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Abstract

CLEARSCAN: A MACHINE LEARNING SYSTEM FOR
CUSTOMIZED, SITE-SPECIFIC RADAR IMAGE

FILTERS

Erick Jones

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

Computer Science

The University of Alabama in Huntsville

August 2024

In the field of radar meteorology, a perpetual problem is removal of so-called

anomalous propagation (AP), i.e., non-precipitation echoes, from the produced im-

ages. Much work has been done in this area already, including conventional heuris-

tic algorithms as well as machine-learning systems such as neural networks. Often

the focus is on certain familiar radar architectures such as WSR-88D, also known

as NEXRAD. However, a large number of radars exist which are not identical to

NEXRAD; and there are also environmental differences such as RF interference which

can affect the success rate of existing AP removal strategies. The focus of this paper

is to present a flexible machine-learning system for this task which provides a conve-

nient training interface so it can be adapted to the specific conditions present at any

given radar site to create a customized filter. We have named this system ClearScan.
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Chapter 1. Introduction

For purposes of real-time weather detection, modern meteorologists rely

more on radar than on any other sensing equipment. This is increasingly true in

recent years as radar coverage has increased, and as the technology has improved

– particularly with the introduction of dual-polarization radars [7]. Yet, the

nature of this equipment’s operation is such that some of the echoes detected

do not correspond to actual weather [10]. Temperature inversions, sun spikes,

radio-signal interference, and even wind farms can add clutter to the returned

image. A frequently studied problem, then, is how to automatically distinguish

between these anomalous echoes and those corresponding to actual weather, so

as to present a clean image showing only precipitation – either to be displayed

directly, or to be used in further processing steps such as rainfall accumulations.

When working with computers, the most familiar mode of operation is

where we tell the computer what to do and how to do it, and it performs as

instructed. Imagine if, instead, the computer could figure out for itself how to do

what we ask. The field of machine learning seems to hold a glimmer of this possi-

bility – this idea that the computer becomes a “partner” in solving the problem.

We may not yet be at the point where we can just speak conversationally with
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the computer like in Star Trek; but it is always worth a try to see what problems

we can solve with machine learning, if only to further develop the concept.

1.1 Background Overview

The idea of using machine learning and neural networks with the particular

problem of cleaning up radar images is certainly nothing new. A number of papers

have already been published on the subject, for example:

• [10] presents a very simple fully-connected, feed-forward neural network to

make a decision on a per-pixel basis – but with a robust set of pre-processed

inputs, including several that were computed using a “neighborhood” of

each pixel.

• [14] instead takes the approach of stacking multiple radar images taken at

different vertical ”tilts” to produce a three-dimensional radar image; and

then running a 3D convolutional neural network against this image volume.

(Further examples of related work in this area can be found in Chapter 2.)

There have also been conventional (non-machine-learning) algorithms de-

veloped; and dual-polarization technology in particular has enabled some success-

ful hydrometeor classification schemes [4].

However, as will be discussed in the next section, these existing tools do

not necessarily work with radars that have different operating conditions than

those for which they were developed.
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1.2 Motivation

A challenge that we have often observed at radar customer sites is that the

radar is different enough from NEXRAD that off-the-shelf solutions do not work

as well. In particular, NEXRAD radars work with S-band frequencies, but many

commercial entities that own radars must use C-band, since S-band is reserved

for government use. Additionally, when radars are deployed in other countries,

they sometimes find that RF interference is substantial since frequencies are not

regulated as tightly as they are in the U.S.

Our objective, then, was a system that would help radar users create

custom AP filters – enabling them to train it with their own data, under their

own conditions. In the spirit of computers acting in partnership with users, we

decided that machine-learning technology provides a sound basis for the type of

filter training environment that we envisioned.

1.3 Methodology

In order to provide the most flexibility, the basic structure used is a convo-

lutional neural network (CNN) with two hidden layers. Radar data processing is,

at its core, an exercise in image processing; so it stands to reason that techniques

such as CNN which are often used in image processing would be applicable here.

Rather than combine with a fully-connected network (FCN) to produce a

single answer for the whole image, we opted to use just the CNN part; this way,

decisions for multiple pixels in the image could be generated in a single run. Only
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the local neighborhood around a pixel (determined by the size of the filters) will

contribute to the decision reached for that pixel.

