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Abstract

MULTILABEL DEFECT CLASSIFICATION USING
GRAPH NEURAL NETWORKS FOR AUTONOMOUS

VISUAL INSPECTIONS

MD Sazzad Hossen

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

Electrical and Computer Engineering

The University of Alabama in Huntsville

August 2024

Visual inspections of safety-critical systems are crucial in reducing the risk of

equipment failures, downtime, and loss of life. This nondestructive testing (NDT)

method uses a portable borescope or camera along with other sensors directly or

mounted on robotic platforms to inspect difficult-to-access areas with ease, mini-

mum time, and limited cost. Although state-of-the-art visual inspection platforms

are equipped with sensors from multiple modalities, the inspection tasks still require

human subject matter experts to identify defects and analyze them. This jeopar-

dizes human safety in a hazardous work environment in energy industries, as well

as extending time for inspection and human error. Moreover, defect identification

becomes much more challenging, especially in large machinery and structures, such

as aircraft engines, concrete bridges, and buildings, because of differences in material

appearance, changing lighting, different surface markings, and the possible overlap

of varying defect types. In order to automate the process and address the inherent

challenge of defect classification, it is imperative to employ a resilient deep-learning

approach that can accurately identify the defects. In this thesis, a hybrid deep learn-
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ing method for multilable defect classification from visual data by using graph neural

networks (GNN), convolutional neural networks (CNN), and feedforward neural net-

works (FFN) is presented. The first part of the thesis provides a comprehensive review

of state-of-the-art GNNs for machine vision to derive motivation for the research. The

literature review describes various graph-learning approaches and the challenges as-

sociated with generating graph-structured datasets from images. The primary focus

of the review is the application of GNNs in machine vision and their mathemati-

cal formulations. In the second part, the proposed defect classification methodology

is presented, which diverges from conventional deep learning approaches for multi-

label defect classification by harnessing the combined strengths of CNN and GNN

algorithms. The core idea is to exploit CNNs for their prowess in recognizing the

visual characteristics of defects and GNNs for their ability to capture the relational

structures of defects, facilitating more precise differentiation. This multilabel hybrid

vision GNN algorithm is validated using the open-source CODEBRIM dataset, which

contains multilabel images of large-scale concrete structural defects. The model’s per-

formance in image classification is validated using the CIFAR-10 dataset, achieving

86 % accuracy during testing. Experimental results demonstrate that the hybrid ar-

chitectures developed have fewer overall parameters and achieve a 16% improvement

in accuracy compared to popular neural architectures for defect classification.
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Chapter 1. Introduction

Visual inspections of safety-critical systems are crucial in reducing the

risk of equipment failures, downtime, and loss of life. This nondestructive test-

ing (NDT) method uses a portable borescope or camera along with other sensor

modalities, directly or mounted on robotic platforms, to inspect difficult-to-access

areas with ease, minimum time, and cost. Although state-of-the-art borescopes

and robotic inspection platforms are equipped with sensors from multiple modal-

ities, the inspection tasks still require human subject matter experts for defect

identification and their analysis to predict the remaining useful life. This jeopar-

dizes human safety in hazardous work environments, such as energy equipment

and aerospace machinery. In addition, human intervention leads to extended

inspection time and is subject to human error. A prospective solution for auto-

mated defect identification from visual data is to introduce next-generation visual

sensing technologies augmented with artificial intelligence (AI).

Defect identification from visual data, such as images and videos, is a

challenging problem, especially in large machinery and structures, such as gas

turbines, engines, concrete bridges, and buildings. This is due to the differences

in material appearance, changing lighting, different surface markings, and the

possible overlap of varying defect types [1]. In real-world situations, a number of
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environmental factors make it more complex to identify these defects, which in-

clude surface wetness due to weather and different non-critical surfaces like minor

holes, markings, stains, or graffiti. Therefore, the identification of defects from

visual data requires a robust methodology capable of learning the subtle differ-

ences and relations between defects and their backgrounds for better classification

accuracy.

It is well known that deep learning algorithms have the capability to detect

subtle feature variations [2] from visual data. It has been successfully employed

in various domains to comprehend and analyze the hidden structures from image

datasets. Convolutional neural networks (CNN) perform exceptionally well in the

areas of object detection and material recognition [3]. This is primarily due to

their capacity to recognize local patterns within images [2]. CNN-based models

[2] are also well-suited for defect classification tasks [3] from images, especially

for the classification of isolated defects, i.e., image dataset with single defect per

image. However, when confronted with the complexities of multiple defects in a

single image, the model performs poorly. This is because CNNs primarily rely

on sliding filters for information collection, prioritizing pixel-level details. How-

ever, for spatial data, CNNs potentially disregard inter-pixel relationships while

extracting the features of the images or videos. Therefore, CNNs face intrinsic

difficulty in capturing the intricate interconnections and overlapping characteris-

tics that are linked to multiple defect classes present in an image. Furthermore,

CNN models may not be entirely suitable for the identification of material de-

fects, as they tend to neglect to acknowledge the interaction that exists between
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the defect and the multiscale structures in its vicinity [1]. In real-world scenarios,

the characteristics of a material defect often depend on its adjacent components.

Therefore, deep learning schemes that take into account the relationships among

the features are necessary.

Unlike CNN, graph neural networks (GNNs) present a compelling solution

to account for the relationships among the data, especially when dealing with non-

Euclidean datasets like images, videos, or 3D datasets [4]. GNNs have applications

in a wide range of domains where the available data is naturally in a graphical

structure, such as social media networks [5], citation networks [6], and others. It

has been demonstrated that GNNs are the most effective method for modeling the

intricate patterns that can be found in datasets. GNN employs a message-passing

algorithm that is effective in capturing features from other objects or entities in

the image, resulting in a far more improved classifier for image classification.

Therefore, it is evident that GNN [7] can be deployed to develop a robust model

to address the multilabel visual defect classification problem.

However, using GNNs for image classification requires reformulating or

representing the image data as a graph since the data set is not inherently in a

graphical structure. Several approaches are available in the literature to repre-

sent image data as a graph data structure (discussed in detail in Chapter 2). For

instance, the vision GNN [7] represents images as a graph by dividing each image

into multiple segments or patches, allowing for the extraction of intricate relation-

ships between image components. Vision CNN detects the local characteristics of

objects, while GNN assists in identifying the global relationships between them.
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Motivated by the capabilities of the GNN and CNN, in this thesis, we propose

an enhanced Vision GNN with an edge convolution approach for multilabel de-

fect classification, utilizing a hybrid network that integrates feedforward neural

networks (FFN), CNN, and GNN.

1.1 Organaization of the Thesis

The thesis is organized as follows: Chapter 1 presents an introduction

to the multilabel defect classification problem and GNN. Chapter 2 introduces

the state-of-the-art GNN frameworks available in the literature in detail to high-

light the significance of the proposed hybrid vision GNN. Chapter 3 presents the

proposed hybrid vision GNN for multilabel defect classification and its implemen-

tation on the open source image data set, such as CODEBRIM and CIFAR-10.

Finally, Chapter 4 presents the conclusions and future work.

1.2 Contribution of the Thesis

The contributions of the thesis are twofold. The first part provides a

comprehensive review of the state-of-the-art GNN literature for machine vision,

and the second part advances the defect classification models for multilabel defect

classification. More specifically, the thesis makes the following contributions:

• Provides a comprehensive survey on various graph formulations or repre-

sentations from image datasets.
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• Summarizes various graph embedding techniques with their mathematical

formulations for the first time in literature.

• Introduces an edge convolution approach within the graph-based architec-

ture, enhancing the vision GNN model’s ability to capture intricate rela-

tionships and patterns in structural defect images.

• Addresses the challenge of over-smoothing in deep graph convolutional net-

works by incorporating a multilayer perceptron (MLP) both before and after

the graph processing blocks.

• Extends the capability of vision GNN to multilabel classification and is

applied to structural defect problems in large structures.
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Chapter 2: Background of Graph Neural Network

2.1 Introduction

The adaptation of GNNs in computer vision has demonstrated significant

potential and success in various tasks, including image classification, video clas-

sification, object detection, scene graph generation, 3D mesh construction, and

vision-language query tasks. Many review papers in the literature discuss the

continuous progression of various kinds of GNN [8] algorithms and their myriad

number of applications [9]. Chen et al. [10] examined the applicability of the dif-

ferent GNN approaches to various categories of vision datasets. A comprehensive

examination of the utilization of GNNs and Graph Transformers in the domain

of vision tasks was conducted by Chen et al. [10]. Jiao et al. [11] also divided

the vision task into image classification, semantic segmentation, object detection,

and tracking and discussed the graph learning methods used for this application.

The GNN application for classification tasks and segmentation of 2D image

datasets was succinctly described by Asif et al. [12]. In their exhaustive exami-

nation of GNN, Wu et al. highlighted the ability of GNNs to capture semantic

relationships in visual question-answering datasets pertaining to human-object

interaction for vision tasks [13]. Later, Zhang et al. discuss the graph-learning

techniques used to process biomedical image datasets [14]. Senoir et al. presented
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image captioning, visual question answering, and image retrieval techniques in

their review of GNN application in the vision-language task [15]. More recently,

However, Cao et al. [16] and Zhu et al. [17] provide a comprehensive explanation

of the graph learning process of GNN, including a description of a few method-

ologies of graph generation from images, videos, and 3D point cloud data, as well

as their application to a variety of vision tasks. The majority of review articles

place greater emphasis on the application of GNNS to vision tasks rather than

elaborating on the graph formulation procedure that leads to the diverse applica-

tions of these techniques in task-specific vision problems. A detailed list of recent

review papers and their contributions is presented in Table 2.1.

Motivated by the above limitations, this chapter reviews the underlying

principles of GNN, demonstrating their capacity to handle non-euclidean data

sets, more specifically for vision applications. It emphasizes the challenges associ-

ated with the generation of graph structures from grid-structured image datasets,

which include photos, videos, and 3D data points. The review also examines

conventional approaches and recent developments in the field of graph learning

in computer vision. It focuses on determining the extent to which these algo-

rithms can improve the performance of vision tasks by utilizing visual data and

extracting significant insights from the dataset.
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Table 2.1: Contributions of the review papers available in the literature on graph
learning.

Author(s) Contribution

Chen et al. [10] Comprehensive analysis of GNNs and Graph
Transformers in vision tasks.

Jiao et al. [11] Examined graph learning techniques for image
classification, segmentation, object detection,
and tracking in vision tasks.

Asif et al. [12] Review of GNN application for classification and
segmentation of 2D image datasets.

Wu et al. [13] Highlighted GNNs’ semantic relationship capture
in visual question-answering datasets for vision
tasks.

Zhang et al. [14] Discussed the use of graph learning in biomedical
image processing.

Senoir et al. [15] Showed GNN-based image captioning, visual
question answering, and image retrieval in vision-
language tasks.

