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Abstract

GENERATION OF TRUE RANDOM NUMBERS WITH A
FIRST ORDER CHAOTIC CIRCUIT

Austin Davis

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

Electrical and Computer Engineering

The University of Alabama in Huntsville

August 2024

True randomness backed by first principles theory is surprisingly rare in physi-

cally implemented circuit for cybersecurity applications. This thesis provides an illus-

trative case of a chaotic one-dimensional map circuit with a design driven by a need

for rudimentary theory concerned with the limits of its entropy production. Analysis,

simulation, and hardware measurements are evaluated against statistical randomness

tests issued by the National Institute of Standards and Technology. Interestingly,

the results provided here highlight strong relationships between first principles the-

ory of design and measured results when varying parameters. We observe matching

characteristics between analytic, simulated and measured hardware results for NIST

performance indicators of entropy and randomness. Altogether, this work enables

theoretical guidance for entropy assurance in a class of chaotic oscillators used as

hardware security primitives.
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Introduction

As our increasingly digital world relies on trusting the security of our

devices, how can we be assured our data and communications are actually secure?

Encryption is the heart of data privacy and secure communications. It relies on

having plentiful access to random bits in order to obscure data from malicious

actors [19]. But what happens when the bits used to encrypt our data fail to

be sufficiently random? Methods of producing true random numbers can be

susceptible to vulnerabilities [3] or have design flaws that limit their effectiveness

[24]. More reliable and cost effective solutions are needed to produce quality

random bits. Can the properties of solvable chaos and nonlinear dynamics be

utilized to implement in hardware a circuit capable of generating highly entropic

random bit strings?

Chaos theory defines systems with sensitive dependence on initial condi-

tions where trajectories of sequences will differ greatly from one another over time

[2]. Chaotic systems are capable of infinitely producing strings of non-repeating

numbers. The best way to harness this is with solvable chaos. Dynamical dif-

ferential equations with exact solutions can have chaotic behavior even though

the properties of solvability and chaos seem antithetical [8][6]. With an exactly
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solvable differential equation, the system’s behavior can be modeled and realized

in hardware.

Any physical system needs to be evaluated empirically to measure adher-

ence to the theoretical system. The primary qualifier for a system’s randomness

is entropy. Entropy is a measure of new information revealed to an observer af-

ter an event [26]. High entropy is a quality of data with uncertainty. That is,

data do not contain predictable patterns such that future data cannot be guessed

from observed past data with confidence. Maximum entropy of a system can be

calculated analytically, but for the physical realization of a chaotic system, the

entropy can only be estimated from the observation of large sets of data. The

performance of the circuit will be evaluated in terms of its entropy and statistical

randomness. The research will evaluate its viability as an entropy source for the

generation of random bit-streams for use as a true random number generator.
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Background

High quality random numbers are needed for secure electronics. Fields in-

clude cryptography, password and key generation, data encryption and compres-

sion, as well as nonce generation and simulated randomness in games of chance

[21][13]. Our digitally connected world relies on these cryptographically secure

random numbers more every year as the number of connected devices continues

growing. In the IoT sector alone it is estimated that over 20 billion devices will be

added by 2025 compared to the surveyed number of devices taken between 2015

and 2019 [1]. Every new device represents an attack vector for malicious actors.

This increasingly long chain is still only as strong as its weakest link.

There are currently many implementations of random number generators

with different robustness and limitations. The primary two methods to cre-

ate a cryptographically secure random number generator (CSRNG) are with a

pseudo random number generator (PRNG) and a True random number gener-

ator (TRNG). Both methods have the capability to produce cryptographically

secure random numbers. True random number generators produce randomness

by observing a physical entropy source. Thermal noise, atmospheric noise and

electromagnetic radiation and even a wall of lava lamps [13] are used as entropy
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sources. A pseudo random number generator instead creates random numbers

algorithmically, given some input initial condition or seed.

True random number generators exhibit blocking behavior [27][17]. They

generate new random numbers as fast as the entropy source can be sampled to

fulfill the need of the desired amount of random numbers. This creates a limitation

where requests for random numbers occur more frequently than a system can

produce unique numbers. The raw outputs from physical sources of randomness

may not be sufficient for use in secure electronics. The raw output may contain

biases or be non-uniformly distributed. Some conditioning can be performed on

the output to make it more ideal in uniformity or to remove biases [20][13].

Pseudo random number generators are not as limited in speed. Numbers

are generated algorithmically as fast as the hardware can compute them [18][4].

The PRNG must be reseeded periodically [20] to continue producing random

numbers. A pseudo random number generator is deterministic and relies on a

robust algorithm that is not prone to creating repeated sequences and an entropy

source that can produce a wide array of seed values [4]. Each seed to the PRNG

has a finite amount of entropy that is used up as the algorithm produces new

bits. Once the PRNG produces a repeated pattern, after a long sequence of

statistically random bits, then it has exhausted all the entropy the seed value was

able to provide [20]. Flawed PRNGs may rely on entropy sources that do not seed

the algorithm with sufficient entropy. Seed values with low entropy will cause the

PRNG to frequently produce shorter unique sequences. An entropy source that

only produces a limited number of values will cause the PRNG to generate the
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same sequences often. Another point of failure for a PRNG is a poor algorithm. If

the PRNG has a bias, then it may tend towards certain sub-sequences even with

a high entropy seed. These underlying biases can be exploited to guess future

values. The most robust systems use a hybrid implementation where a TRNG

acts as an entropy source which seeds a quality PRNG. This approach allows for

the high speed generation of random numbers found in PRNGs along with the

high entropy of a TRNG [20].

Implementations of random number generators in use today still exhibit

the same basic flaws. Systems that lack a robust, fast entropy source with an

unbiased data can be circumvented by malicious actors. Intel’s third generation

of core processors, code-named Ivy Bridge, included a true random number gen-

erator on chip [11][27]. Their implementation utilizes a metastable RS-NOR latch

as its entropy source [11]. The state of the random bit fluctuates due to thermal

noise conditioned by a capacitive feedback which nudges value 1 bits towards 0

[11]. All bits sampled from the entropy source are conditioned with post process-

ing circuitry to improve the quality of randomness [16]. In a collaborative research

effort led by professors at the University of Massachusetts Amherst, a method of

undermining the TRNG system with a hardware level trojan was discovered [3].