Since dual-polarization radars are becoming more common, we decided to

require the dual-pol data moments (differential reflectivity, correlation coefficient,

and differential phase) as inputs in addition to the echo intensity (“reflectivity”).

This does somewhat limit the applicability of the method since it cannot be used

as-is with single-polarization radars. Extending these techniques is beyond the

scope of this paper (but may be a future project).

Unlike [10], we opted not to have any special pre-processing. Undoubtedly,

the robust set of pre-processed input variables used there represents a great deal

of expertise from the field. For our purposes, we believe it makes more sense for

the network to decide for itself what patterns are applicable; so only the raw data

moments from the radar are provided as input.

The training interface provided is web-based, and designed for ease of

use; but also includes all the elements that are needed to guarantee a robust

machine-learning implementation. In particular, the training interface (which

will be described in more detail in the next section) provides:

• Selection of sample data by date/time, with automatic retrieval from a

historical data archive for purposes of labeling and testing.

• A visual, paint-program-like interface for labeling the data.

• A network builder that lets you select which samples to use for training and

for validation, as well as tune meta-parameters such as number of filters in

the hidden layers.
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• Online network training, which shows the test and validation success rates

as it goes along, and provides a “stop” button that can be used once the

operator decides that sufficient training has taken place.

• A test definition interface, where you select a collection of labeled samples

to use as a test and then run previously trained networks to see how they

perform.

• Multi-user support, and facilities for entering comments that are visible to

other users.
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1.4 Thesis Organization

In the next chapter, we will provide some background with examples of

related work in the field of machine-learning techniques for radar image quality

improvement. Chapter 3 will introduce the filter training system we have created

and offer a description of the user interface and operation. In Chapter 4, we

provide some of the more interesting implementation details to help clarify how

it works. Chapter 5 describes, as a case-study, our experience with deploying this

system for a radar in Bangladesh. Chapter 6 concludes with a summary and some

ideas for future work.
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Chapter 2. Background and Related Work

Research and experimentation on the problem of detection and removal

of non-precipitation echoes from radar images goes back decades. For example,

an article by K. A. Browning from 1978 expands on the idea of examining the

“fluctuation rate of the radar return” as a discriminating feature [3], in turn

crediting an earlier report from 1975 for the basic idea [9].

The idea of applying machine learning to the task likewise has a long

history. Although the field of ML has itself developed rapidly in recent years

to make more advanced techniques available, one can nonetheless find work in

previous decades that tried to make the best use of the tools available at the

time. In some cases that meant looking for less granular results (such as classifying

whole images or regions instead of individual pixels), or making heavy use of pre-

processing techniques to achieve a reduction in the dimensionality of the inputs.

In this chapter, we will provide summaries of the most interesting papers

we have come across. In comparing the approaches, we find that, aside from the

different AI methods used, it is also interesting to see the variation in terms of:

• use of Doppler velocity data;

• use of dual-polarization data;

• use of volumetric a.k.a. 3D data, requiring scans at different elevations;
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• pre-processing/feature extraction versus “pure” machine learning.

We will list these in chronological order to give a sense of the progression

in this area of research.

• In an article by Grecu and Krajewski from 1999, we see an application of

artificial neural networks to the problem. This was an attempt to make

use of a large body of archived images from older radars without Doppler

capabilities for climatological research purposes.

The author notes that “pixel-by-pixel classification based on reflectivity in-

formation from a single scan does not seem possible”, given the applicable

state of radar technology as well as that of machine learning; so the pa-

per instead focuses on categorizing whole images in terms of the suspected

amount of image contamination from AP (i.e., so you can just throw out the

most contaminated images). Preprocessing heuristics were used to summa-

rize the input images, so as to feed only 12 inputs into the neural network

itself [6].

• Grecu and Krajewski also published a second article that same year, this

time tackling the problem of per-pixel classification. They still chose not

to use Doppler information, though they mention other contemporary re-

searchers who were starting to incorporate Doppler velocity data.

The technique described makes heavy use of feature extraction (this time

computed on small windows around the pixel to be classified), and makes

significant assumptions about the data available. In particular, it requires

8



consecutive scans at the same level in order to estimate ”movement” via

image correlation, and scans at different elevation to determine the height

of the echoing region. Once again, the neural network is small and is highly

dependent on effective local feature selection.