Cao et al. [16], Zhu et al. [16] GNN graph learning and its application to image,
video, and 3D point cloud data vision tasks are
explained in detail.
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2.2 Background on Graph Learning

In this section, we first introduce several definitions of graphs and their

properties, which are necessary for graph learning. Then, we outline the general

framework of the GNN learning.

2.2.1 Background on Graph Theory

A graph is a data structure consisting of nodes and connections (edges)

between them. Mathematically, a graph G = (V , E) is an ordered pair, where

V = {v1, v2, . . . , vN} is the set of vertices or nodes and E is the set of edges

that represents the connection between nodes. The edges define the relationship

between the nodes. Based on the inherent structure or topology of a graph, it

can be categorized into various types, each representing distinct characteristics

and relationships within the data. In the following, definitions of various types of

graphs are presented.

Definition 1 [18](Directional Graph) A directed graph G = (V , E) is an ordered

pair in which V represents a collection of vertices and the set E comprises directed

edges, with each edge represented by an ordered pair (u, v) ∈ V signifying a directed

connection from the source vertex u to the target vertex v.

Definition 2 [18](Undirected Graph) An undirected graph G = (V , E) is a pair of

vertices and the edge set E, where the set E ⊆ {{u, v} | u, v ∈ V } is an unordered

pair of u and v.
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Definition 3 [19](Bipartite Graph) A graph G = (V , E) is referred to as bipartite

if its vertex set V can be divided into two disjoint sets, U and W , so each vertex

in U is connected to a vertex in W by every edge in E. In other words, no edge

within the same partition directly connects any two vertices.

To understand the patterns of local and intermediate connectivity in a

graph, the notion of neighborhood and k-hop neighborhood are employed, which

are defined below.

Definition 4 [20](Neighborhood of a graph) The neighborhood N (v) of a vertex

v ∈ V in Graph G = (V , E) is the set of vertices that are adjacent to it. For

instance, in an undirected graph G = (V , E), the neighborhood of vertex v is

defined as N (v) = {u ∈ V | (u, v) ∈ E or (v, u) ∈ E}.

Definition 5 [20] (k-hop neighborhood) A vertex’s k-hop neighborhood in a graph,

G, represented by Nk(v), is the set of vertices that are reachable from v through k

edges. Alternatively, the k-hop neighborhood of a vertex v for a graph G = (V , E)

is defined as Nk(v) =
⋃

u∈Nk−1(v)
N (u) where Nk−1(v) represents the (k − 1)-

neighborhood of vertex v.

Based on the evolution of the structure of a graph, it can be classified

as static or dynamic. A static graph G = (V , E) is characterized by a structure

that does not change or evolve over time, i.e., the nodes V and edges E remain

fixed [19]. The topology and properties of a static graph also remain unchanged

while processing. Whereas, dynamic graphs add a temporal dimension to the

graph by allowing nodes V , edges E , or the associated attributes to change over
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time [19]. On the other hand, based on the similarity of the information, a

graph can be classified as homogenous or heterogeneous. A homogenous graph

is defined as a graph G = (V , E) where there is no distinctive feature between

the different kinds of nodes and the edges in the graph. Hence, with regard to

their types, every vertex in set V and every edge in set E are equivalent. In

contrast, a heterogeneous graph G = (V , E) consists of different types of nodes,

and the edges can consist of different types of relationships. A knowledge graph

[21] can be considered a heterogeneous graph which can accommodate a wide

range of complex relationships between entities, make them an effective tool for

representing various complex information structures.

Matrix representations are a powerful and efficient way of articulating

graphs’ inherent and intricate properties. They can capture the essence of graph

structures and provide computational benefits, allowing for seamless calculations

and analysis. Below are some of the commonly used matrices in the context of

graphs.

Definition 6 (Adjacency Matrix) The adjacency matrix A of a graph G = (V , E)

is a square matrix of size |V| × |V|, where |V| is the cardinality of V, i.e., the

number of vertices, is defined as

Aij =


1 if (i, j) ∈ E ,

0 if (i, j) /∈ E .
(2.1)

11



Adjacency matrices for undirected graphs are symmetric, i.e., Aij = Aji, which

may not be true in the case of directed graphs [22].

Definition 7 (Degree matrix) The degree matrix D of a graph G = (V , E) is a

square matrix of size |V| × |V| where each diagonal entry represents the number

of edges incident to each vertex (referred to as the degree of the vertex).

The degree of a vertex in an undirected graph equals the number of edges

that are connected to it. In the case of a directed graph, it is common practice

to make separate adjustments to the degree matrix to account for in-degrees and

out-degrees [22].

Definition 8 (Laplacian matrix [23]) The Laplacian matrix L of a graph G =

(V , E) is defined as L = D − A. The normalised Laplacian matrix Lnorm can be

defined as

Lnorm,ij =



1− 1√
didj

if i ̸= j and (i, j) is an edge,

1 if i = j,

0 otherwise.

(2.2)

In the context of graph learning, each node is associated with certain

attributes or characteristics. The values of the features for the nodes in a graph

are often collectively represented as a matrix, referred to as a graph signal matrix.

For instance, in a social network, node attributes could include information such

as age, gender, interests, or the connectivity ratio between nodes. Then, the

12



signal matrix X ∈ Rn×d, where n = |V| is the total number of nodes in the graph,

and d is the number of features x for each node. Each row of X corresponds to a

node, and each column of X acts as a signal for a particular attribute shared by

all nodes [23].

2.2.2 Overview of Graph Learning

Graph learning, or graph machine learning, is a powerful approach that

uses graphs as a data structure to understand and leverage the complex relation-

ships inherent in the data. It enables tasks such as node classification, edge classi-

fication (link prediction), and graph classification, with wide-ranging applications

across various domains. The graph-learning process can be broadly categorized

under the following three steps: 1) graph formulation, 2) graph embedding, and

3) graph classification tasks, as shown in Figure 2.1.

Figure 2.1: A generalized architecture of graph learning with various tasks.
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(a) Graph Formulation/Representation

In domains such as social networks, recommendation systems, biological

networks, natural language processing, and financial networks, the data are in-

herently in a graphical structure depicting the relations among the data points.

Therefore, the graph formulation step may not be necessary. However, the image

datasets used in machine vision applications do not have a graphical structure.

Therefore, one of the most critical steps in graph learning for machine vision is

graph formulation (discussed in detail in Section 2.3).

(b) Graph Embedding

Graph embedding transforms the features of the graph data (nodes and

edges) for machine learning, such as developing a classifier for nodes or edges. It

can be achieved with or without using a neural network. The two most prevalent

non-neural network techniques for node or edge embeddings are 1) similarity-

based and 2) graph kernel-based, discussed in detail in Section ??. On the

other hand, GNNs [4] use neural networks to learn representations (embeddings)

for nodes, edges, or entire graphs through a process known as message passing.

Message-passing aggregates and transforms the neighborhood node or edge fea-

tures to update each node or edge information. Some of the important GNN

architectures for message-passing are graph recurrent neural networks (GRN),

graph convolutional networks (GCN), and graph attention networks (GATs), dis-

cussed in detail in Section ??.

Similar to traditional machine learning approaches, graph learning or GNN

can be guided by all three supervision techniques (supervised, semi-supervised,

14



and unsupervised) by introducing appropriate loss functions based on the tasks.

Supervised graph learning uses the labels, categories, or attributes of all the enti-

ties (nodes and edges) [24] for training the model. Supervised learning is common

in scenarios where obtaining labeled data is simple and includes tasks like node

classification and edge classification. In semi-supervised learning, a small subset of

nodes or edges is labeled, while the majority remains unlabeled. Semi-supervised

learning can be performed in two ways: 1) transductive and 2) inductive. The

transductive approach makes predictions for nodes that were part of the original

graph during training, and the model also predicts labels for the unlabeled nodes

during testing [24]. In an inductive approach, the model is designed to general-

ize newly introduced, unlabeled nodes with the same distribution as the training

set [24]. This approach is used when the graph dataset is dynamic, and the

graph’s structure needs to be updated constantly. In unsupervised graph learn-

ing, the model trains on the input data sets without explicit labels to identify the

characteristics of the data without any explicitly labeled data. The popular unsu-

pervised graph learning task is node clustering [25] and dimensionality reduction

of the graphs [26].

(c) Graph Learning Tasks

As discussed above, the primary goal of graph learning, or GNNs is to

perform node, edge, and graph-level tasks. Node classification is a node-level task

in which the primary goal is to categorize or label each node in a graph according

to its characteristics or connections [27] in a supervised learning framework. Node

clustering is also a node-level task in an unsupervised learning framework that
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organizes nodes in a graph into disjoint clusters. The nodes in the same cluster

are more similar than the nodes in other clusters. Finding cohesive groups in

biological or social networks and exposing the underlying structures of large,

complex datasets can both benefit from clustering. Another type of node-level

task is node regression, in which each node is assigned a dynamic value that can

represent the quantities associated with the node [27].

Similarly, edge classification is an edge-level task in which particular labels,

values, or types are assigned to edges based on their connections [28]. Determining

whether or not there is an edge between two nodes allows edge-level tasks to be

extended to link prediction tasks between nodes. For example, in recommenda-

tion systems, link prediction is used to forecast possible connections between users

and items, whereas in social networks, it is used to forecast upcoming friendships

or teamwork. On the other hand, graph-level tasks, such as graph classification,

entail assigning labels to the entire graph in terms of overall label or category.

Graph classification aids in comprehending the global properties and structures

of the entire network [27]. For example, graph classification can be used to cat-

egorize molecular graphs into different chemical or biological classes based on

their structures. Graph matching is also a graph-level task that refers to finding

similar graph structures in other graph datasets. It entails determining the corre-

spondence or similarity between nodes and edges in two different graphs. Graph

matching can be used to learn the process of identifying structural similarity in

visual datasets.
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In the following sections, we present a detailed review of the above-mentioned

graph learning steps with their mathematical formulation and summarize the re-

sults, particularly in the machine vision framework.

2.3 Graph Formulation/Representation

In this section, we have focused on discussing graph formulation approaches,

such as pixel, superpixel, and k-neigborhood-based, from the existing literature.

The graph formulation approaches are presented in greater detail with their math-

ematical intuition.

2.3.1 Graph Construction using Pixels

Although images are non-euclidean data sets, it is still possible to create

a graph by utilizing each pixel’s spatial and semantic relations with others. A

deep learning model referred to as “Pixel to Graph” introduced in [29] to detect

the vertices and edges of a graph formed from an image dataset in an end-to-end

manner. During the training phase, bounding boxes are formed around objects in

the image. In this approach, the vertices and edges of the graph are represented

using instances of bounding boxes and bounding box-to-bounding box relation-

ships within an image. The model does not require proposed bounding boxes in

the testing phase and can produce detection directly from the image by forming

a graph from the image [29].