The attack reduces the entropy from 128 bits to just 32 bits. The generated ran-

dom numbers could become so predictable that it would be trivial for an assailant

to guess the numbers with a high degree of accuracy. It was concluded that this

method of tampering was undetectable by the system’s built-in self tests.
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In a report for DEF CON 29, researchers reported on a security flaw af-

fecting millions of IoT devices [24]. The IoT devices in question utilize a TRNG

System on a Chip (SOC) to create random numbers. This TRNG system was

prone to blocking errors when function calls to the TRNG subsystem exceeded

the TRNG’s ability to produce random numbers. They observed three failure

states that the devices could enter depending of what error handling capabili-

ties the IoT device had. The random number generator could produce numbers

with only partial entropy, output sequences of zeros, or even return uninitialized

memory [24]. The two current solutions for handling the error are to abort the

process all together or to await its completion when enough bits can be generated.

Neither of these are seen as acceptable solutions, so developers leave the errors

unhandled. This leaves millions of common IoT devices unsecured. So what tools

do we have at our disposal to create a high quality random number generator

with a measurable entropy?

2.1 Chaos Theory

A new paradigm in random number generation is the use of chaos as an en-

tropy source for true and pseudo random number generators. Chaos is defined by

two characteristics: sensitive dependence on initial conditions and deterministic

behavior [2][18]. A deterministic system that is dependent on initial conditions

seems like it would not be a good entropy source. That definition more closely

describes a PRNG than a TRNG. However, a deterministic chaotic system does

have an entropy rate associated with it [14][19]. PRNGs cannot create entropy

6



[9]. They can only use the entropy provided by the seed value. Chaotic systems

amplify the least significant bits of an initial condition to radically change its

trajectory over time [20][9].

Before continuing, it is important to discuss several key aspects of chaotic

systems that will be used to qualify its characteristics and quantify its perfor-

mance. One of the most well known chaotic systems is the logistic equation,

defined in equation 2.1. We will observe its properties to understand how to

characterize other chaotic systems:

xn+1 = f(xn) = βxn(1 − xn). (2.1)

2.1.1 Stability, Fixed Points, and Orbits

A fixed point is defined in a deterministic chaotic discrete-time system as

any value, such that the subsequent value is equal to the current value. This

means that the system has reached a state for which there is only one possible

value it can achieve [2]. These points can be solved for in any discrete time system

by defining the output variable of the function to be the same as the input and

solving for that variable. Mathematically defined as xn+k = fk(xn) = xn, where

k is any positive integer denoting the function is applied to itself k times.

Each fixed point can either be stable or unstable. Stable fixed points in

a system will cause values in the neighborhood of the fixed point to converge

towards the fixed point. Unstable fixed points are the opposite. A point in the

neighborhood of an unstable fixed point will diverge from it over time [2]. The

7



stability of a fixed point can be found by taking the magnitude of the derivative

at the fixed point fp. If the magnitude of the derivative is less than 1, then the

fixed point is stable. If the magnitude of the derivative is greater than 1, then the

fixed point is unstable [2][29]. Both fixed points of the logistic map occurring at

0 and β−1
β

are unstable. This is good for the overall system as it will not become

stuck in a fixed point.

Similar to fixed points, orbits are any set of points, such that after n

samples, the points will have the same value [2]. The system is in a repeating

pattern of values over some interval of length n. Orbits of length n are of period

n. Orbits are calculated in a similar manner as the fixed points. For a period

n orbit, the function will be nested n times and the input and output will be

defined as the same variable. In the case of a piecewise function, all permutations

of the equations must be tested to find all orbits.

Orbits can also be chaotic. A chaotic orbit perpetually exhibits unstable

behavior which is neither fixed nor periodic for any finite amount of time [2]. A

system is in a chaotic orbit if it meets the conditions of periodicity and a positive

Lyapunov exponent, or the deviation rate, of the system is greater than zero [2].

2.1.2 Maps and Partitions

The dynamics of a chaotic system can be represented graphically by a

return map. A return map plots the current value in a discrete system against

the next value. It is a useful tool for observing the behavior of the discrete time

series. The logistic map is plotted in Figure 2.1.

8



Figure 2.1: The one-dimensional return map of the ideal, full height logistic map. It
features two unstable fixed points at 0 and β−1

β . It can be exactly partitioned at 1
2 .

9



Plotting a slope 1 through the map further reveals its characteristics. Lo-

cations where the line intersects the map reveal the system’s fixed points [2]. For

points on the map above the line of slope 1, a line is traced from the map hori-

zontally to the right until reaching line of slope 1. Then, a line is traced vertically

towards the map. For points below the line of slope 1, a line is traced from a

point on the map to the line of slope 1 horizontally to the left. Then a line is

traced from the line of slope 1 vertically towards the map. The new location on

the map is the next value the system will produce.

Any map can be partitioned such that it is divided into more than one re-

gion containing points. Splitting the map into multiple regions allows the points

in those regions to be referred to symbolically. Data points can be ‘A’ and ‘B’

instead of their individual numeric values. Symbolic dynamics is useful for ob-

serving trends in the data as the states change over long periods of time.

2.1.3 Bifurcation and the Lyapunov Exponent

As previously mentioned, the dynamics of the system are affected by the

constants in the dynamical equations. By altering the value of β in the logistic

map equation, the trajectories of the map and possible values in the system also

change. Plotting return maps of systems with decreasing slope parameters shows

a reduction in the height of the map. There are now fewer values the system is

able to be. An orbit diagram, commonly referred to as a bifurcation diagram,

plots the possible values the system is able to produce against the slope parameter

used in the system’s equations.
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Figure 2.2: Bifurcation diagram of the logistic map equation. As the slope parameter
‘r’ increases, the greater number of values can be contained in an orbit. For the largest
values, the system exhibits chaotic behavior where it can take on any value in the
region.

As the slope parameter approaches its maximum value, the system will

produce a more robust chaos. The diagram of the logistic map shows regions

where there can only be one value for the system, regions where a few values can

be produced, and regions where the system becomes chaotic. In chaotic regions,

the system is able to produce values anywhere between the lower and upper

bounds. In both the logistic and tent map, as the slope parameter approaches

its maximum possible value, the range of possible values expands to the entire
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interval of (0,1). The system becomes more robust as the slope parameter and

range of values increase.

The Lyapunov exponent is a measure of the average rate of per-step diver-

gence rate of points in a sequence on an orbit [2]. This can be defined mathemat-

ically as the natural logarithm of the summation of the derivative of the function

taken at points xn, where n is integers from one to infinity, divided by the number

of points n:

lim
n→∞

1

n

n∑
i=1

|f ′(xi)|. (2.2)

For two sequences starting at arbitrarily close and unequal points, the

difference between the points after each iterate will change based on the Lyapunov

exponent. A positive exponent indicates the points will diverge at a rate of eλ

[2][23][8]. Diverging sequences is a requisite for a chaotic sequence. If a system

has a negative Lyapunov exponent, then it will converge to a fixed point.