They also made the interesting choice that training data would be provided

in terms of whole images which are either all precip or all non-precip – even

mentioning that this could result in the network having a hard time learning

to recognize precipitation echoes embedded inside areas of AP [5].

• The Lakshmanan paper (mentioned in the introduction) is from 2007, and is

a lot like the per-pixel classifier from Grecu and Krajewski (and indeed cites

the latter). Like Grecu, a list of subjectively determined feature extraction

heuristics is used; and volumetric data (scans at multiple elevations) is

required.

Doppler velocity is used here, but conditionally. It is noted that the effective

range for accurate velocity determination is shorter than that for reflectivity;

so they decided to train two networks, one with Doppler velocity data and

one without.

One innovation offered here is that the actual usefulness of each of the pos-

sible input features is formally determined – basically by trying the network

both with and without the given input feature to see if it has any effect on

the overall performance [10].
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• In 2008, Rico-Ramirez et al. described classifiers based on Fuzzy Logic and

Bayes methods, comparing the results obtained with each.

Here we see the use of dual-polarization data moments (which would’ve

been relatively new technology and not available everywhere – see [7]).

Also, instead of having a long list of complex features, this offers a more

straightforward method where each data moment is preprocessed using a

“texture function”, which in effect captures the local variability of that mo-

ment (noting the observations from Browning [3] that “fluctuations” often

have more discriminating utility than the raw values) [17].

• The 2012 paper from T. Islam et al. is explicitly an extension of the afore-

mentioned study, but using different AI methods including support vector

machine (SVM), decision trees, neural networks, and nearest-neighbor. The

simple texture function from Rico-Ramirez was again used in lieu of com-

plicated heuristics.

This paper claimed quite impressive accuracy (98%) as long as dual-pol

moments and Doppler velocity are available [8].

• In 2015-2016, a series of papers from Hansoo Lee et al. explored a wide vari-

ety of AI techniques, including neural networks, discrete wavelet transforms,

decision tree ensembles, and support vector machines – but all based on the

idea of “spatial clustering” as a pre-processing step. Apparently the idea is

that you divide the image into clusters just using the reflectivity data, and

then compute statistical information over the whole cluster before feeding
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it into the relevant AI system. Although interesting, it is clear that these

techniques would be heavily dependent on the effectiveness of the clustering

heuristic [12] [11] [15] [13].

• But then in 2018, Hansoo Lee et al. offered something different: a classifier

using a 3D convolutional neural network (CNN). Finally there would be

no need for pre-processing, feature extraction, or clustering – you just feed

all the data into the network as a 480x480x41 block of inputs, and let the

network decide for itself what local features are applicable [14].

This is a lot more like the approach we took, except that it requires volu-

metric scanning patterns (which are often not available in the environments

we deal with, as will be discussed more in Chapter 4).

• One more article we found interesting was from Li Peng, 2019. Although

this one is about identifying targets with military radars rather than the me-

teorological applications discussed above, it still deals with the same types

of issues – namely, the problems of feature selection, model construction,

and hyperparameter tuning.

The author notes that these tasks require considerable time and effort from

domain experts and data scientists, and so puts forward some ideas based

on a concept called “meta-learning”, which allows the user to apply machine

learning to figure those parts out instead of doing them by hand.

11



It is an interesting concept, but targeted more for “big data” environments,

i.e., when you already have a large library of training data and just need to

figure out what to do with all of it.

12



Chapter 3. ClearScan System Operation

3.1 Sample Import

As with any machine-learning system, providing sufficient training data is

key. We provide a streamlined workflow for this process, allowing an operator to

quickly select the data to use and label it, and to keep the data samples organized.

The initial view is a list of all data samples that have been imported into

the system so far. A navigation bar sits at the top of this view, providing access

to other functions which will be described later.

Figure 3.1: Datasets with navbar.

But before a dataset will show up here, it needs to be imported; so we will

examine that process. Selecting “Add NexRad Dataset” from the navbar brings

us to this page, see figure 3.2.

13



Figure 3.2: Dataset import menu.

Using this page, it is possible to import any dataset from a NEXRAD

site, from a public archive that goes back several decades: https://registry.

opendata.aws/noaa-nexrad/

The user need only specify a radar site and a date/time, and the system

will automatically import that data into the local database for labeling/training

purposes.