For a given directed graph, G = (V , E) with vertex vi ∈ V is located at

the center of the bounding box (xi, yi) in the image, and edges are located at the
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Figure 2.2: Generating graph form pixels.

midpoint of the target vertex and source vertex as follows

(⌊
xs + xt

2

⌋
,

⌊
ys + yt

2

⌋)
. (2.3)

The corresponding feature vector for each node of the graph follows a

separate fully connected layer for the prediction of each element of the graph,

and a stacked hourglass network [30] is used for combining the global and local

relationship information. By combining the heatmap (intensity or distribution of

certain data points or features across the image) feature, individual node feature,

and relationship feature, the presence of an object and the relationship (edges)

between them can be determined.

2.3.2 Superpixel-based Graph Construction

Superpixels are groups of adjacent pixels that share image characteristics

such as colors, textures, and/or others. Superpixel segmentation is the procedure

of dividing images into coherent and homogeneous regions where the character-

istics of the pixels within each region are identical [31]. Hyperspectral images

(HSI) can be analyzed more accurately using superpixel segmentation [31]. An
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HSI comprises numerous spectral bands, typically hundreds of bands captured at

a continuous wavelength. The spatial structures of HSI have been investigated

by superpixel segmentations, considering the spectral-spatial characteristics [31].

Simple Linear Iterative Clustering (SLIC) [32] is used to segment the image into

superpixels based on the spatial and spectral similarity of the pixels. An associ-

ation matrix Q is defined based on the characteristics of the pixels to represent

the relationship of pixels XP i and superpixels, with each entry of the matrix qi,j

representing whether a pixel i belongs to the superpixels j, given by

Qi,j =


1 if XP i ∈ SP j,

0 otherwise.

(2.4)

The superpixels are represented by SPj, and the i-th pixel is represented by

XPi. Now, to formulate the graph for HSI dataset, a graph encoder is applied to

transform the hyperspectral data into a vector representation, which is used as a

node in the graph G = (V , E) [31]. The process is as follows

V = Encode(XP ;Q) = Q̂T · Flatten(XP ). (2.5)

Based on how close the superpixels are to one another, an adjacency matrix A is

created, with 1 representing an adjacent pair of superpixels and 0 representing an

opposite pair. This matrix representation guides the graph formation using the

superpixels [31].
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Figure 2.3: Graph formulation using superpixels.

The capabilities of capturing the semantics of datasets by the graph largely

depend on the quality of the superpixels. There are various ways of formulating

superpixels from an image. For example, the Normalized Cuts (NCUTS) algo-

rithm uses segments’ total similarity and dissimilarity for the superpixel formation

process and transfers the problem to an eigenvalue problem for efficient computa-

tion. The graph G = (V , E) is formed by taking each pixel as a node and defining

the edge weight wij between nodes vi and vj as the product of a feature similarity

term and spatial proximity, given by

wij =


e−

∥F (i)−F (j)∥2

2σ2 e−
∥SPi−SPj∥

2

2σ2 if ∥SP i − SP j∥2 < r,

0 otherwise,

(2.6)

where SP i is the spatial location of the node vi, r is a threshold value and F (i) is

a feature vector based on intensity, color, or texture information of the i-th node.
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This model recursively calculates normalized cuts for the pixel graph to

produce a superpixel graph [33]. Felzenszwalb and Huttenlocher present a min-

imum spanning tree (MST)-based segmentation technique that connects compo-

nents incrementally until a predetermined condition is met, which enables com-

putationally efficient superpixel formation [34]. Moore et al. effectively generate

superpixels by dividing the image into vertical and horizontal strips and finding

the shortest path between these strips [35]. Zhang et al. use graph cuts instead

of finding the shortest path between the overlapping strips [36].

The above-described super-pixel algorithm produces varying sizes of seg-

mentation. Olga et al. present a superpixel partitioning problem within the con-

text of energy minimization. They employ an energy function to optimize graph

cuts, which leads to the algorithm generating image segments of similar sizes [37].

Ming et al. enhance the process by incorporating the concept of entropy rate

into the graph-cut minimization step. This inclusion promotes the formation of

clusters that are both compact and homogeneous. Additionally, they introduced

a balancing constraint function to encourage the creation of clusters with similar

sizes [38]. However, all of the above algorithms tend to converge towards centroids

over multiple iterations and use a distance map with dimensions comparable to

the input pixel size, leading to memory consumption. Taking the intensity differ-

ence of the pixel can help in achieving better segmentation with less computation.

Felzenswalb et al. proposed an efficient graph-based image segmentation method

that relies on the intensity differences between region boundaries and neighboring

pixels within the same region [39].
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All the methodologies described above are simple iterative clustering al-

gorithms for forming superpixels. The Simple Non-Iterative Clustering (SNIC)

algorithm [40] can reduce the computational cost of the simple iterative clustering

algorithm (SLIC) described above by utilizing a single iteration. SNIC outper-

forms SLIC by explicitly enforcing connectivity from the start, removing the need

for multiple K-means iterations. SNIC improves computational efficiency even

more by restricting distance calculations to square regions centered on centroids.

This way, connectivity is maintained even if the centroid moves [40]. Peer et al.

propose a preemptive SLIC algorithm, which is a watershed segmentation-based

iteration of the SLIC algorithm that operates at a faster rate [32].

QuickShift can be used for faster segmentation, which falls under the cate-

gory of local mode-seeking algorithm, as it can operate on 5D space by operating

both on color information and locations of pixels in the image. Its ability to

eliminate background data makes the algorithm much more efficient in image

segmentation tasks, which resulted in the formation of superpixels [41, 42]. The

formed superpixels are used to create a graph from the image, which is a necessary

step for graph learning algorithms in image classification. For example, creating

a hypergraph to detect the variation in multi-modal remote sensing images is the

most suitable approach for capturing the local and global dependencies of image

data sets, which is crucial for evaluating subtle changes in image features. Yuli

proposes a model for unsupervised multimodal change detection (MCD) for re-

mote sensing images that is based on the self-similarity of image [43]. The model

employs the similarity between the superpixels of the image to form the graph,
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and the objective of the graph construction is to capture the global and local

information of the superpixels of the image. The objective function is defined as

min
W

NS∑
i=1

NS∑
j=1

(SP i − SP j)
2

2 · pbi,j
+

NS∑
i=1

αi∥Wi∥2

2
+ βg(ϵ), (2.7)

where SP represents superpixels, W is the weight matrix, NS is the number of

superpixels, pbi,j is the probability matrix for superpixels and βg(ϵ) is the penalty

term.

The initial term in (2.7) captures the local structures by quantifying the

similarity between superpixels SPi and SPj, with the similarity being weighted

by pbi,j. On the other hand, the second term captures the global structures

by evaluating the relationships between each superpixel [43]. This evaluation

is subject to regularization to promote sparsity in the weight matrix W . The

penalty term βg(ϵ) is includedfor regularization. The matrix W can be used to

determine node connectivity. The superpixels can be connected as neighbors with

probabilities pbi,j, where i = 1, . . . , NS, given there is NS number of superpixels

that are represented as nodes in the graph. These probabilities satisfy 0 ≤ pbi,j ≤

1 and
∑NS

i=1 pbi,j = 1 [43]. With the learned probability matrix pbi,j [43], we

can construct the hypergraph Gh = {Vh, Eh, pbh}. The vertex set Vh is defined

as Vh = {SP 1, . . . , SPN}. Each superpixel SP i corresponds to a hyperedge ei.

Specifically, SP i treated as a center, and connect SP i and its neighbors SP j in

pbi,j to generate a hyperedge ei as follows [43]

ei = {SP i} ∪ {SP j | pbj,i ̸= 0, j = 1, . . . , NS}.
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A minimum-cut algorithm [44] on the graph formed by the image dataset

can also be used for image segmentation. The minimum graph cut algorithm is to

form k sub-graphs from a graph G datasets; the largest inter sub-graph maximum

flow is minimized among all possible k partitions of graph G [44]. The minimum

cut method is biased to construct small components of the graph datasets. The

normal cut algorithm solved these biases by considering the total dissimilarities

and similarities of components in the graphs [33].

2.3.3 K-neighborhood-based (KNN) Graph Construction

KNN graph is a directed graph where the nodes represent images in the

data sets, and the edges between the nodes are established based on similarity

or distance metrics among a controlled number of nodes. The KNN graph is

constructed using the divide and conquer method, which is used to initiate a base

approximate neighborhood graph and then ensemble them together to obtain the

comprehensive graph for the datasets.

Given a set of data points, the algorithm first starts with the recursive par-

tition of the data points into subsets until the cardinality of the subset reaches a

threshold value, denoted as g. The suitable feature vector from the image data

sets can be achieved using Scale-Invariant Feature Transform (SIFT) [45, 46, 47]

and Global Image Structure (GIST) [48]. A neighborhood graph is constructed

by representing the data points as nodes V = D, where D = (di, dj, ..) are data

points. The edges between the nodes are established by computing the similarity

metric and distance of the feature vector of every node. Denoting the distance
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Figure 2.4: K-Neighborhood graph formulation.

or similarity metric as dist(di, dj), an edge can be established if dist(di, dj) ≤ g,

where g is a threshold value, as shown in Figure 2.4. In order to obtain an op-

timal neighborhood graph, the algorithm employs a strategy of minimizing the

occurrence of isolated data points by continuously dividing the dataset. As the

number of divisions increases, the influence of the neighborhood diminishes in the

formation of the neighborhood graph. Consequently, a neighborhood propaga-

tion method is utilized, which considers all potential neighborhood pairs, shown

in Figure 2.5, based on previously identified neighbors [49]. As the number of

random divisions increases, a greater number of neighbors of p are covered as

shown in Figure 2.5 (a). The process of propagating neighborhood information

through intermediate points from p to o by accessing the neighborhood of q [49],

as shown in Figure 2.5 (b). The iterative process of adding new neighbor points

ends when the maximum time for visiting a data point is reached [49].

Furthermore, KNN graphs can also be formulated from clustered data

points. The clustering problem is a combinatorial optimization problem that

involves partitioning a given set of N data points into M clusters. This par-

titioning is based on the shared property of the data points, which determines
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Figure 2.5: Formulation of K-neighborhood graph .

their contribution to the common property of the same cluster. Each data point

is initially assigned to a distinct cluster by the algorithm, which performs clus-

tering by merging clusters from the neighboring graph until the desired number

of clusters is achieved [50]. The measurement of similarity between data points

can be facilitated using the Locality-Sensitive Hashing (LSH) model, which uses

a hash function with locality-sensitive properties such as similarity measurement

of data points in high-dimensional space. The model’s goal is to partition similar

data points into equal-sized buckets, which results in a significant improvement

in time complexity of O(l(d + log n)n), where d represents dimensionality and l

is usually a small constant [51].