The system has no stable fixed points and for higher values of µ there is

a robust set of values the system can take on. For all the qualities that make

this chaotic system useful, why not implement it as a digital PRNG instead

of a physical random bit generator? The answer lies in precision. Any digital

system has a finite number of bits that can be used to represent any data point.

This information limit is inherent to how a PRNG can only use the entropy

provided to it from a seed value. As the least significant bits are amplified, no

new entropy is created. A physical system is sensitive to external noise [20]. A

physical implementation of a chaotic system will constantly be re-seeded in its
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initial condition. Thermal and electromagnetic radiation nudge the voltage values

causing variance in the least significant digits of voltage values. Though an ideal

physical system implementing the tent map is still deterministic, the influence of

outside noise makes it an ideal entropy source. The small variations in voltages

have drastic long-term effects on the trajectory of the system.

2.1.4 IID and Markov Processes

For an ideal random variable, it should meet the sufficient conditions for

independence and identical distribution (IID). That is, each value outcome from

an observation of the random variable should have no correlation to any previous

or future outcomes. Every observation is entirely independent. The distribution

of values observed must also have the same distribution for all observations. No

factors will alter the probability density. A binary random variable will have a

uniform distribution. It is expected that for an infinitely large sample there will

approximately be the same number of 1’s as 0’s. Chaotic systems are determinis-

tic, so it may seem impossible for one to be IID since it would fail the condition of

independence. For a chaotic system to achieve IID, one must look at the symbol

sequence instead.

A first order Markov process only depends on its current state to determine

its next state as defined by the state transition probabilities[30][26]. Chaotic

systems can be defined as Markov processes when the state transitions are known.

Since the outcomes of chaotic systems are deterministic, each state contains all

the information from all prior states. For a chaotic map with a Markov partition,
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whereby the map is one-to-one, the backwards itinerary can be traced along an

infinite sequence of known states. Each step backwards in time will reduce the

space each symbol would have been established in. It would require knowledge

of an infinite number of symbols to know the state of the system and be able

to predict future values. This requirement of infinite knowledge of the symbol

sequence is what allows chaotic systems to be classified as IID Markov processes.

Chaotic systems of higher order than one can be reduced to order one by observing

longer words of the order of the Markov process

2.2 Tent Map

The tent map has been shown to be an effective system in various engi-

neering applications [23]. The tent map chaotic system can be described by a

piecewise linear discrete time equation which maps all of its points in the set onto

itself. The system has two variables to control the behavior. This research will be

focusing on the ideal version of the system where the slope parameter µ = 2 and

the threshold γ = 0.5. The system maps points on the interval [0,1]. The system

at these conditions is referred to as a full height tent map as the slope cannot be

greater than 2. The full height tent map features a Markov partition at threshold

which is the peak of the map at xn = 0.5:

f(xn) = xn+1 =


µxn x ≤ γ

µ(1 − xn) x > γ
xn ∈ [0, 1]. (2.3)
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The bifurcation diagram shows how the robustness of the chaos grows as

µ increases towards 2. The range of values the system is able to take on also

increases. The system features two fixed points at 0 and 2
3

[12]. Both fixed points

are unstable because the absolute value of the derivatives of the function for both

pieces are greater than 1. When the system travels near a fixed point, future

iterates will grow away from the fixed point. A derivation of these calculations

can be found in Appendix A, A.5.

The tent map is named for the shape of its one-dimensional return map

[12][15]. It is formed by two sloping lines making a triangular shape. The slope

on each side is defined by the value of µ in the equations. The left half is a

positive slope and the right half is a negative slope of the same magnitude. The

map for the ideal system reveals several properties by observation, that have been

determined analytically before. There is a Markov partition in the full height map

at 0.5. The intersections of the map and a line with a slope of 1 show the system’s

fixed points at 0 and 2
3
, as derived in A.5 and A.6. The slope of the lines is also

what determines the growth rate or the Lyapunov exponent. It is defined as the

natural logarithm of the slope magnitude. lnµ = ln 2 = 0.693 The tent map, at

a slope of µ = 2, is a first order Markov process. The probabilities for all state

transitions are also 1
2
. While all the state transitions are equal symbols generated

from the map are independent and identically distributed.

The ideal tent map’s partition at 0.5 is also a Markov point. Markov par-

titions require a real-valued system where the set of all points fully maps onto

itself, [0, 1] → [0, 1], this includes the full height tent map. A Markov partition
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Figure 2.3: The one dimensional return map of the tent map system. In blue is the
mapping of points from the piecewise linear equation. The black dashed line has a slope
of 1. Where it intersects with the Map shows the system’s fixed points as red dots. The
red dashed line is the partition which divides the map into two regions.

exists where the map can be divided into regions where the system is monoton-

ically increasing or decreasing and maps onto a union of other partitions [2][5].

Versions of the tent map below ideal height do not feature complete mapping onto

for all regions of the map.

A strength of the tent map is its large regions of chaos. This makes it

a more robust system than other systems, like the logistic map. There are not

many regions where the system will fall into limited periodic orbits. The system
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always converges to 0 when µ is set to a value below 1. At values greater than

1, the system enters into chaotic orbits and becomes more robust as the slope

increases past
√

2.

Figure 2.4: Bifurcation diagram of the tent map equation. As the slope parameter µ
increases, the region of chaos also grows to the maximum region of (0,1). Below values
of 1, the system always collapses to a value of 0.

It is very useful to work with the tent map system as a discrete equation of

iterated points. The equation can be easily tuned by the only parameter µ and it

only features linear equations. However, there is a more complex way to analyze

the system with a differential equation and continuous time series. A conjugate

17



of the system, represented by a first-order differential equation [6], is defined in

equation 2.4:

u̇(t) = u(t) + s. (2.4)

Solving this first order ODE provides the solution for the continuous time

representation of the tent map. A complete derivation is found in Appendix B,

B.1. The resulting equation is a summation of basis pulses[8][7] that form the

entire time series, 2.5. The pulses are forced by the function s(t) which can take

on two states −1,+1. The forcing function appears the the solution as sn which

takes on values −1,+1. It controls the sign on the summation of pulses. A new

pulse must be added to the summation within the fixed time period, T :

u(t) =
∞∑

n=−∞

snP (t− nT ). (2.5)

The basis pulse is piecewise in time, equation 2.6. Before the start of

the forcing function pulse the wave grows exponentially from t = 0 to 1
2
, from a

starting time of t = −∞ to time t = 0−. After the start of the forcing pulse at

time 0, the wave exponentially decays back to 0 within the pulse time T. For all

time in the future, the function is 0:

P (t) =


(1 − e−T )et, t < 0

1 − et−T , 0 ≤ t < T

0, T ≤ t

. (2.6)
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Figure 2.5: The basis pulse for the tent map continuous time waveform. The forcing
function s(t) is a square wave with a period of T defined by the RC values used. The
wave formed rises to the edge of the square wave at its midpoint before falling back
down to 0 across the duration of the pulse. The function is an exponential growth curve
and an inverted exponential growth curve.