The “Add Gen3 Dataset” function is similar, but instead provides access

to a private archive for custom radars – more on that in Chapter 5.

14
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3.2 Labeling

Once the desired data is imported, you return to the Datasets view and

select it. Datasets can include multiple scans i.e., from different vertical tilts (but

for now we have it configured to only work with the lowest tilt).

Figure 3.3: Dataset page.

Selecting the scan then brings up the labeling interface, see figure 3.4.

A key point for the labeling interface is that it is not necessary to label

every part of the imported radar image. A user can label as much or as little as

they choose, and only the labeled pixels will participate in training, validation,

15



Figure 3.4: Labeling interface.

or testing as applicable. In figure 3.4, the green squiggly line on the left is where

the user labeled examples of “good” images, and the smaller red lines to the right

are “bad” areas.

Again, these labels are simply drawn onto the image, as if with a paint

program. The controls in the upper left allow you to select a “pen color”, with

red representing AP (to be removed) and green representing precip (to be kept).

There is also an eraser, and an option to hide the labels.

Additional controls along the top include:

• pen size selection;

• data selector, which lets you see other data moments such as velocity and

the dual-pol moments, or filter results if present (more on that in a bit);

• a save button.

16



3.3 Network Builder

Once you have a sufficient number of training samples, it is time to use

them to build a filter network. We have found that labeling about 10-12 radar

images is sufficient; data augmentation techniques such as “random cropping”

are used to help ensure that we do not need to provide enormous quantities of

training data (more on that in Chapter 4).

The Network Builder interface (see figure 3.5) lets you specify a name for

your network, and select which samples to use for training, validation, and testing.

You can also tune some meta-parameters.

Figure 3.5: Network editor.
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On the Network Builder overview page (figure 3.6), you can see net-

works that have been added. Note that we have not trained our new network

(“Amalthea”) yet, so no Test Score appears.

Figure 3.6: Network builder overview.

We will select “train” to see how it does with the samples we have provided.

The training view provides scrolling text that updates us in real-time of the

training progress, as shown in figure 3.7.

Figure 3.7: Network training.
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Every four batches it will run the samples we selected as “validation” to

demonstrate progress. Note that these “validation” samples are not actually used

for the training, i.e., it will not update any parameters during that phase; this is

mainly to help you see if “overtraining” may be taking place.

At any time we can click “Stop” and conclude the network training. At

that point it loads the samples we have selected as “test”, and produces a final

score (see figure 3.8).

Figure 3.8: Network training completed.

Returning to the Network Builder page, we can now see that it has filled

in the “Test Score”, as shown in figure 3.6.

But this leaves an important question. Is this new network really perform-

ing well compared to the other networks... or did we just have different samples

selected as the “test” for those other networks? To do a proper comparison, then,

we need to define a single test that can be applied to multiple networks.

19



Figure 3.9: New network added.

3.4 Test Builder

This brings us to the Test Builder page, illustrated in the figures below.

• Figure 3.10 depicts the overview page that shows all the tests that have

been defined (it only has one at the moment).

• Figure 3.11 shows the Edit page, where we select the samples we want to

use in this test (much like the Edit Network page, except that there is only

one checkbox column here to either use the sample or not).

• There is also a “Run” page where we can select a network and run the test,

see figure 3.12.

Figure 3.10: Test builder overview.
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Figure 3.11: Editing the list of test samples.

If we select our test as a “Favorite”, a column for its results will be shown

in the “Network Builder” overview page as shown in figure 3.13.

21



Figure 3.12: Selecting a test to run.

Figure 3.13: Results column for Full Test shown.
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Chapter 4. Implementation Details

As we can see from Chapter 2, there are many approaches that people have

tried over the years to solve this problem, often achieving impressive accuracy.

Although it might be tempting to follow the most successful methods like

a recipe, the reality is that our operational environments are not necessarily the

same. In particular, we do not always have volumetric data, as some radar users

prefer to only scan at a single elevation; therefore, the 3D CNN as in H. Lee 2018

[14] would not quite work. And the various methods involving pre-processing are

tuned for specific types of image contamination from AP, and are not necessarily

applicable for other problems such as RF interference (as will be discussed more

in the next chapter).