However, the process of partitioning the data sets necessitates the model

relying on offline data sets, rendering it challenging to execute on dynamic data

sets that are constantly being updated in real time. In contrast, the dynamic con-

tinuous indexing (DCI) model offers a solution to this limitation by consistently

indexing data points through the ordering and creating a dynamic neighborhood

graph [52]. The transition from discretizing the vector space to employing a

continuous indexing approach improves the model’s ability to adapt to changing

datasets in real-time situations. To address the challenge of computational cost
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due to the redundancy in distance calculation, the Recursive Lanczos Bisection

(RSB) method for constructing the KNN graph introduces parameterized region

processing during the divide-and-conquer procedure. This approach improves the

model’s flexibility by using recursive spectral bisection for data partitioning. A

hash table is strategically used throughout the divide-and-conquer process to re-

duce redundancy in distance calculations, improving the algorithm’s efficiency

[53].

Repetitive data and feature correlation methods make it more challeng-

ing to identify redundancy in the data point density calculation. To address the

issue, the unsupervised feature selection method [54] uses principal component

analysis (PCA) to transform the original co-related data into uncorrelated data

with orthogonal features. The model then constructs a weighted bipartite graph

consisting of two sets of features: the original features and the non-orthogonal

features. The edges of the bipartite graph are defined by the similarity between

these two sets of features. This approach tackles redundancy in data point dis-

tance calculations and leverages unsupervised feature selection [54].

Weighting the edges of a constructed graph is a crucial and demanding

undertaking in graph construction, as the assigned weights represent the degree

of similarity between two nodes. The Gaussian kernel similarity (GKS) can be

employed to measure the degree of similarity. This approach involves mapping a

connected graph onto a line to keep connected points as close together as possible

[55]. A heat function is defined to calculate the wights between two points, and
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the heat kernel [56] is defined as

Wij = e−
∥di−dj∥

2

2τ2 , (2.8)

where Wij is a weighted matrix, τ is a scaling parameter, and d denotes data

points.

The shortcoming of the GKS model is that it is sensitive to parameter vari-

ance and expensive to find optimal parameters. To address the issue, Wang and

Zhang proposed to construct a graph with a set of overlapped linear neighborhood

patches, and the edge weights in each patch are then computed by neighborhood

linear projection [57]. The model requires a separate phase in order to estimate

the neighborhood patches, which consequently leads to an increase in the time

complexity. In order to address this issue, a unique methodology named sparsity-

induced similarity (SIS) is employed, in which each data point is decomposed into

an L1 sparse linear combination of the remaining data points [58]. The coefficients

of the decomposition are designed to retain the information of neighboring data

points, thereby enhancing their similarity [58]. This model does not need the

Euclidean distance measurement to determine neighborhood sets.

2.4 Graph Embedding/Representations

In this section, we provide an overview of prevalent techniques for learn-

ing graph representations (embedding) in the context of visual data processing.

These approaches encompass non-neural network- and neural networks-based
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approaches. The classification diagram of the graph embedding/representation

methods is shown in Figure 2.6.

Figure 2.6: Overview of graph learning methods.

The non-neural network-based approaches can be classified under two

heads: 1) graph embedding and 2) kernel-based approaches. A detailed descrip-

tion of both approaches is presented below.

2.4.1 Graph Embedding

The goal of graph embedding is to convert the complex structure and

properties of the graph into a predetermined low-dimensional vector space while

preserving graph properties, such as structural information, node attributes, and

topological features. Most literature quantifies graph properties using proximity

measures such as first- and higher-order proximities [24]. First-order proximity

involves representing the similarity between nodes based on their direct connec-

tions, such as the similarity of nodes that share an edge. Higher-order proximity

refers to the similarity of nodes that extend beyond their immediate neighbors,
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such as indirect connections or interactions through multiple paths in the graph.

The problem of graph embedding can be formulated as an optimization problem

such that most similar nodes stay closer in the low-dimensional space. Mathe-

matically, the objective function can be defined as [59]

L = min
∑
i ̸=j

(Zi − Zj)
2Sij = minZTLZ, (2.9)

where Zi and Zj are the embeddings of the i-th and j-th nodes, respectively,

Sij is the defined similarity or node approximity between nodes vi and vj, and

L = D − A is the graph Laplacian [60], where D is the diagonal matrix with

Dii =
∑

j ̸=i Sij. From (2.9), the optimal embedding Z∗ can be derived as

Z∗ = argmin
i ̸=j

∑
i ̸=j

(Zi − Zj)
2Sij = argmin

Z
ZTLZ. (2.10)

The higher the value of Dii, the greater the importance of Zi. The similarity

measure Sij weights the quadratic form (Zi −Zj)
2Sij [59], which implies that the

optimization process places more emphasis on maintaining the similarity of nodes

with a higher Sij. After putting a constraint ZTDZ = 1 on the objective function

to remove arbitrary scaling, the optimal embedding in (2.10) is reduced to

Z∗ = arg max
ZTDZ=1

ZTSZ

ZTDZ
. (2.11)

The objective function (??) is designed in a way to embed the entities in the test

phase, making this a transductive learning process [60].
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Designing a linear function Z = XTa, where X is the node embedding or

signal, for inductive graph embedding can help embed the node. So, finding the

optimal a involves minimizing the objective function

a∗ = argmin
a̸=j

(aTXi − aTXj)
2Sij = argmin

a
aTXLXTa. (2.12)

With the constraint aTXDXTa = 1, a∗ can be computed from (2.12) as

a∗ = argmin
a

aTXLXTa

aTXDXTa
= argmax

a

aTXSXTa

aTXDXTa
. (2.13)

So we can consider the problem of finding the optimal a∗ as finding the Eigenvec-

tors for the maximum eigenvalue of XW TXTa = λXDXTa [61].

The embedding method can be optimized more by finding the best sim-

ilarity function for the nodes. Matrix factorization [59] can also be adapted to

directly factorize the node proximity matrix. The objective function to preserve

the node’s proximity can defined as

L = min ∥S − ZZT
c ∥2F , (2.14)

where Z ∈ R|V |×d is the node embedding, and Zc ∈ R|V |×d is the embedding for

the context nodes [62]. With the node embedding, a classifier can be made for

the node-level, edge-level, or graph-level task.
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2.4.2 Graph Kernel Methods

Graph Kernel Methods refers to learning the similarity of data points using

kernels. The graph kernel method uses non-linear mapping to transform the data

into a higher-dimensional Hilbert space, where linear methods can be applied for

graph processing [63].

Given a data point X = {p1, p2, p3, . . .}, where the data points are graphs

or subgraphs, it can be transferred to Hilbert space by a graph kernel function

k using a feature map ϕ : X → Hk, where Hk is a Hilbert space [64]. A graph

kernel can be defined as k : X × X → Rk, where a feature map ϕ : X → Hk

exists in such that for x, y ∈ X , the kernel function k(x, y) = ⟨ϕ(x), ϕ(y)⟩ [64]. A

gram matrix K [64] that is positive semidefinite for every pair of data points in X

can also represent the kernel function. The element of the Kij is the kernel value

Kij = K(xi, xj) between the individual data points. For X = Rd and ϕ(x) = x,

the kernel can be defined by the dot product, K(x, y) = xTy. Here, the kernel

measures the similarity of the data points.

To minimize the distance between the data points in transformed space,

the objective function can be written as

β∗ = arg min
βTK,
β=α

∑
i ̸=j

(βTKi − βTKj)
2Sij

= arg min
βTKβ=α

βTKLKTβ,

(2.15)

32



where Ki is the i-th column vector of the kernel gram matrix K and β∗ is the

optimal weights. Without explicitly computing the transformed feature vectors,

algorithms can be developed to operate implicitly in the higher-dimensional space

using the kernel function. Since it allows the algorithm to avoid the computational

burden associated with high-dimensional data, working with kernels is sometimes

called the “kernel trick” [65].

Handcrafted features or intermediate processing steps are needed for non-

neural network-based graph embedding. This limits their expressive power, par-

ticularly when dealing with complex or multidimensional data. In addition, the

ability of kernel methods to capture non-linear relationships between input vari-

ables is intrinsically limited, particularly on tasks involving complex data dis-

tributions or non-linear decision boundaries, and can become computationally

intensive. The emergence of neural network-based graph learning techniques has

facilitated complex graph-structured data analysis and processing across various

domains [66]. Furthermore, they are highly scalable. The next section discusses

neural network-based graph representation (embedding).

On the other hand, neural networks-based approaches are used to em-

bed the features for classification tasks using an end-to-end machine-learning

approach, which will be discussed next.

2.4.3 Graph Recurrent Neural Network (GRN)

Graph recurrent neural networks (GRN) paved the way for developing

GNNs, which can capture both temporal and spatial features. Given a graph,
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G = (V , E ,W), where W : E → R is a weight function that denotes the weights of

the edges in E . The weight functions measure the connection’s strength. A graph

shift operator (GSO) O ∈ RN×N can be introduced to perform a linear local map

on the graph signal X. Each node’s state or signal Xt can change as the system

evolves, depending on the previous state Xt−1 and the input or interaction at the

current step [67]. The updated model can be expressed as

Xt = σ(A(O)Xt +B(O)Xt−1), (2.16)

where σ is the sigmoid activation function, and A(O) and B(O) are linear trans-

formations involving the graph shift operator O. This generic architecture for

updating the hidden state of the graph is known as GRN. Scarselli et al. [? ]

extended the node hidden states update scheme for more types of graphs, such

as cyclic and undirected graphs. They recurrently update the hidden state h of a

node as follows

h
(t+1)
i =

∑
vj∈N(vi)

f
(
xi, xj, xeij , h

(t)
j

)
, (2.17)

where N (vi) represents the neighborhood of node vi, f(·, ·, ·, ·) is a feedforward

neural network, xi ∈ Rd denotes the features at vi, xeij ∈ Rc denotes the features

at the edge between vi and vj, and t is the iteration number.

2.4.4 Convolutional Graph Neural Networks (ConvGNNs)

Graph Convolution is another approach used in GNN for message-passing,

i.e., to aggregate and transform the feature information of nodes and edges using a
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defined filter. Since graph data is non-Eucledian, traditional convolution can not

be performed in graphs. Graph convolution addresses this challenge by designing

convolutions that respect the graph structure. Graph convolution is designed as

the weighted sum of the shifted version of the signal or feature update of the

state. The mathematical expression is as follows

A(S) =
i−1∑
i=0

aiXi, (2.18)

where the variable S denotes state, influencing the matrix A(S), which is con-

structed as a linear combination of matrices with coefficients ak. The shifted

version of the signal refers to the signal values at different nodes in the graph

being weighted and summed to produce the updated feature state. Unlike GRN,

which limits how nodes can be updated, ConvGNN uses a set number of layers

with different weights in each state to measure how different states depend on

each other. This avoids the cyclic mutual dependencies of graph components.