2.3 Entropy and Information

A physical RNG system should be evaluated on its ability to produce

random numbers but also on its qualities as an entropy source [20]. Biased outputs

are able to be corrected with post-processing, but the entropy of a system plays a

greater role in the viability of the system to produce random numbers [9]. In its

broadest terms, entropy is a measurement of the surprisingness of a given event

and how much information is gained from the observation of a single event [26].
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If an observer could see all the data a system had produced for all time prior

to now, how well could that observer predict the outcome of a new observation?

Predictable, repetitious data will have low entropy. Unpredictable, independent

data will measure as having high entropy.

Now that we have declared a system to generate entropy, we must define

ways to measure it to ensure our system is producing a quality output. Shannon

defined a method of measuring entropy based on the probabilities of a random

variable’s output [26]. H = −K
∑n

i pi × log pi Where pi is the probability of

occurrence of each state. The constant K is used as a base change to measure

either in bits or nats. Utilizing the properties of logarithms, a logarithm of base

‘x’ can be changed to a base of ‘y’ by dividing by the logarithm of ‘y’ with base

‘x’. If the log base used is 2, then the measurement is in bits. Using the natural

logarithm gives you a measurement of entropy in nats [26].

The simplest case to consider is a binary random variable. There are two

possible outcomes for any given event. If an observer were to see one million

events all be a 1, then they should not be surprised when the next observed event

is also a 1. Given a probability of occurrence of 1, nothing new is learned about

the system from the observation. The outcome was already known. In the ideal

case, each event has an exact probability of 0.5. From previous observations, an

observer would not be able to correctly guess the outcome of the next event with

more than 50% accuracy. Each new observation provides an entirely new bit of

information to an observer. The relationship between probability and Shannon

entropy for a binary random variable is shown in 2.6.
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Figure 2.6: Plot of the Shannon entropy of a binary random variable given the prob-
ability of one of the two outcomes. The maximum entropy of 1 is achieved when the
outcomes have equal probability at 1/2. This is true intuitively as the most uncertainty
is when all possibilities have the same likelihood of occurring.
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This measure H is the entropy per symbol of any given observation [26].

For a Markov process with a defined rate at which symbols are generated, the

entropy rate is defined as the entropy per symbol times the frequency at which

new symbols are produced [26]. This definition holds only for systems that are

independent in time and stationary. [10] This measure is denoted as H’. H ′ =∑n
i=1Hi An entropy source must be fast to produce new symbols at a rate greater

than needed by the system using the data to eliminate the blocking behavior of

some TRNGs discussed prior.

The Lyapunov exponent of the ideal tent map system is the natural loga-

rithm of the map’s slopes, which is ln 2 = 0.6931. An interesting property is how

the slope of the map relates to the entropy of the system. The ideal system will

exactly map onto itself. The system is tuned exactly to a Markov point when the

slopes of the tent map are 2 and the probability of each state is one-half. The

Shannon entropy, in bits, is 1 and in nats is 0.6931.

As the slope of the tent map is lowered from the ideal, the system will

show grammar restrictions as longer runs and certain combinations of bits no

longer naturally occur from the generated symbol sequence. The probability of

each word occurring will no longer be equal and will become more unequal as

the slope lowers to 1. A derivation of the equivalency between Shannon entropy

and the growth rate of the system for a tent map with a slope of µ = 2 can be

found in Appendix C C.1. With this relationship, there is an assurance that the

maximum entropy of any tent map with slope greater than 1 can be known from
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the logarithm of the slope. There is a provable entropy source of known quality

generating bits [9].
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Circuit Design

The circuit design used, Figure 3.1, is based on the work of Corron et al.

[7]. The circuit was designed to implement the first order chaotic tent map as

described by the prior discussed equations. Their design features the same con-

figuration of a negative RC filter paired with a digital reset latch by comparators

and buffers. They also employ a pair of diodes in parallel to ground to force

symmetry on the square pulses that drive the negative RC. The diodes clamp

the voltage output of the comparator to the forward bias voltage of the diodes,

or approximately ±0.7v. Using a precise voltage divider can achieve a similar

result without the use of diodes. However, including the diodes allows for more

flexibility in design.

Their original design uses MAXIM MAX912 comparators. The new design

uses the Texas Instruments LM339N to achieve the same output. Their digital

latch uses a NOT input on one of the two AND gates to invert the clock signal

input. The implementation of an exclusive-or (XOR) gate with the second input

driven by a positive voltage will produce the same result.

The design can be divided into two primary sections. There is an analog

negative RC filter and a digital reset latch, as well as the components that connect

them. The negative RC filter is able to create the waveform to implement the first
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Figure 3.1: The complete circuit diagram implemented in LTspice.

order system when fed with appropriate square waves. The reset latch controls

when and for how long the negative RC is fed with positive and negative voltages.

3.1 Negative Impedance Converter and RC

A Negative Impedance Converter (NIC) is used to reverse the direction of

current flow. This changes Ohm’s law relationship from V = I×R to V = −I×R.

The NIC has a finite region where the current direction is inverted, which is

defined by the characteristics of the op-amp. A diagram of this device is shown

in Figure 3.3. The impedance measured looking into the positive terminal of the

op-amp is described as the negative ratio of the feedback resistors multiplied by

the grounded resistor. Equation 3.1 is the formula for calculating the negative
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voltage relationship of a negative impedance converter and its derivation can be

found in Appendix D.1:

Vin

Iin
= −R1

R2

R3. (3.1)

The negative impedance can be calculated by taking precise measurements

of the resistors. R1 = 219.1Ω, R2 = 220.3Ω, and R3 = 934.5Ω. The theoretical

resistance should be R− = −928.46Ω. This can be confirmed by taking a mea-

surement of the NIC in isolation with a voltage sweep. The ideal RC charge time

for the system to achieve full height is computed to be 644.56µs. This corresponds

to an input clock frequency of 775.72Hz. Unfortunately, the physical system is

unstable close to a slope of two, so the frequency must be adjusted to lower the

charge time. The system was stable at 850Hz. The theoretical slope of the map

can be calculated from the known values of resistance, capacitance and period as

shown in equation 3.2. The estimated symbol entropy in bits will be the base two

logarithm of the slope. H = log2(1.8825) = 0.9216 bits. These calculations will

be compared to measured values from the physical circuit:

µ = e
−T
RC = e

−588.25×10−6

−926.2×1.004×10−6 = 1.8825. (3.2)

By sweeping a range of voltages and measuring the current relationship,

an impedance curve can be plotted. Figure 3.2 shows the IV curve of the NIC

used in the circuit on a voltage sweep from -2.5 to +2.5 volts. As the voltage rises,

there exists a region for which Ohm’s law is inverted. The relationship between
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Figure 3.2: The characteristic curve of the Negative Impedance Converter. The circuit
is swept from -2.5 to +2.5 volts as the current and voltage at the input terminal are
measured. The current drops as the voltage increases. By approximating the slope of
the IV curve, the impedance is measured as -926Ω.
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Figure 3.3: Negative Impedance Converter circuit diagram. Voltage is input at the
non-inverting terminal. Resistors R1 and R2 in the feedback are equivalent. R3 defines
the positive resistance of the NIC. Voltage output at the output of the Op-amp.

current and voltage is reversed. As the voltage rises, the current falls. The slope

of the IV curve in the inverted region is equal to the negated value of resistor

R3. A polyfit curve in MATLAB estimates the measured slope to be −926.21Ω,

which agrees with the calculated value.

By pairing the NIC with a single capacitor, it creates a negative RC filter.

What results from this is a time reversed RC filter. A positive voltage input will

cause the voltage on the capacitor node to drop exponentially. A negative voltage

input on the negative resistor will cause the voltage to grow at an exponential rate.

By feeding the negative RC with square wave pulses, it will alternate between

charging and discharging, creating a negative saw-tooth wave. A simulation of

this behavior is shown in Figure 3.4.
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Figure 3.4: The voltage measured on the negative RC node when fed with square
pulses symmetrical about 0v. The simulation shows a saw-tooth wave pattern made
from the time-reversed RC charging and discharging.

3.2 Comparators and Other Analog Components

The sub-circuit in Figure 3.5 follows the negative RC filter. It is a com-

parator referenced to ground followed by a voltage divider. The comparator is

powered by ±5v. The voltage divider acts as a pull-up for the comparator output.

Instead of the low output being -5v, it is moved up to 0v. The high output is

maintained at +5v. When the comparator detects the negative RC has reached

0v, it will output an instantaneous transition which will travel to the digital latch

beyond the voltage divider. As the voltage on the negative RC node drops below

0v, the comparator will output the low state. The transition from low to high to

low again should be almost instantaneous, creating a series of pulses. An example

of the output from this sub-circuit is seen in Figure 3.6.

The sub-circuit in Figure 3.7 takes the output from the digital latch and

prepares it to feed into the negative RC filter. Its output is the forcing function
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Figure 3.5: Comparator referenced to ground triggers to create an instantaneous
transition from the low state (-5v) to the high state (+5v) when the voltage of the
negative RC reaches 0v. Once the negative RC falls below 0v, the comparator returns
to the low state. The voltage divider raises the minimum voltage output to 0v.

Figure 3.6: The output from the comparator circuit taken from an LTspice simula-
tion. As the voltage from the -RC reaches 0v, the comparator outputs instantaneous
transitions.
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Figure 3.7: Comparator referenced to 2.5v to create symmetrical square pulses. The
voltage divider provides the 2.5v reference to the inverting input to the op-amp.

of the tent map system. The comparator uses a voltage divider from +5v to

ground as a 2.5v reference. The use of large resistors minimizes the current draw

from the power supply. The op-amp comparator is powered by ±5 volts. As the

digital signal comes into the non-inverting terminal, the comparator will output

the same square wave stretched from 0-5v to ±5v. The forcing function needs

to be a square wave symmetrical about 0. The following resistors are a voltage

divider to lower the amplitude from 5v to around 1v. Lastly, the diodes further

restrict the amplitude to the diode’s forward voltage. Ideally, the diodes are fully

matched to allow perfect symmetry in the forcing function, as seen in Figure

3.8. This does not actually occur with real components. The physical circuit

implementation will have a small asymmetry in the forcing function.
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Figure 3.8: This is the forcing function of the -RC taken from an LTspice simulation.
The waveform is perfectly symmetrical about 0, fixed in amplitude to the forward
voltage of the diodes.

3.3 Digital Reset Latch

The digital reset latch is comprised of three OR gates, two AND gates and

two exclusive-or (XOR) gates. All seven logic structures are two input gates. The

design, shown in Figure 3.9, is symmetric about the XOR gates. The lower XOR

takes the 5 volt, square wave clock input and a positive 5 volt input. The output

of that XOR will be an inverted clock, such that the signal will be 5 volts when

the input clock is low and 0 volts when the input clock is high. The upper XOR

takes the clock as one input and ground as the other. This will buffer the clock so

the clock and inverted clock remain in phase with one another. Above and below

the XOR gates are an OR gate followed by an AND gate. The upper AND gate

receives the clock as an input and the lower AND gate receives the inverted clock

as an input.
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Figure 3.9: Detailed schematic of the digital reset latch.

The input to the reset latch comes from the output of the comparator at

the negative RC filter. The input is in the form of an instantaneous pulse. The

pulse is fed into inputs on two of the OR gates. Both OR gates will output a high

signal for the duration of the instant pulse. The output then drives one input of

the two AND gates. One of the AND gates will have a high input from either

the clock or the inverted clock. Whichever AND gate has the high clock signal

will create a positive feedback to its OR gate until the clock pulse changes to a

low signal. Both AND gates also feed the last OR gate in the latch. When either

AND gate is outputting a high voltage level it will be output from the latch and

sent to a comparator. Figure 3.10 shows a visual representation of the mechanics

of the latch.

This design controls when the capacitor on the negative RC filter is per-

mitted to charge and discharge. Immediately, when the initial pulse is generated

from the first comparator, the voltage polarity on the input to the NIC is reversed.

The NIC is fed with a positive voltage, which allows the capacitor voltage to drop,
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Figure 3.10: A timing diagram that shows the function of the reset latch. The top
line (black) shows the input pulses from the comparator that measures for the guard
condition on the -RC. Lines 2 and 3 (red and blue) are the clock and inverted clock
signals which are inputs to the upper and lower AND gates respectively. Lines 3 and 4
(red and blue) represent the outputs of the two AND gates. These signals become high
if their clock input is high when the pulse arrives and remains high until the clock’s
falling edge. The final output of the circuit (magenta) is the OR of the two previous
signals.