As mentioned in the introduction, CNNs offer substantial flexibility by al-

lowing the network to decide for itself what features are important, rather than

requiring domain experts to implement and tune robust feature extraction meth-

ods. And the hope further is that the use of dual-polarization data will provide

sufficient input to the CNN to make up for the lack of volumetric input.

We are not using Doppler velocity data because, as Lakshmanan [10] and

others have noted, this would severely restrict the useful range of the network.
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(We could train two networks like Lakshmanan did, but we have not opted to do

so.)

Consequently, the inputs to our CNN are the raw reflectivity, and the

three dual-pol data moments, namely differential reflectivity, differential phase,

and correlation coefficient (see [7]).

An image containing these four data moments as “channels” (much like an

RGB image would have three channels) is then fed through a CNN, implemented

using PyTorch [16], like this:

import torch

import torch.nn as nn

class KappaNet(nn.Module):

def __init__(self, layer_1_filters=28, layer_2_filters=15):

super(KappaNet, self).__init__()

self.conv1 = nn.Conv2d(4, layer_1_filters, (5, 5))

self.conv2 = nn.Conv2d(layer_1_filters, layer_2_filters, (3, 3))

self.conv3 = nn.Conv2d(layer_2_filters, 1, (3, 3))

def forward(self, x):

x = torch.tanh(self.conv1(x))

x = torch.tanh(self.conv2(x))

x = torch.tanh(self.conv3(x))
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return x

Note, there are no fully-connected layers here, so if you give it, say, a

32x32 image, then the output will be a 24x24 image. The intent is to train it

such that each output pixel is a classification value, +1 for AP/non-precip or -1

for precipitation.

No “padding” is used here explicitly, because we only want to classify

pixels for which the full 9x9 “context” input region is available. (In practice, if

we have a full 360 degree scan, then we can just replicate radials from the end

of the scan to the beginning, in order to provide the needed context so as not to

leave those radials unclassified.)

When training, remember that not every pixel is labeled (see Chapter 3),

so it is important that the “loss” function only be influenced by results for actually

labelled pixels. So the training loop looks something like this:

criterion = nn.MSELoss(reduction='sum')

sgd = functools.partial(optim.SGD, lr=0.0002, momentum=0.5, weight_decay=0.01)

optimizer = sgd(net.parameters())

for inputs, labels in sample_batches(trainval, shuffle=True):

optimizer.zero_grad()

outputs = net(inputs)

mask = torch.abs(labels)

n = mask.count_nonzero()

loss = criterion(outputs * mask, labels) / n
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loss.backward()

optimizer.step()

running_loss += loss.item() * int(n)

Here, “labels” is an array with -1.0 for pixels labeled as precip, +1 for

non-precip, and 0 for unlabeled pixels. So torch.abs results in just 1 for labelled

and 0 for unlabelled. Multiplying this by the outputs array then treats it as if

the network answered 0 for the unlabelled pixels as well, so that the MSELoss

function will not count those as contributing to the loss.

As far as generating training sample images, basically any 32x32 image

centered on a labelled pixel can be selected. This is comparable to the well-

known data augmentation technique of random cropping (see, for example, [18]),

which makes training feasible with only a moderate number of labelled images.

The routine goes something like this:

def get_samples(n, shuffle=True):

index = numpy.argwhere(train_labels > 0)

count = index.shape[0]

if shuffle:

candidates = numpy.arange(0, count)

numpy.random.shuffle(candidates)

sel = candidates[:n]

else:

sel = numpy.arange(0, n)
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boxes = numpy.empty(shape=(n, 4, 32, 32), dtype=numpy.uint8)

targets = numpy.empty(shape=(n, 1, 24, 24), dtype=numpy.uint8)

for i, j in enumerate(sel):

y, x = index[j, :]

boxes[i, :, :, :] = train_data[:4, y - 16:y + 16, x - 16:x + 16]

targets[i, 0, :, :] = train_labels[y - 12:y + 12, x - 12:x + 12]

return boxes, targets

The above provides randomly selected 32x32x4 training images (or not

randomly, in case we’re just running the validation set), as well as the 24x24x1

“target” images (-1 for precip and +1 for non-precip).