ConvGNNs can be categorized into two main types: i) spectral-based and ii)

spatial-based [68]. Spectral convolution works in the graph spectral domain and

looks at frequency characteristics, and spatial convolution works directly on spa-

tially distributed data on the graph by collecting information from nearby nodes

for tasks like node classification and graph feature extraction [69]. The two vari-

ants of graph convolution are discussed below.
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2.4.4.1 Spectral Based ConvGNN

Spectral-based ConvGNNs reformulated the graph convolutions by solving

the graph Laplacian matrix’s eigenvalues and eigenvectors. These convolutions

operate in the spectral domain, allowing filters to be applied to graph signals

for noise removal and graph component feature extraction. Frequency domain

convolutions are commonly used in spectral-based methods to achieve Fourier

transforms [69]. For the spectral-based method, the graph is considered to be

undirected and a normal Laplacian matrix [69]. The Laplacian matrix L is defined

as

L = IN −D− 1
2AD− 1

2 , (2.19)

where IN is the identity matrix, D is the diagonal degree matrix and A is the

adjacency matrix. Due to the semi-positive nature of L, it can be mathematically

decomposed as L = UΛUT , where U is a matrix containing eigenvectors of eigen-

values and Λ is a diagonal matrix of eigenvalues [69]. For a graph signal X ∈ Rn,

the graph Fourier transform of a signal x is defined as F(x) = UTx projecting the

input graph signal into the orthonormal space formed by the eigenvectors of the

normalized graph Laplacian. This transformation facilitates the analysis of graph

signals. The transformed signal can be thought of as X̂ =
∑

iXiX̂iui where X̂i

is new coordinates in the transformed space and the convolution on input signal

X̂ with a filter f ∈ Rn is defined as

X ∗G f = GraphConv(X̂, f) = F−1(F(X̂)⊙F(f)) = U(UT X̂ ⊙ UTf), (2.20)
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where ⊙ denotes the elementwise product.

By redefining the filter as gθ = diag(UTg), parameterized by θ ∈ RN in

the Fourier domain, the convolution can be written as

gθ ∗ X̂ = UgθU
T X̂. (2.21)

The filter gθ(Λ) can be thought of as a function of the eigenvalues of L. Com-

puting the eigenvalue for L is expensive for a large graph [4]. So, a truncated

expression in terms of the Chebyshev polynomial Tk(x) up to the K-th order [4]

can approximate the filter gθ(Λ) as

gθ(Λ̃) ≈
K=K∑
K=0

θkTK(Λ̃) (2.22)

with a rescaled largest eigenvalue, as Λ = Λ̃
2λmax

− IN of L [70, 71].

2.4.4.2 Spatial Based ConvGNN

Similar to the convolutional neural network (CNN), where convolution is

performed based on the spatial relationship of pixels to the entire image dataset,

convolution in a spatial-based ConvGNN is performed based on the spatial re-

lationship of nodes in the graph. The convolution operation involves convolving

the central node’s representation with its neighbors’ representations. Similar to

weighted average filtering in CNN, the updated representation of the nodes is

derived from the neighboring information of the nodes. Spatial-based ConvGNNs

also borrowed the idea of information propagation from RGNNs [4]. The opera-
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tion passes the message along the edge between the nodes. Spatial-based Graph

Convolution GNN utilizes the propagation method to effectively tackle the spe-

cific challenges related to modeling the flow of information and interactions among

nodes within a graph [4]. A propagation-based method is the process by which in-

formation or signals are propagated through a graph. Nodes in the graph update

their features based on the propagation principle, which considers their relative

attributes and connectivity within the graph.

ConvGNN uses the propagation principle to start learning and gives us a

new way to work with graph-based data by letting convolutions happen directly on

graph structures [72]. Given a graph G = (V , E), the objective of graph learning

is to learn a mapping function f that transforms the raw features of each node

into an enhanced update representation. Message passing and the subsequent

aggregation of these messages comprise the two primary stages that make up the

fundamental essence of the graph convolution process. By combining these stages,

a node can achieve a more refined feature representation by combining features

from its neighbors.

In the realm of graph convolution, each node denoted as v, plays a piv-

otal role in information propagation. This process involves the transmission of

a message through the edges that connect node v to its neighboring nodes, col-

lectively represented as N(v). This message essentially encapsulates the feature

representation, hv, of the transmitting node v [72].
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To formalize this, consider the message m
(l)
v→u from node v to its neighbor-

ing node u at a given layer. This message is defined as follows

m(l)
v→u = h(l−1)

v (2.23)

for all u ∈ N (v), where N (v) represents the neighbors of node v, where m
(l)
v→u

is the message sent from node v to node u at layer l, and h
(l−1)
v is the feature

representation of v from the previous layer [72]. Every node in the graph receives

messages from its neighbors. This method ensures that information is transferred

and aggregated fluidly throughout the network, allowing for refined feature rep-

resentations for each node based on its local neighborhood context [72]. The

aggregation and the transformation are detailed below.

1. Aggregation: Every node v aggregates the messages it has received, usually

by adding up or averaging them to produce an intermediate representation av.

Therefore, the aggregation process is the final step in this message-passing phase

since it requires us to combine all of the received messages into a single message

representation for each node [72]. Mathematically, this aggregation is depicted as

a(l)v = AGGREGATE(l)
({

m(l)
u→v : u ∈ N(v)

})
, (2.24)

where a
(l)
v denotes the aggregated feature representation of node v at layer l [72].

The collection of messages m
(l)
v→u received from the neighboring nodes is processed

by the function AGGREGATE, which is usually a summation or averaging op-

eration.
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2. Transformation: A simple function transforms the aggregated representa-

tion using a linear transformation followed by a non-linear activation function.

Mathematically, the representation a
(l)
v is transformed as

h(l)
v = σ

(
W (l)a(l)v

)
, (2.25)

whereW (l) represents the linear transformation, which is typically a weight matrix

pertinent to layer l [72]. The weight matrix performs a linear transformation,

which ensures the model’s adaptability during the learning phase and allows for

the capture of linear dependencies in the feature space. This gives us node v’s

updated representation, hv. The complete network can be expressed as

h(l)
v = σ

(
W (l) · AGGREGATE(l)

({
h(l−1)
u : u ∈ N (v)

}))
, (2.26)

where N (v) represents the neighbors of the node v, and AGGREGATE(l) is the

aggregation function applied to the hidden states of neighboring nodes [72].

Nonetheless, GCN assumes that every neighbor is equally significant, even

though, in practice, each node may not be equally significant in the context of a

graph, so the attention function is used to adjust for each neighbor’s importance.

2.4.5 Graph Attention Network (GAT)

The GAT algorithm concentrates on neighbor nodes’ more significant and

pertinent features for improved feature representation. The GAT algorithm ap-

plies a shared linear transformation to each node’s feature vector, which is pa-
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rameterized by the weight matrix W [28]. The process is defined as follows

Z(l)
v = W (l)h(l−1)

v ,∀v ∈ V ,

where Z
(l)
v is the transformed feature vector for node v at layer and W (l) is the

weight matrix at layer l [28]. The attention coefficient shows how significant node

j’s characteristics are to node i. This is done using the attention mechanism,

which is a shared attention function [28] given by

e
(l)
ij = a

(
Z

(l)
i , Z

(l)
j

)
. (2.27)

The softmax function then normalizes the attention coefficients as [28]

α
(l)
ij =

exp(e
(l)
ij )∑

k∈N(i) exp(e
(l)
ik )

. (2.28)

Lastly, the output features of the node are computed by combining the

neighboring features linearly, employing the normalized attention coefficients [28].

given by

h
′(l)
i = σ

 ∑
j∈N(i)

exp(a(Z
(l)
i , Z

(l)
j ))∑

k∈N(i) exp(a(Z
(l)
i , Z

(l)
k ))

Z
(l)
j

 . (2.29)

The update function is implemented on the node. This allows us to obtain

a more accurate representation of each node’s features because significant neigh-

bors’ nodes are now gathered and combined. This method enhances the model’s

performance and adds realism to the learning process [28].
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In the next section, we discussed the improved version of the graph con-

volution technique, such as the GraphSage Convolutional Neural Network.

2.4.6 GraphSage

Graphsage’s primary concept is that it creates embeddings from a node’s

immediate neighborhood and incorporates the ability to create one’s own embed-

dings while updating a node’s new features. In order to obtain a comprehensive

representation of the graph data sets, this model incorporates the node’s feature

into the aggregation process [73].

Given a node v and its neighbors N (v), the first step in GraphSAGE is to

aggregate the feature vectors of the node’s neighbors, given by

AGG
(
{hu

(l−1),∀u ∈ N (v)}
)
=

1

|N (v)|
∑

u∈N (v)

hu
(l−1), (2.30)

where hu
(l−1)is the feature vector of node u in the (l−1)-th layer and |N (v)| is the

number of neighbors. The aggregated feature vector is then concatenated with

the feature vector of the node v itself, and then it is transformed by applying a

learned linear transformation and a non-linear activation function as follows

hv
l = σ

(
W self

l · hv
(l−1) +W neigh

l · AGG
(
{hu

(l−1),∀u ∈ N(v)}
))

. (2.31)
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And l2 normalization of the node embeddings is applied after each iteration as

follows

hv
l =

hv
l

∥hv
l ∥

. (2.32)

The GraphSAGE model incorporates its own and neighbors’ features; nodes get

represented in a way that respects individuality and the community’s influence

on the graph [73]. It offers flexibility by relying on the node’s own data and

considering its surroundings, giving a holistic view.

2.5 Conclusions and Future Directions

In this chapter, state-of-the-art graph learning using GNNs is presented,

focusing on their capability to capture relations in the image data sets for com-

puter vision applications. The description covered algorithms for graph learning,

challenges associated with generating graphs from images, and various approaches

to graph generation. On the basis of our exhaustive survey, we have determined

the following future research directions for graph learning in computer vision:

• Eliminating the need for manually crafted features and domain expertise by

automating the process of constructing meaningful optimal graph represen-

tations from raw data.

• Construct sparse graph methodologies enhancing the effectiveness of GNNs

by making use of sparsity in graph representations, especially for large and

dense graphs that are frequently encountered in computer vision tasks.
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• Enhancing performance in tasks such as action recognition and scene com-

prehension by integrating graph-based representations with additional data

modalities (e.g., text, audio).