34



until the clock cycle changes. After the clock cycle, the latch no longer outputs a

high signal and the input to the NIC is a negative voltage. The capacitor charges

until it reaches zero volts, triggering the comparator.

3.4 Power

Two external voltage sources are needed to operate the circuit. The com-

parators and amplifiers are powered by positive and negative 5 volt inputs. The

digital logic components also use positive 5 volts for power. Both power inputs

are filtered with three coupling capacitors placed between the voltage rail and

ground. The values of the coupling capacitors are 10µF,1µF, and 100nF. These

serve to maintain a consistent voltage and smooth power spikes. The total current

draw of the circuit is 54 mA. The total power draw is 5V times .054A = 270mW.
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Methodology

4.1 Data Capture and Processing

The breadboard circuit is powered by an external power supply and fed a

square wave clock signal from a signal generator. An Analog Discovery 2 serves as

an oscilloscope for data capture. By using the recording function in the Waveforms

software to control the Analog Discovery 2, time series data from the negative

RC node and the input clock signal were captured at a rate of 250kHz. Manual

data capture was performed in 15 minute intervals six times and one ten minute

interval. This provided 100 total minutes and over 11GB worth of data. The os-

cilloscope was set to the default configuration of averaged samples to help smooth

out excess noise in the circuit.

The captured time series data are imported into MATLAB for processing.

The code Data Extraction.m in Appendix E, takes the time series data captured

by the oscilloscope and writes two files with all of the sampled voltages from each

clock edge and the binary symbol sequence. Voltage samples from the time series

are taken one sample back from where the center of the clock transition is to

account for a timing delay in the measurement between the clock signal and the

negative RC node. The clock wave is centered at 2.5V. Each point taken at the
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Figure 4.1: This is an image of the physical realization of the tent map as a circuit
constructed on a breadboard.

rising and falling edge of the clock is written to a file. The output file of 10.2

million samples is reduced to less than 80MB.

An ideal mathematically modeled map will have a Markov point which

partitions the map at one quarter of the driving voltage amplitude (Vs/4). The

circuit models a shifted map. This map is the original map scaled and shifted so

that the largest point is 0 and the lowest is around 0.7. The ideal Markov point

for partitioning the map is -Vs/4. Although the map approximately models this

system, a true Markov point cannot be achieved due to the nature of the physical

system where the slope of the map cannot be tuned to precisely 2. Instead, a

generating partition is chosen where the two slopes of the map meet. This is

where the highest points on the Y-axis of the map are. MATLAB isolates the

37



100 largest values in the array of Y-axis points. Then the corresponding values in

the array of X-axis points are found. These X-axis points will be centered about

the partition. Averaging these values taken from the X-axis will give an accurate

approximation of the partition point.

The discrete time sequence of values sampled from the circuit can be turned

into a symbol sequence. MATLAB performs a simple logical operation where any

values less than the partition point will be classified as a 0 and values greater

than the partition are coded as a 1. Any symbols can be chosen to represent the

data, but binary symbols are chosen for their usefulness in analyzing the symbol

entropy and randomness of the system. The binary symbol sequence is written

to a binary file for later analysis. The stored file of 10.2 million bits is less than

10MB. The unprocessed bit samples are needed for estimations of the symbol

entropy, but, due to an underlying bias in the data, a whitening algorithm needs

to be performed.

The Von-Neumann bit correction algorithm [31] is a method of whitening

a set of binary data such that it has qualities closer to that of an ideal binary

random variable. The algorithm works by looking at non-overlapping pairs of

bits. Any bit pairs of identical bits, i.e., ‘11’ or ‘00’, are completely removed from

the dataset. Bit pairs of ‘01’ are replaced with a single ‘0’. A bit pair of ‘10’ is

replaced with a ‘1’. An example of this method is shown in Figure 4.2. While

this algorithm is very efficient, it also results in a data loss of approximately 75%.

Another method of improving uniformity is to utilize two independent bit

streams. The two sets of data will be reduced to a single bit stream by performing
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Figure 4.2: This diagram shows the method by which a sequence of bits is made
more uniform by the Von-Neumann bit correction algorithm. A pair of the same bits is
replaced by nothing. A pair of opposite bits is replaced by the leading bit of the pair.

a bitwise exclusive-OR operation. This method is 50% efficient and requires a

second source of binary data. All tests to be performed on binary data will be

run on the original and the whitened datasets.

4.2 Basic Statistics

The three easiest measures of the random bits are mean, variance, and

standard deviation. An ideal uniform binary random variable will have a mean

of exactly 1
2
, a variance of exactly 1

12
and a standard deviation of

√
1
12

. Close

adherence to these measures should be seen in collected data.

Auto-correlation is the measure of how repetitious a dataset is. By shifting

the dataset across itself and measuring the number of like values, it can reveal

places where the dataset is similar to itself. An ideal random binary variable will

have no significant self-correlation. The data will not have sequences that repeat

over time. An auto-correlation plot will have a spike showing complete correlation
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when the data is not shifted, as every sample will be the same. For all non-zero

shift values, the correlation should be near zero.

Uniformity is another graphical observation which will be made. The

binary data will be grouped by an overlapping 12-bit window and converted from

a binary number to a decimal. A histogram of the decimal values will be created

using 100 bins. The random variable should be completely uniform for large

datasets. Regions where there are significantly more or fewer counts in a bin will

reveal underlying biases in the system.

4.3 NIST Statistical Tests

The National Institute of Standards and Technology is an organization

under the US Department of Commerce with the purpose of creating standard

methods for scientific research. Two of their standards will be utilized in order

to evaluate the results. The first document, A Statistical Test Suite for Random

and Pseudorandom Number Generators for Cryptographic Applications (800-22),

details 15 tests to be performed on a set of binary data [25]. Working MATLAB

implementations of 14 of those tests can be found in Appendix E. Each test

matches the results produced by NIST’s own testing suite.

Each test measures a specific aspect of a random variable. They will

reveal if the data has good uniformity, produces statistically likely runs, and has

independence from other samples. Each test produces a statistic by which the

ideal measurement is compared to and returns a P-value. The tests are performed

on a 99% confidence interval using a significance level α of 0.01. When a test
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returns a P-value greater than 0.01, it is 99% confident the data provided came

from a random sequence. When a test returns a P-value less than 0.01, it is 99%

confident the data provided came from a non-random sequence. It is expected

that 1 in 100 sequences tested to return a false result.