There is a lot more that could be said about the supporting code, but the

above is really the core of the machine learning techniques applied.
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Chapter 5. Case Study: Bangladesh Radar

5.1 Introduction

Baron Weather was contracted to build two radars in Bangladesh. Once

they were built and operational, we found that there was an extreme amount

of RF interference in the area which was heavily contaminating the images, see

figure 5.1.

Figure 5.1: Bangladesh radar with contamination.
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Our understanding is that this happens because RF frequencies are not as

closely regulated there as they are in the United States. But whatever the reason,

the users were quite unhappy with the data they were getting.

As a matter of course, we tried standard tools such as CLEAN-AP™ [1];

but those were not sufficient. It seems likely that the severe image contamination

here is just not the sort of use case that off-the-shelf tools are designed for. What

we needed was a filter that was trained specifically for these operating conditions,

using data from these radars.

5.2 Dual Networks

When working with the Bangladesh radar data, we decided early on that

we should separate samples of RF interference from samples of “plain” AP. This

would allow us to train two separate networks, each being trained only with one

of the two categories of image contamination.

So, when importing the sample data, we used tags to keep track of which

type of AP was being labeled. Figure 5.2 shows a sample with just the RF areas

labeled. Figure 5.3 shows another sample where just the “plain” AP areas are

labeled.

Note that in both cases, areas of “good” precip are still labeled, since we

want the network to learn to distinguish the two.

Other options considered were to just lump all the “bad” areas together,

or to train a single network that could output three possible classes (precip, plain
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Figure 5.2: RF labeled image.

AP, and RF interference). Due to limited time available, though, the decision

was made to stick with the separate networks plan.

5.3 Results

We trained two networks as described, then built a two-layer filter. Echoes

that were rated as “bad” by either network would be removed. The resulting

images were significantly cleaner, see figure 5.4.

5.4 Alternative Network Comparison

After seeing these results, a question arose as to whether the complexity

of a CNN is really needed. After all, [10] managed to create a successful filter

using a simple FCN (though, again, relying heavily on pre-processing).
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Figure 5.3: Plain AP labeled image.

For comparison purposes, we added an alternative type of network that

can be selected when training a network. This new network style is a FCN which

takes the reflectivity and dual-pol moments as four scalar inputs for a single pixel,

and produces an answer for that pixel. Note that no local-neighborhood data is

involved for this type – it just tries to come up with an answer strictly using the

data for the point in question.

The results were not as good – see figure 5.5.

Again, this network structure is only “inspired” by [10], and is not rep-

resented as being a reproduction of that work – particularly since we did not

implement any of the pre-processing described in that paper. This was just done

as a sanity check, to see if the complexity of our original solution was merited.
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Figure 5.4: Bangladesh radar after cleanup.

5.5 Quantitative Results

The pictures shown here say a lot about the results; and indeed, on the

strength of demo images like these, the decision was made to ship this as a pro-

duction system for the Bangladesh radar. We are even seeking a patent, which,

as of this writing, has been filed but approval is still pending.

However, from a scientific standpoint, it is sometimes nice to have quan-

titative measurements of how successful the system is. So using the Test Builder

(see section 2.4), we measured the performance for the networks trained in for

this case study. The results were as shown in figure 5.6.

Since each network was trained on only RF contamination or only plain

AP, then it also made sense for the tests to be likewise segregated, to see how

well the network performs just at what it was intended to do.
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Figure 5.5: Alternative filter.

Figure 5.6: Bangladesh filter test scores.

Networks “elara”, “phobos” and “deimos” in this table were trained for

RF interference, so I ran the RF test against those. Likewise, networks “neptune”

and “pluto” were trained for plain AP.

As described in the previous section, networks “pluto” and “deimos” were

built using the alternative, simplified network structure. Although these networks

did quite well with the training samples (with scores over 90 percent), the test

shows that they do not perform that well. This agrees with what we observed
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in the visual results; and suggests that the initial decision to focus on CNNs was

likely appropriate.

A note on score formula: In an early version of this project, we used a

simple “accuracy” measure, which takes the network’s answers for each point in

the test and just turns it into a binary decision based on which side the response

is closest to. The accuracy, then, was a measure of how many points are answered

correctly in this manner.

However, such a measurement ignores how strong the response is, and

would give the same score to a network providing answers that were “lukewarm”

but correct when considered as binary decisions, as it would a network giving

“strong” responses.