• Developing frameworks and instruments to interpret the decisions of GNNs

in a manner that increases their clarity and accessibility to users.
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Chapter 3. Multilabel Defect Classification of Large

Concrete Structures Using Vision Graph Neural Network

with Edge Convolution

3.1 Introduction

The safety of large structures, such as concrete bridges, buildings, and

pavements, requires precise detection and identification of various defects to es-

timate the degradation level of various components. Defect identification poses

a challenge due to their smaller size compared to the bridge and the possibil-

ity of multiple defects overlapping with each other [1]. In real-world scenarios,

the complexity of identifying these defects is heightened by various environmen-

tal factors. These include changing lighting conditions, surface wetness due to

weather, and different non-critical surfaces like minor holes, markings, stains, or

graffiti. Traditionally, defect detection and identification relied on domain-specific

manual inspections by experts [74], which are subject to human error. This chal-

lenge requires a robust methodology capable of learning the subtle differences and

relations between defects for better classification accuracy.

Deep learning algorithms [2] have been successfully employed across var-

ious fields for defect classification, demonstrating their ability to detect subtle
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feature variations. When it comes to object detection and material recognition,

convolutional neural networks (CNN) [3] perform admirably due to their ability

to capture spatial hierarchies and local patterns within images [2]. While CNNs

excel at single-label defect classification, the model performs poorly when faced

with the complexities of multilabel images. The inherent challenge is that CNNs

cannot capture the nuanced relationships and overlapping features associated with

multiple defect classes within an image. Additionally, CNN models may not be

optimally suited for detecting material defects, as they might fail to recognize

the interplay between a defect and its surrounding multiscale structures [1]. In

real-world scenarios, the characteristics of a material defect often depend on its

adjacent components. Therefore, deep learning schemes that take the relations

among the features are necessary.

Graph neural networks (GNNs) have applications in a wide range of do-

mains where the available data is naturally in a graphical structure, such as social

media networks [5], citation networks [6], and others. However, using GNNs for

image classification requires reformulating image data within a graph structure.

The vision GNN [7] uses a novel approach to represent images as a graph by

dividing each image into multiple patches, allowing for the extraction of intricate

relationships between image components.

Motivated by the performance of vision GNN in single-label defect classi-

fication, we proposed a multilabel vision GNN with edge convolution for concrete

bridge defect classification, which uses the relationship between the defects in an

image dataset to improve the accuracy significantly. We extended the vision GNN
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by introducing edge convolution to capture the defects’ intricate intra-dependent

structure. In the proposed multilabel vision GNN [7], a single image is converted

into patches, which serve as the nodes of the graph. The edges or connections

among these nodes (patches) are then established based on the nodes’ proximity

to each other, resulting in a k-neighborhood graph for the image. The model

performs edge convolution within the newly created graph for the aggregation of

features at each node with its neighbor.

The message aggregation proposed is a unique variation of edge convo-

lution that applies CNN algorithms directly to the features of the graph nodes.

By extending the standard convolutional operations to the graph structure, this

variation makes it possible to extract features and propagate information among

the connected nodes of the graph efficiently. We utilized the combined capacities

of CNNs and GNNs, as well as feedforward networks (FFN), and enabled them to

learn the features and relationships between the features of different patches. This

layout makes it possible for effective updates and the aggregation of information.

A dual linear layer FFN module is applied to transform node features be-

fore and after the graph convolution to address the problem of over-smoothing

in deep GNNs. We utilized the multilabel loss function with Logit to enable

multilabel classification tasks. This allowed us to extend the capabilities of the

vision GNN from single-label classification to multiple labels. We also validated

the multilabel vision GNN using the concrete detect dataset, referred to as the

CODEBRIM dataset [1], which demonstrated significant improvement when com-

pared to the state-of-art multilable defect classification [1].

47



3.2 Related work

In this section, we present a brief review of the de facto backbone models

for image classification, including CNN, transformers, and GNN. A brief review

of defect classification is also discussed.

3.2.1 CNN, Transformer, and MLP-based Models for Image Clas-

sification

Researchers have been using CNNs to capture the image features more

effectively for classification [75], image segmentation, and object detection tasks.

CNN-based models, such as LeNet-5 [76], AlexNet [77], VGGNet [78], Resnet [75],

and MobileNet [79] are proposed in the literature to increase the model feature

extraction capability as well as the accuracy of various vision tasks. On the other

hand, inspired by the achievements of the transformer model in natural language

processing, the vision transformer [80] was introduced for image classification. In

this approach, images are treated as a sequence of patches, and a self-attention

mechanism is employed to capture both the overall and local relationships among

these patches. Modified versions of the vision transformer model, such as the Swin

transformer [81], which performs sliding window-based self-attention, also showed

better performance in image classification. For image datasets with different

scales, the multiscale vision transformer was introduced in [82] by employing a

hierarchical pyramid-shaped architecture to process images of varying scales.
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Researchers in the computer vision area have also shown interest in mul-

tilayer perceptrons (MLP) because of their universal approximation capability.

MLP enables the model to learn non-linear relationships among the features [83].

MLP satisfies the universal approximation theorem, which states that a simple

network with a single hidden layer and a sufficient number of neurons can ap-

proximate any continuous function in a compact set. This property makes it

suitable for learning the continuous hierarchical features of images. With tailored

modules for specific vision tasks, MLP can perform with reasonable accuracy in

image classification [84]. Due to its inability to process spatial feature informa-

tion, MLP is combined with a CNN-based model to construct a more resilient and

adaptable model [85]. While effective in vision applications, the above models do

not consider the intricate relationships in the features for classification, limiting

their capabilities for classifying images with overlapping features.

3.2.2 Graph Neural Network for Vision Tasks

GNN models can comprehend the context of any image by capturing the

interaction between objects as graphs [9]. The incorporation of multiple edge

building and edge convolution techniques enables this context comprehension [86].

This is particularly important in real-world scenarios where various degrees of

relationships between image components frequently exist. Researchers exploit

the ability of GNNs to continuously propagate label information across all nodes

to perform vision tasks, such as image classification [87], image segmentation,

and object detection. Building a model that combines CNN and GNN modules
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can aid in the comprehensive learning of features, with CNN assisting in learning

spatial features and GNN helping in learning relational features. These hybrid

models demonstrated great potential in vision tasks, which served as the basis for

the design of the vision GNN [7].

3.2.3 Defect Classification

With the incorporation of deep learning in structural and machinery de-

fect classification, the capabilities of these defect classification systems have been

enhanced, resulting in a paradigm shift in terms of accuracy, adaptability, and

efficiency. Recent studies have used CNN algorithms to create an automated

detection model for water surface defect classification [3]. A max-pooling con-

volutional neural network for supervised defect classification is proposed in [88],

which operates directly on the raw pixel intensities of detected and segmented

images. Surface defects on cement concrete bridges model [89] used a classical

convolution-based network (VGG-16) [2] to classify defects in bridges. CNN-

based models are also used to perform classification for domain-specific datasets,

such as Crackforest[90], CSSC [91], and SDNET2018 [92]. These datasets are

domain-specific because they are designed to address the complexities and char-

acteristics of the “crack” defect domain only. Li et al. proposed to build a local

pattern predictor (LPP) using CNN for crack versus non-crack classification [74].

These models are primarily concentrated on assessing single-label classification

and evaluating established CNN baseline models. For multilabel defect classifica-

tion, the authors in [1] used a meta-learning-based task-specific neural network.
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the proposed approach diverges from the emphasis on single-label crack detection.

Instead, we use vision GNN with edge convolution to comprehensively model a

multilabel defect classification for concrete bridges, ensuring that all complexities

in the data are taken into account.

3.3 Background on Vision GNN and Problem Statement

This section provides a brief background on the vision GNN, which is the

backbone of the proposed multilabel defect classification task.

3.3.1 Vision GNN

To enhance the understanding of images beyond what is offered by CNN’s

grid representations or the transformer model’s sequence representations, vision

GNN introduces a novel approach. This method constructs a graph from an

image, treating the image as a unique form of a grid. This graph-based rep-

resentation is particularly advantageous for images depicting human action. By

isolating various body parts and establishing connections between them, the graph

captures meaningful relationships, thus providing a more comprehensive under-

standing of the image’s semantics. This approach allows for a more nuanced and

accurate interpretation of the spatial and relational dynamics within the image.

The vision GNN algorithm proceeds with an image of size H × W × C

and converts the image into N patches, where H is the height, W is the width,

and C = 3 is the channel of an image. The feature vector xi ∈ Rd, where

Rd is a d dimensional real-valued vector space, of each patch is defined based
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on the pixel intensity value. The patches are represented as unordered nodes

V = {v1, v2, . . . , vN} of the image graph. Every node is given a feature that will be

processed in the next stage of the algorithm. The edges E of the graph G between

each node are determined by calculating the Euclidean distance between each

node’s k-neighbors. For each node, a relative positional embedding is integrated

with the distance feature to improve the estimation of the k-neighbors.

Graph-level processing begins with the grapher module and feedforward

network module once the graph G = (V , E) is established. A graph convolution

layer capable of aggregating the graph’s node features is used, as specified by

G0 = Update(Aggregate(G,Wa),Wu), (3.1)

where G0 is the processed graph, Wa and Wu are the aggregated and updated

weights of graph convolution, respectively. The node’s representation is calculated

by aggregating the features of neighboring nodes and then merging the combined

feature further through the update operation given by

x0
i = h(xi, gConv(xi, N(xi),Wa),Wu), (3.2)

where gConv denotes the graph convolution in neighbor nodes N(xi) of node xi.

The aggregated feature x0
i is first split into h heads, i.e., head1, head2, . . . , headh,

and then these heads are updated with different weights, respectively. All the

heads can be updated in parallel and are concatenated as the final values. The
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multi-head module update process is expressed as

x0
i = [head1W1||head2W2|| . . . headhWh], (3.3)

where || denotes the concatenation. The updated process uses the multi-head

module to capture expressiveness and various aspects of node relationships.

Multi-head modules facilitate updates of nodes’ features in h subspaces,

enabling diverse feature representations. The feature converges to a similar em-

bedding because the model gathers information about the k-hop neighborhood

using multiple layers of the grapher module. The phenomenon is known as over-

smoothing, and it worsens as the grapher module layer increases, resulting in in-

sufficiently varied features. To increase feature diversity, a two-layer FFN, given

by

Y = σ ((XW1)W2) , (3.4)

is used to reduce the oversmoothing problem. The function σ(·) denotes the

sigmoid activation function, and the matricesW1 andW2 denote the weights of the

first layer and the hidden layer, respectively. The activation function introduces

non-linearity to the model, which helps the layer learn intricate patterns from the

data that the model might overlook. The diversification of the data helps reduce

the over-smoothing problem, leading to more accurate and nuanced predictions.
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3.3.2 Problem Statement

The vision GNN, described above, primarily caters to single-label classifi-

cation. Our goal is to enhance the model’s versatility for multilabel classification.

Additionally, the model needs to lessen the effects of the oversmoothing issue.

Moreover, the proposed model requires more refined feature representation to

improve defect classification. This necessitates a deeper model to capture the

defects’ fine-grained features. By introducing additional MLP layers within the

grapher module, the oversmoothing problem can be reduced. Edge convolution

can be used to combine the strengths of CNNs and GNNs to increase the richness

of feature representation, as discussed in detail in the next section.