There are 6 tests with variable parameters to test under. Of those 6, I have

changed 4 of them to better suit the size of data I have. The Block Frequency

size has been increased to 2048. Approximate Entropy block length has been

changed from the default of 10 to 12. The block length of the Serial Test has

been increased from 16 to 18. The Linear Complexity test’s substring length has

been raised from the default 500 to 1000. All of these parameter changes are

within the bounds defined by NIST 800-22 [25].

The data collected only feature 10 million bits sampled from the circuit.

While this meets the minimum criteria for the tests, NIST recommends using

the largest dataset possible and testing multiple subsections of the entire dataset.

Performing tests this way is more robust and adds confidence to results showing

where the NIST tests may give false results occasionally. For simplicity, I will be

running the data through as a single dataset of 10 million bits. The tests will

be performed on the original symbol sequence extracted from the circuit and the

smaller whitened datasets to measure performance difference between them.

In Appendix E, there is MATALB code which implements 14 of the 15

statistical tests for randomness as defined in NIST 800-22. All but the Linear

Complexity was successfully able to be recreated and tested against NIST’s own

available C coded program suite. NIST’s suite was used for testing of the sampled
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binary data due its speed. However, the MATLAB code can be tailored to fit other

datasets.

4.4 NIST Entropy Estimators

NIST provides another document helpful to the evaluation of entropy

sources. NIST 800-90B, Recommendation for the Entropy Sources Used for Ran-

dom Bit Generation, details several tests to quantify the performance for com-

parison to other entropy sources, and methods of estimating the symbol entropy

of a set of binary data [30]. I have implemented 5 of the entropy estimators pro-

vided in MATLAB. They are, The Most Common Value Estimate, The Markov

Estimate, The Tuple Estimate, The Longest Repeated substring Estimate, and

the Most Common Window Estimate.

NIST recommends running as many estimators as possible on a sample of

at least 1 million bits [30]. The lowest observed symbol entropy estimation should

be taken as the minimum entropy per-symbol of the system. The estimations are

expected to return values below the base 2 logarithm of the tent map slope, which

is the maximum entropy per-symbol the system can produce. This will indicate a

region between the minimum and maximum symbol entropy where the system’s

true entropy lies.

To supplement these estimations, a block entropy measurement will be

taken. This entropy calculation uses Shannon’s symbol entropy formula, equation

C.1. Instead of single bit word lengths, I use 16-bit non-overlapping words. Since

Shannon’s entropy formula relies on the frequency of sequences, using longer
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blocks will reveal when certain bit patterns occur less often. Shannon’s formula

works ideally when you can sample from an infinitely large bit sequence with an

arbitrarily large block size. A trade off to using a larger block size is that it needs

more data to accurately measure entropy.

In Appendix E, 5 entropy estimators from NIST 800-90B have been im-

plemented in MATLAB code. These programs have perfectly implemented their

algorithms and have been tested against their example data. Each program takes

in an array of binary data of arbitrary length and computes the entropy estima-

tion. These MATLAB programs are used to estimate the entropy of 10.2 million

bits sampled from the chaotic oscillator.
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Results

The analysis of the results from the data collection will be broken into sev-

eral sections to measure performance across different qualitative and quantitative

metrics. Behavior of the system will be observed graphically and compared to

prior estimated values. The performance of the binary symbol sequence derived

from the sampled output will also be evaluated in terms of entropy measurements

and with statistical tests for randomness. By estimating the system’s entropy,

it can be proven from first principles that the chaotic oscillator is entropic at a

predictable, measurable rate. NIST statistical tests will verify the output as likely

to come from a random sequence.

5.1 Time Series

Primary operation of the physical circuit is validated by comparing the

captured time series data to that of a spice simulation. Under the same operating

parameters, the waveforms exhibit generally the same shape as shown in 5.1.

The physical circuit reaches lower voltages than simulation. There are some

aspects of the physical circuit that spice simulation is not accurately representing.

These conditions could be noise interference, temperature changing operating
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Figure 5.1: Upper: Time series of the negative RC from LTspice simulation.
Lower: Time series data capture from the negative RC of the physical circuit.

characteristics of components, or manufacturing variations in components. Their

performance is identical as possible and the physical circuit is fully functional.
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5.2 Negative RC Voltage Measurements

Figure 5.2: The real-time captured time-series of the oscillator’s output sampled at
the negative RC node.

Figure 5.2 plots a small sample of the data captured from the oscillator

circuit. At each rising and falling edge of the clock signal in orange, the chaotic

wave in blue will be sampled. This data comes from the first 900 seconds of the

data comprising the 10.2 million samples used to generate a random bitstream.

Each sample is an iterate of the tent map system and will be used to construct a

one-dimensional return map. These samples will also be converted to the binary

symbol sequence for further analysis.

The generated one-dimensional return map plots the trajectory of the map.

The resultant map of the collected data is shown in 5.3. This map strongly

resembles the idealized map. Both branches are straight and close to full height.
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The left branch features a small restriction in value. It should reach all the way

down to -0.75v, but falls short. On the right, there is a small nonlinear portion

near 0. This feature results from an imperfect comparator reference causing

the latch to trigger at slightly different values, as well as sample timing issues

discussed prior. Slight timing mismatches in the sampling of the waveform near

zero, where the growth and decay is most significant, causes more dramatic errors

than mistimed samples elsewhere. More precise timing and data capture methods

may help reduce this effect.

The map partition is calculated from an average of the x-axis location of

the 100 highest points on the map. This places the partition as close as pos-

sible to the true generating partition. The true generating partition would be

0.375 exactly halfway between the lowest value and 0. The measured partition is

calculated to be 0.3748.

The polyfit function in MATLAB performs a slope approximation for the

two branches after partitioning. The left side slope is computed as 1.9299 and

right slope is computed to be 2.0002, as shown in Figure 5.4. The growth rate

cannot possibly be more than 2, so this number is likely a slight overestimation.

For future calculations, the smaller of the two slopes is assumed to be the true

growth rate.

A key property of chaotic systems discussed earlier is divergence from

sensitivity to initial conditions. By searching through the symbol sequence to

locate the longest sequence of bits that occurs twice, the corresponding sections

of the times series reveal two waveforms that seem to converge at a single point
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Figure 5.3: Tent map generated from the sampled points captured from the physical
circuit tuned to the maximum height, or the lowest frequency.

Figure 5.4: Slopes of the map’s branches calculated from a polyfit curve in MATLAB.
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Figure 5.5: Upper: A region of synchronization plotted for two sections of the time
series with the longest matching symbol sequence. Each sampled point is shown as a
hollow circle. The threshold is represented as a cyan line. The beginning and end of
the region where the symbols match are denoted by the red vertical bars.
Lower: The difference of the two waves showing the exponential divergence of two
points within the neighborhood of one another.

and then diverge over time. Figure 5.5 shows these two waves overlapped and the

difference between them.

