at all. Figure 4.3

shows the control input over time. The control input required is much higher in

the first 0.5 seconds, so Figure 4.4 shows plots of the first 0.5 seconds and Figure
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Table 4.2: Initial system parameter estimates and adaptation law gain values. (Case
1: initialized with nominal parameters. Case 2: initialized with randomly guessed
parameters.)

ĥ(0) â1(0) â2(0) â3(0) â4(0) γ0 γ1 γ2 γ3 γ4

Actual 1 λ4
f 4λ3

f 6λ2
f 4λf

Case 1
√
0.9 ∗ 1.4 1.5λ4

f 3λ3
f 8λ2

f 2λf 7 14 14 14 14

Case 2 25 25 25 25 25 7 14 14 14 14

Figure 4.2: Actual and desired system state vs time.

4.5 shows more detailed plots of the input after the initial spike. Figure 4.4 shows

that this control law does have much steeper requirements for the control input

initially compared to the control laws from the previous chapters. This could

be tuned with the γi parameters in the adaptation laws. The second case has a

maximum absolute control input of about twice that of the first case so it can

be gathered that a higher error in the initial estimate for the system parameters

will lead to a higher control input. Figure 4.5 shows that the control input still

attenuates the chatter very well due to our use of sat( s
ϕs
) instead of sgn(s). As
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Figure 4.3: Control input vs time.

Figure 4.4: Control input vs time.

mentioned in chapter 2, an arbitrarily small boundary layer would not completely

eliminate chatter, although it could still dampen the chatter significantly. The

boundary layer used in our simulation is plotted in Figure 4.6. As can be seen,

we initialized our boundary layer at ϕs(0) = 1, but our adaptive law for the

boundary layer increased it and decreased it as necessary to minimize the steady-

state error while still attenuating chatter. Interestingly, the controller did a better

job of eliminating the chatter in the first case. Additional work should be done
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Figure 4.5: Control input vs time.

to determine why this is the case. Figure 4.6 also shows that s does converge

Figure 4.6: Combined error vs time.

to the boundary layer as expected. Interestingly, s appears to be less affected

by the disturbance as it was in chapters 2 and 3. There is only a small spike

when the disturbance is added and removed. The state error, plotted in Figure

4.7, converges towards zero quite quickly as well with the disturbance only mildly

affecting it. The error, in fact, is actually less affected than it was in chapters 2

and 3 because s was less affected. As can be seen in Figure 4.8, the residual is
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Figure 4.7: State error vs time.

Figure 4.8: Residual rho vs time.

very small after s converges to the boundary layer and stays small except when

the large disturbance is applied. The steady-state errors as well as the minimum

and maximum errors are listed in Table 4.3 below. Case 2 has steady-state values

approximately three times the steady state values in case 1 for both s and e. The

minimum and maximum errors are also slightly larger. However, initial errors for

the unknown parameter estimates were orders of magnitude higher in the second

case, so such a small difference in the steady-state errors still demonstrates that
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Table 4.3: Combined and state errors.

sss ess emin emax

Case 1 0.24 ∗ 10−2 0.66 ∗ 10−4 −0.0004 0.0088

Case 2 1.52 ∗ 10−2 5.28 ∗ 10−4 −0.0019 0.0091

our control law works successfully even with highly inaccurate initial guesses for

the parameters. Furthermore, the difference between the steady-state errors of

the two cases was seen to effectively vanish after about 500 seconds in longer

simulations. The steady-state errors are very similar to the errors in Table 3.2,

so this control method provides good tracking control comparable to the control

method in chapter 3 without requiring bounds for the parameters.
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Chapter 5. Conclusion

The proofs developed in this paper show the potential of using an adaptive

SMC with an adaptive boundary layer to control an arbitrary nth-order plant.

The simulations in sections 2.4, 3.4, and 4.5 demonstrate the value of this ap-

proach when applied to a 4th-order system with unknown parameters. In the

proofs and simulations in chapter 2 and chapter 3, an SMC with a constant and

adaptive boundary layer, respectively, were applied to a plant showing the ben-

efit of using an adaptive boundary layer instead of a constant boundary layer.

In chapter 4, a boundary layer adaptation law was derived that can be applied

to a plant with unknown parameters, together with an SMC that uses adapta-

tion laws to compensate for the unknown parameters. Table 5.1 summarizes the

results from all three control law simulations. The steady-state s and e for the

chapter 3 simulation is quite similar to that of the second case from chapter 2

where the boundary layer was tuned to ϕs = 0.3 manually. The minimum and

maximum error are similar as well, so the adaptive boundary layer is superior

to the constant boundary layer, as it did not require the same tuning but gave

comparable results. The results from chapter 4 show somewhat similar errors as

chapter 2. As for the difference between the errors in case 1 and 2 of chapter 4, it

does appear the differences effectively vanish eventually, but only after about 500
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Table 5.1: SMC methods: combined and state errors.

sss ess emin emax

Chapter 2: ϕs = 0.05 1.50 ∗ 10−2 0.74 ∗ 10−4 −0.0016 0.0117

Chapter 2: ϕs = 0.3 1.38 ∗ 10−2 4.20 ∗ 10−4 −0.0098 0.0117

Chapter 3: ϕs(0) = 1 1.34 ∗ 10−2 3.91 ∗ 10−4 −0.0086 0.0117

Chapter 4: Nominal Parameter Estimates 0.24 ∗ 10−2 0.66 ∗ 10−4 −0.0004 0.0088

Chapter 4: Random Parameter Estimates 1.52 ∗ 10−2 5.28 ∗ 10−4 −0.0019 0.0091

seconds. Thus, the simulations in chapter 4 suggest a small sacrifice in transient

error behavior as compared to chapters 2 and 3. The primary sacrifice, though, is

seen in the control input during the initial transient phase. As mentioned in sec-

tion 4.5.1, the simulation in chapter 4 had noticeably higher control input values

in the transient behavior. In practice, the control laws of chapter 3 and chapter

4 would be most useful in different situations, as listed in Table 5.2. If a set of

nominal parameters and well-defined bounds for the parameter error are known,

the control method of chapter 3 would be desirable due to its lower initial control

input values during the transient phase. Without the nominal parameters and

well-defined bounds for the parameter error, the chapter 3 method would not be

implementable, but the method from chapter 4 could still be implemented with

nearly as good results. Ultimately, the simulations demonstrated that the con-

trol method from chapter 4 provides adequate tracking control with steady-state
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Table 5.2: SMC methods: benefits and drawbacks.

Chapter 2 Chapter 3 Chapter 4

Boundary Layer (BL) Constant Adaptive Adaptive

System Parameters (SP) Known Bounds Known Bounds Unknown

BL Tuning Manual Adaptive Adaptive

Chattering
Good BL Tuning: Eliminated

Bad BL Tuning: Exists

Automatically Eliminated Automatically Eliminated

Steady-State Error
Good BL Tuning: Good

Bad BL Tuning: Better

Better Best

Initial Control Effort Low Low High

Suggested Use Do Not Use Known SP Bounds Unknown SP

behavior comparable to the control method in chapter 3 that relies on known

bounds of uncertain parameters.
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