3.4 Proposed Vision GNN with Edge Convolution

This section discusses the proposed approach for multilabel defect classi-

fication by extending the vision GNN and further discusses the relationship of

node convolution and edge convolution of vision GNN .

The core blocks of the proposed multilabel vision GNN integrated with

edge convolution for enhanced feature processing are depicted in Figure 3.2. To

utilize the capabilities of graph convolution, it is necessary to transform the image

dataset into graphs. The images are divided into N patches, each representing a

node in the graph, as shown in Figure 3.1. For image I, let P be the set of N

patches extracted from the image. Each patch Pi ∈ P is considered a node in the
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Figure 3.1: Graph formulation from an image.

graph G, and can be expressed as

V = {P1,P2, ...,PN}, Pi ∈ RH×W×C , (3.5)

Figure 3.2: Sequential steps of the proposed defect detection algorithm.

The edges are established among the top k-nearest neighbors of each node

pi. The proximity of the nodes is determined by calculating the Euclidean distance

between the nodes. To capture the long-range relationship between pixels in the

image, the distance vectors are integrated with the relative positional information

of the patches. The image’s height and width are encoded using a sinusoidal
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transformation to determine their positional embeddings. Let PH and PW denote

the positional embeddings for height and width, respectively, then the positional

embedding for height can be expressed as

PH(i) = sin

(
i

100002k/d

)
for i = 1, 2, ..., d, (3.6)

and the positional embedding for the width can be expressed as

PW (j) = cos

(
j

100002k/d

)
for j = 1, 2, ..., d, (3.7)

where k represents the dimension of the positional embeddings and d is the di-

mension of the image patches.

The two separate embeddings PH and PW are concatenated to form a

comprehensive embedding Pconcat of the patches, resulting in the collection of

spatial information for each pixel in the image, and can be expressed as

Pconcat = PH ∥ PW . (3.8)

Next, by multiplying the transformed positional embedding element-by-element

with the original positional embedding, the relative positional embedding is de-

termined, which can be expressed as

RP = (Pconcat)
Transform ⊙ Pconcat, (3.9)
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where the RP denotes the relative position embeddings. Relative positional em-

bedding allows for the acquisition of spatial information from pixels, which is

often overlooked by traditional convolution-based neural networks. This method

is learnable and allows for a more comprehensive understanding of pixel rela-

tionships. In addition, the positional embeddings are also trained in the training

phase, which enables the model to include long-range dependencies between image

components.

To determine the edge index, the top k-neighbors are found using the

integrated distance function and relative position embeddings, expressed as

edge index(E) = index(topk(dist + RP), (3.10)

where dist denotes the distance between the nodes in the graph, and the topk

denotes the k-nearest neighbors of every node in the graph. The computed edge

index is the basis for selecting the image features. This feature is passed to

the grapher module’s block for further graph processing. The grapher module

downsamples the features by CNN and then performs edge convolution for future

aggregation, followed by a feedforward network. The module is used in a repetitive

manner to formulate a deep architecture. This deep architecture is intended to

capture graph-based relationships via edge convolution and improve the resulting

feature representation using the FFN.

Edge convolution is a specific instance of graph convolution that operates

on edges. Node convolution gathers data from every neighboring node, irrespec-

tive of the number of edges linking them, while proposed edge convolution focuses

57



on specific connections between nodes that have been established by the edge in-

dices E in (3.10). This means that edge convolution is more sensitive to changes in

how nodes are connected by edges, unlike the vision GNN approach [7]. Feature

extraction in edge convolution processes edge features and node features alto-

gether, producing an enhanced feature representation. Edge convolution is used

in the Grapher module to gather and update features from the graph’s neighbors

along the edge defined by the edge indices E and can be expressed as

X = EdgeConv(x,E) = max (Conv ([xi ∥ xj − xi])) , (3.11)

where xi and xj, respectively, are the self and neighbors’ features. Edge con-

volution runs iteratively k times to gather feature information from each node’s

k-hop neighbors, resulting in the convergence or smoothing out of node features.

Since all of the features in the graph contain somewhat similar information, the

occurrence of smoothed-out features hinders the formation of robust classifiers.

An MLP is employed both before and after the grapher module to enhance the

diversity of features. The FFN layer’s addition to the block lowers the deep graph

convolutional network’s (GCN’s) over-smoothing problem and can be expressed

as

Xnew = YMLP = σ((X ·WMLP,1 + b),W2), (3.12)

where σ(·) denotes the sigmoid activation function, WMLP,1 is the weight of MLP

layer, b is the bias, and W2 is the update weight. After going through the specified
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block iteratively, predictions are made using a prediction layer given by

Ypred = σ(Linear(Xnew)), (3.13)

where σ(·) denotes the sigmoid activation function used in the prediction layer.

The predicted output, Ypred, has a size of (batch size × N), where N is the number

of classes. The sigmoid activation function is employed to rescale the prediction

values within the range of 0 to 1, i.e., ŷi =


1 if Ypred(i) ≥ 0.5,

0 otherwise.

If the prediction score of every N class, Ypred(i) where i ∈ {0, 1, . . . , N},

is higher than the threshold score of 0.5, we assign a value of 1; otherwise, we

assign a value of 0. In that way, every image is predicted to have the presence

of multiple classes at the same time. Similarly, the ground truth labels also have

a size of (batch size × N). If three classes are present, the ground truth class

for one sample in the batch could resemble [1, 0, 1, 0, 1]. In order to encode the

ground truth labels, we employ one-hot encoding.

The loss, or the difference between the ground truth labels, Y , and the

predicted output, ypred, is then computed using the multilabel cross-entropy loss

function. The multilabel cross-entropy loss function is defined as follows:

Loss = − 1

batch size

batch size∑
i=1

N∑
j=1

[
Yij log(Ypred(ij)) + (1− Yij) log(1− Ypred(ij))

]
.

(3.14)
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The algorithm discussed above is summarized in Algorithm 1. The algo-

rithm iterates through blocks, performing subblock operations within each block.

Downsampling and FFN are used for blocks other than the first block. The gra-

pher module employs edge convolution iteratively, and FFN is used again. Finally,

a linear layer is used for prediction. During execution, the use of ’s’ represents spe-

cific sub-blocks within each block. The validation results of experimenting with

a use case scenario for the classification of concrete bridge defects are presented

next.

In Figure 3.2 sequential steps of the proposed algorithm is summarized

in which employs an Edge Convolution-enabled Vision Graph Neural Network

(GNN). First, the images are divided into patches, each representing a node in

the graph. Then, the graph is constructed, and relative positional embeddings

are computed. The integrated positional embeddings and distance of nodes are

used to find the top-k neighbors of the graph. Using the nearest k neighbors,

a k-neighborhood graph is generated, which is then passed through the grapher

module for further graph processing. The grapher module uses convolution for

downsampling and EdgeConv for feature aggregation and updating iteratively. An

MLP in the feedforward layer is used to increase feature variety, and predictions

are made using a prediction layer with sigmoid activation.
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Algorithm 1 Vision GNN with edge convolution Training Algorithm

1: Input:
2: Image Patches: X represent the nodes in the graph
3: Establish edges between nodes based on top-k neighbors using pairwise

Euclidean distances.
4: Relative Position Embedding: Pconcat

5: Edge Indices Construction: E = topk(dist(X) + Pconcat)
6: Initialization:
7: Initialize model parameters: Feature: X(0) = X, blocks, channels, etc.
8: Backbone:
9: for i in blocks do
10: if i ̸= first block then
11: Downsample: X(b) = Convolution(X(b−1))
12: X(b,s) = FFN(X(b,s)) here, ’s’ represents a specific sub-block within

the ’b’ block
13: end if
14: for j in sub-blocks do
15: Grapher module:
16: X(b,s) = EdgeConv(X(b,s), E)
17: FFN layer:
18: X(b,s) = FFN(X(b,s))
19: end for
20: end for
21: Prediction:
22: Prediction: Y = Linear(X(b,s))

3.5 Dataset and Experimentation

For Multilabel classification, we used the CODEBRIM dataset. Moreover,

to generalize our model performance for the image classification task, we employed

our model using the ImageNet-10 dataset.
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3.5.1 Dataset Description

1. CODEBRIM Dataset: The CODEBRIM dataset [1] is a well-

balanced, diverse, and overlapping defect dataset with the potential to test the

validity of the described defect classification model. The dataset consists of five

distinct bridge defect types: cracks, spallations, exposed reinforcement bars, ef-

florescence (calcium leaching), and corrosion (stains). Different levels of deterio-

ration in the bridges were selected to create the datasets. To ensure the datasets

are robust and diverse, the pictures were taken in various weather conditions and

at different times of the day. The dataset consists of 1) a total of 2, 506 gen-

erated non-overlapping background bounding boxes; 2) 5, 354 annotated defect

bounding boxes (mostly with overlapping defects); and 3) 1, 590 high-resolution

images with defects in the context of 30 distinct bridges. The total number of

images in each defect class is: 1) exposed bars: 1, 507; 2) corrosion stain: 1, 559;

3) efflorescence: 833; 4) spallation: 1, 898; and 5) crack: 2, 507. The distribution

of the defects in the CODEBRIM datasets is shown in the bar chart in Fig. 3.4a.

The majority of the images in the datasets have multiple labels. The raw

image of the datasets is annotated with bounding boxes, and every individual

bounding box contains several overlapping defects. The dataset poses signifi-

cant challenges due to variations in the aspect ratio, resolution, and scale of the

bounding boxes and defects. For example, a crack might appear elongated in one

image but not in another, depending on the image’s aspect ratio and resolution.
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Figure 3.3: Distirbution defects in the CODEBRIM datasets.

Similarly, a spalling defect might be more apparent in some images than others,

depending on the scale at which the image is captured.

2. CIFAR-10 Dataset: The ImageNet-10 dataset, which comprises

10 unique classes, is a condensed version of the larger ImageNet dataset. These

classes—which may include categories like ”dog,” ”cat,” ”car,” ”aeroplane,” ”flower,”

”fruit,” ”chair,” ”tree,” ”house,” and ”fish”—are thoughtfully chosen to offer

a varied representation of objects. In ImageNet-10, the number of images in

each class is the same, guaranteeing an equal batch size for every category. The

ImageNet-10 dataset can be used to generalize the model performance for real-

world classification tasks. The image set includes a variety of images that are

distinct from one another in terms of color, texture, and shape for each label.
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Due to this particular characteristic, the dataset is also considered to be a signif-

icant benchmark dataset for the task of image classification.

(a) CIFAR-10 images (b) CIFAR-10 dataset distribution

Figure 3.4: CIFAR-10 Image Dataset and Distribution of Dataset.