The current formula is based on a mean-squared-error metric, where the

network is expected to answer +1.0 for “bad” pixels or -1.0 for “good” pixels.

This formula would yield 0.0 for perfect results, 4.0 for worst-case, and 1.0 for

all-neutral results (i.e., if the network always answered 0).

The final “accuracy” score is taken as (1.0 - MSE) * 100. This puts the

all-neutral case at 0 percent, and 100 percent would be a perfect score. Negative

scores, then, are possible (as you can see from the table above – network “elara”

was trained using a very minimal set of data, so it did not perform very well).

5.6 Potential Drawback

It is perhaps the case that we have made this system out to be ideal; but in

practice we have encountered difficulty from time to time. In this section we will
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describe an issue we encountered operationally that underscores one weakness of

this approach to solving the problem.

After we had trained the network for Bangladesh and had been running it

for a while, we received a report that it was no longer doing a good job. Indeed,

the filter was wiping out all of the precip.

Figure 5.7 shows the un-filtered radar returns; and after filtering it looked

as shown in figure 5.8.

Figure 5.7: Bad precip case.

Upon investigating, we learned that a hardware component had been re-

placed which changed the physical length of the receiver, and this had caused a

significant change to the differential phase dual-pol moment. Here is what that

data looked like:
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Figure 5.8: Bad filter result.

Note that in areas that should be valid precip, the data is all one color

(likely because it was clipping beyond the valid range). Figure 5.10 is an example

from another day which shows what differential phase is supposed to look like.

We believe what we are seeing here illustrates a weakness that CNNs and

many other machine-learning systems have, which is that they come to expect

the data to be like what they were trained with; so when a major shift or bias is

introduced into the input then recognition capability is greatly diminished. Even

the use of a separate test dataset to check for overtraining fails to discover the

weakness, because the images in the test dataset, like the training dataset, all

predated the hardware change that introduced the bias.
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Figure 5.9: Bad PHI (Differential Phase) data.

It is a known issue that has received some research attention. For example,

Bahng et al. refers to this as the “cross-bias generalization problem”, and com-

ments: “A model that relies on bias will achieve high in-distribution accuracy,

yet fail to generalise when the bias shifts” [2].

Certainly, one solution available to us would have been to train a new

network using only data from after the shift. As it turns out, though, there was

a recalibration procedure available for the radar which restored the differential

phase data back to the way it was; and the original filter started working normally.

This did spur some discussion about how to make this more robust in

case the radar “slips out of calibration” over time. As noted in Bahng et al., a

number of data augmentation techniques are known that could help the network
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Figure 5.10: Good PHI (Differential Phase) data.

generalize better [2]. It may also be possible to pre-process the data in a way

that this bias is not visible. For example, we could use Specific Differential Phase

(KDP) instead of raw differential phase [19]; or even something like the “texture

function” from Rico-Ramirez [17]. This remains an area for us to experiment.
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Chapter 6. Conclusion

In this section we will summarize the contribution of this research and

discuss potential areas of future work.

6.1 Contribution

The ClearScan system provides a robust machine-learning environment

with an intuitive interface, enabling the creation of weather radar image filters

that are customized to the particular environment and operational characteristics

of a particular radar.

This has proved particularly important given the varying operational envi-

ronments we have encountered with radar installations. RF interference in partic-

ular seems to have different characteristics in different areas, which would make

any one-size-fits-all image filter unlikely to succeed. Experience has shown that

the network needs to be trained on data from that radar for optimal effectiveness;

and having a streamlined process for this has been invaluable.

6.2 Future Work

• As mentioned at the end of Chapter 5, there is still a concern that a trained

filter could become less effective over time, either because the radar drifts
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out of calibration or because the RF interference becomes drastically dif-

ferent; nevertheless, we have not been using this system long enough to

know how prevalent these problems will be. Certainly there is a desire to

improve the robustness of the trained networks to cut down on the necessity

of re-training filter networks after they’re deployed.

• There is also still a demand for running a system like this without the use

of dual-pol moments, i.e., just using reflectivity data. With the system as

is, we have found that it cannot learn the patterns effectively just from

that data. It may be worthwhile to try using successive scan information

to detect “movement” as described by Grecu [6], to see if this can improve

the learning effectiveness for a reflectivity-only case.
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