3.5.2 Data Processing and Training

The model resorts to the traditional CNN-based approach to handle the

variation in scale and resolution. The datasets are balanced by ensuring the train-

ing set contains equal defect classes. Every image has multiple labels assigned to

it simultaneously. The processing of the defect datasets includes the background

as a label for the classifier to learn. Different types of defects and their back-

grounds are shown in Figures 3.5 to 3.7. It is clear from the Figures 3.5 to 3.7

that inclusion of the backgrounds in the label representation has the advantage

of teaching the model the context of the defects about the background. Bet-

ter localization of the defects promotes learning their spatial relationship to the

surroundings or other defects that overlap within the same background. As the
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model is trained with various backgrounds and defects simultaneously, it improves

its generalization capability about real-world backgrounds.

(a) (b) (c)

Figure 3.5: (a) Crack and background, (b) crack and background, and (c) crack and
background.

(a) (b) (c)

Figure 3.6: (a) Background only, (b) crack and background, and (c) corrosion and
background.

3.5.3 Experiment Settings

We carefully select the parameters required for our model’s stabilization

and performance optimization. We opted for a training cycle of 300 epochs; we

selected this duration based on the model’s peak performance observed at the

300th epoch and its tendency to stabilize thereafter. We adopted a batch size of
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(a) (b) (c)

Figure 3.7: (a) Background only, (b) crack, efflorescence, corrosion stain, and (c)
crack only.

64 considering computational efficiency, model stability, and memory usage opti-

mization. Every image is divided into 48 patches to formulate the iniital graph

for the model input pipeline. A binary cross-entropy loss with logits is used to

regularize the training procedure. The sigmoid function is used to scale the pre-

diction layer’s output, resulting in a detailed depiction of the model’s confidence

across several classes. A threshold score of 0.5 is used to determine whether or not

a prediction is deemed accurate for a given task. We used Adam Optimizer for

the optimization, which directly uses weight decay in the optimization process,

resulting in better weight regularization. The cosine learning rate scheduler was

employed to facilitate the initial convergence, gradually lowering the learning rate

as training progressed. We choose a weight decay of 1 × 10−3, which penalizes

the large weights contributing to reducing overfitting during training.

We choose stochastic path probabilities of (0.1, 0.1, 0.1, 0.3) to introduce

randomness during training. The stochastic path works as an inner control vari-

able, introducing control variability into the training process. The stochastic path

controls the distinct module or set of operations that our training process can fol-
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low. Rather than using total randomness to select a path during the training

process, stochastic path probabilities indicate the likelihood of following a path.

This option allows us to make the model prefer a certain path that is more efficient

and convergent. To create a robust model for different types of data distribution,

stochastic path probabilities incorporate dynamic adaptability into the model by

highlighting or underlining specific paths to follow in the model. The model is

less likely to overfit specific patterns common in the datasets when trained for

adaptive input. A dropout probability of 0.5 is also chosen for the model to reduce

overfitting during training. The training configuration of the model is described

in Table 3.1.

3.6 Results: CODEBRIM Dataset

The vision GNN model with edge convolution is a pyramid architecture

model. This means that it has a hierarchical structure, where the number of

channels in the image increases while the spatial resolution of the data decreases

as we move up the hierarchy. This is accomplished by incrementing the number

of filters as we ascend in the hierarchy. The concept behind designing a pyramid

model is that the lower layers in the hierarchy capture the local and fine-grained

features, while the higher layers capture the long-range dependencies of the fea-

tures. This model is useful for learning both fine and coarse-grained features at

various levels of granularity within the input data for the CODEBRIM dataset

[1] with different scales of defects. The model suppresses information at one level

while expanding it at another, resulting in a robust model for capturing the fea-
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Table 3.1: Training configuration.

Parameter Value

Epochs 300

Optimizer AdamW

Batch size 64

Number of Patch 48

Start learning rate (LR) 1× 10−4

Learning rate schedule Cosine

Weight decay 1× 10−3

Stochastic path 0.1, 0.1, 0.1, 0.3

Mixup prob 0.8

Cutmix prob 1.0

dropout prob 0.5

tures’ local and global dependencies. We can see in Figure 3.9 that the model is

rapidly improving its accuracy within 40 epochs with the decrease in loss shown

in Figure 3.8. The model consistently improves its ability to recognize and utilize

the feature, reaching a high accuracy of 96 percent after 500 epochs of training.

The increased stability of learning observed after 40 epochs indicates that the

deep layer is specifically designed to capture long-range contextual features. This

training trend indicates the model’s ability to analyze the complex characteristics
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Figure 3.8: Training loss.

Figure 3.9: Training accuracy.

of defects and establish the relationship between overlapping defects in the image
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sets. The models achieved 86 percent accuracy on the test set and 83 percent

accuracy on the validation set, as shown in Table 3.2

Table 3.2: Model performance comparison with popular CNNs.

Architecture Best Validation BV-test Params
(million)

Layers

Alexnet 63.05 66.98 57.02 8

T-CNN 64.30 67.93 58.60 8

VGG-A 64.93 70.45 128.79 11

VGG-D 64.00 70.61 134.28 16

WRN-28-4 52.51 57.19 5.84 28

Densenet-121 65.56 70.77 11.50 121

ENAS-1 65.47 70.78 3.41 8

ENAS-2 64.53 68.91 2.71 8

ENAS-3 64.38 68.75 1.70 8

MetaQNN-1 66.02 68.56 4.53 6

MetaQNN-2 65.20 67.45 1.22 8

MetaQNN-3 64.93 72.19 2.88 7

vision GNN 83.00 86.00 24.004 77

We also compared the accuracy of the proposed model with other architec-

tures used for defect classification. The vision GNN outperforms the competition
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with an impressive 86% accuracy, as shown in Table 3.2. Notably, it outperforms

traditional CNN-based models, such as Alexnet, T-CNN, VGG-A, and VGG-D in

terms of validation and test accuracy. The vision GNN also outperforms more re-

cent meta-learning-based few-shot learning models, such as WRN-28-4, Densenet-

121, ENAS-1, ENAS-2, ENAS-3, MetaQNN-1, MetaQNN-2, and MetaQNN-3. It

is important to note that the CNN-based models, such as Alexnet, T-CNN, VGG-

A, and VGG-D, generally exhibit more parameters than vision GNN. The ability

of the vision GNN to outperform these CNN-based models with fewer parameters

highlights the effectiveness of its unique graph-based architecture in capturing

complex relationships within data, which contributes to superior performance in

image classification tasks. Moreover, the meta-learning-based model uses fewer

parameters due to advanced techniques like few-shot learning.

The model’s ability to discern intricate patterns, shapes, and spatial rela-

tionships within the images is demonstrated by its high accuracy in this scenario.

Furthermore, it highlights the model’s efficacy in extrapolating from the train-

ing data to unfamiliar samples. Moreover, the model’s robustness is consistently

validated by the 84% accuracy achieved on the validation set. A slight drop in

accuracy compared to the test set is expected, as the validation set allows us

to assess the model’s generalization of data that was not directly trained on. In

summary, the accuracy achieved demonstrates the models’ effectiveness in dealing

with the complexities of multi-class image prediction, providing a solid foundation

for their practical application in fields that require accurate defect detection and

categorization.
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3.7 Results: CIFAR-10 Dataset

We validated the model for the image classification task by performing

image classification on CIFAR-10 datasets. We use the same experimental settings

3.1. Since the Imgaenet is a single-label datasets, every image contains only one

object. We have used the binary cross-etropy loss function. The testing accuracy

for the model we got is 86% . The model achieves high accuracy for single-label

image classification tasks.

Figure 3.10: Testing Accuracy.

The confusion matrix for the classication task is also provided below in

Figure 3.11. When it comes to the task of image classification, we can see that

our model performs fairly well.
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Figure 3.11: Confusion matrix of CIFAR-10 testing datasets.

3.8 Conclusion

This thesis presented the defect identification of CODEBRIM datasets,

focusing on common bridge defects. Traditional convolution-based methods can-

not train a comprehensive classifier due to the overlapping and multiscale defects

in bridges. The vision GNN with edge convolution, which is a hybrid network

enriched with GNN and CNN capabilities, aids in reducing the shortcomings of

conventional convolution-based networks. The proposed vision GNN model is ad-

vantageous in capturing image components’ intricate and irregular relationships.

The proposed model incorporates CNNs, GNNs, and FFN layers, allowing for ef-

fective information updates and aggregation while addressing the over-smoothing

problem commonly observed in deep GNNs. Despite the difficulties of predict-

ing multilabel image by matching the target labels exactly with state-of-the-art
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networks, the proposed models achieved 86% accuracy on the test set and 83% ac-

curacy on the validation set. In summary, the proposed approach presents a novel

deep-learning algorithm designed for multi-class defect classification, thereby pro-

viding a robust method for dealing with the complexities introduced by varying

material appearances, changing lighting conditions, and overlapping defects. The

improved accuracy highlights the potential of hybrid networks for real-world ap-

plications, such as bridge safety assessment and defect classification. In our future

work, we plan to explore meta-vision GNN to reduce the number of parameters

in the model.
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Chapter 4. Conclusions and Future Work

This thesis demonstrated the prominence of graph neural networks (GNNs)

for capturing complex relationships in image datasets with their applications in

computer vision. We presented an in-depth exploration of graph learning, focus-

ing on non-neural and neural methods. We also discussed the techniques used to

construct graphs from image data. We detailed the state-of-the-art graph learning

processes, such as graph kernel-based embeddings, recurrent neural networks, and

graph convolutional networks. As a result of the fact that GNN can effectively

capture both the long- and short-range dependencies in datasets, we were able

to demonstrate that graph convolutional neural networks perform better than

conventional neural networks in the field of computer vision. This thesis also

supports the assertion by developing and implementing a hybrid graph neural

network architecture for multilable defect classification from images. The pro-

posed model incorporates CNNs, GNNs, and FFN layers, allowing for effective

information updates and aggregation while addressing the over-smoothing prob-

lem commonly observed in deep GNNs. To validate the model’s performance,

we implemented the developed model on the multilabel defects named CODE-

BRIM and demonstrated that our methodology increased classification accuracy

by 16%. The improved accuracy highlights the potential of hybrid networks for
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real-world applications, such as safety assessment and defect classification of large-

scale structures, such as concrete bridges, tanks, and large-scale mechanical equip-

ment. Based on our proposed research and available literature in computer vision

concerning graph learning, the following are some of the tasks induced in our

future work.

• To enhance the performance of the computer vision model, we plan to incor-

porate supplementary data, including audio, text, and 3D data, to enhance

the performance of our model.

• We also plan to automate the graph construction process to generate an

optimal graph, thereby reducing the run time complexity.

• We also plan to incorporate meta-learning into the Vision GNN model to

reduce the number of parameters and the degree to which it depends on the

amount of training data.

• Finally, we plan to develop frameworks and instruments to interpret GNNs

in a manner that provides insight into their decision-making capability.
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