Figure 5.6 is a histogram of all the samples that comprise the map. It

shows high uniformity of samples except for the most negative values. There is

a roll off in the lowest bins as the circuit struggles to produce samples near the

bottom edge of the forcing function. This result is expected and consistent with

other measurements. Since the slope is not perfectly tuned to 2, there is a bias
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Figure 5.6: Histogram of voltage samples taken from the circuit on every clock edge.

away from the lower fixed point. That is what is observed in the histogram of

voltage samples. This indicates that there may also be areas of poor uniformity

in the symbol sequence.

To establish a link between the characteristics of an ideal map and the

hardware, a rudimentary bifurcation diagram from sampled data is constructed.

This is done by de-tuning the oscillator to lower, pre-calculated slopes and cap-

turing 1 million clock edges worth of data. The oscillator was made to operate at

slopes decreasing from the maximum possible slope of 2 by steps of 0.05 down to

1.05. Results should show a decreasing range of values the system can produce as

the slope is reduced. Further, for slopes below 1.41, there should be a gap in the
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continuity of values seen in both the bifurcation diagram and the one-dimensional

return map for a given slope.

This test was performed with distinct real-world data taken from the phys-

ical implementation of the chaotic oscillator and compared to a synthetic simula-

tion in MATLAB. The MATLAB simulation was created from 5 million iterates

of an initial condition between 0 and 1 at each slope. The resultant plots of the

bifurcation diagrams in Figure 5.7 show expected behavior. The synthetic data

from MATLAB strictly follows the ideal map shown in Figure 2.4. The measured

data, while similar, has a few differences worth noting. Most strikingly, the pos-

sible values are only restricted from one side. The range of values shrinks from

the negative side towards zero. This is a symptom from the mechanics of the

circuit. In order to lower the slope of the map by restricting the growth rate, the

frequency is adjusted higher. Higher frequencies on the clock input reduce the

time the negative RC is permitted to charge and discharge. The ground reference

on the comparator after the negative RC does not change. The circuit will always

reach 0v before falling over the period one half clock cycle. The measured data

do still feature a discontinuity below a growth rate of
√

2. The location of the

discontinuity moves upwards towards zero with the rest of the data, unlike the

theoretical data.
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Table 5.1: Table containing slope decay measurements. The values are taken for fixed
values of R and C at 2.01kΩ and 1uF. Raising the input clock frequency lowers the
RC charge time and the slope of the map. Error between the measured and theoretical
slope grows for higher frequencies.

Theoretical Slope Frequency Measured Slope

1.95 366.85 1.9429

1.90 381.70 1.8925

1.85 398.24 1.8428

1.80 416.81 1.7851

1.75 437.79 1.7341

1.70 461.70 1.6823

1.65 489.23 1.6328

1.60 521.26 1.5739

1.55 559.02 1.5137

1.50 604.23 1.4569

1.45 659.36 1.3991

1.40 728.12 1.3474

1.35 816.36 1.3039

1.30 933.79 1.2548

1.25 1097.91 1.2004

1.20 1343.74 1.0922

1.15 1752.93 1.1135

1.10 2570.48 1.0335
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Figure 5.7: Left: Bifurcation of the tent map at fixed slopes given from 5 million
samples per slope generated in MATLAB.
Right: Bifurcation of the tent map at fixed slopes given from 1 million samples per
slope taken from physical hardware.

Figure 5.8 shows these effects of lowered slope on the one-dimensional

return map. Observed behavior matches with results from the bifurcation. Low-

ering µ causes the tent slopes to lower as well. Additionally, the tent map’s left

branch shortens away from the fixed point located at the minimum value of the

ideal map. Once the slope drops below
√

2, a discontinuity appears in the map

on the right branch. Points are pushed away from the upper fixed point.
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Figure 5.8: This figure shows how lowering the slope of the tent map affects its return
mapping. Initially, the lower slope alters both branch slopes and the left branch’s
length. When µ <

√
2 the map begins deteriorating on the right branch about the fixed

point.
Top-Left: Tent map measured at a slope of 1.966.
Top-Right: Tent map measured at a slope of 1.7314.
Bottom-Middle: Tent map measured at a slope of 1.3034.

The behavior of systems with less than ideal slopes match the predicted

behavior from simulations. As the slope is lowered, the tent map experiences

restrictions on the values it can take on. The hardware implementation sees

grammar restrictions starting with the left slope at the lower fixed point. This will
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impact the symbolic dynamics which govern the bits generated. The information

content of the bits from lower slope maps are tested in the next section.

5.3 Entropy Estimations

The primary characteristic to care about as a measure of uncorrelated bits

is the entropy of the system that is producing them. From theory, the entropy

of an ideal, full height tent map is directly related to the Lyapunov exponent

given by the natural logarithm of the slope. The relationship of symbol entropy

(in nats) to the Lyapunov exponent should hold for maps with non-ideal slopes.

If so, we can make estimations of the maximum symbol entropy of the system

operating at a given growth rate. To test this behavior the same data was used

from the bifurcation diagram. 1 million samples from a physical circuit and 5

million samples generated in MATLAB. At each measured slope, the entropy

was estimated using 3 algorithms from NIST [20]. Plotting the symbol entropy

rate estimates against the measured slope shows trends between the growth rate

and the entropy per-symbol in Figure 5.9. There are several pieces of relevant

information to glean from these plots alone.
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Figure 5.9: The relationship between the slope of the tent map and symbol entropy
estimations of the symbol sequence.
Left: The theoretical model, made from 5 million samples for each slope, was generated
in MATLAB.
Right: The real-world data taken from the chaotic oscillator circuit with 1 million
samples per slope. The data shows agreement between the model and real system with
a linear relationship for slopes at and above

√
2.

Firstly, using the base 2 logarithm of the slope as an estimation of the

maximum symbol entropy rate, all three estimators from the NIST documentation

fall below that line. What seems like an outlier is the Block entropy, which is

calculated from Shannon’s formula with a block size of 16 [26]. This measure is

not congruous to the other entropy rate estimations. The tent map at lower slopes

is no longer a first order Markov process. It takes on a much higher order with

longer correlations in the samples. To overcome this, the Shannon block entropy

should be calculated with a block size equal to or greater than the Markov order.

As the block size increases, the block entropy will converge to the entropy rate

of the system. Ideally, Shannon’s formula is used on an infinitely long sequence

of data with an arbitrarily large block size. Using a larger block size to account

for longer words has the drawback of needing magnitudes more data than what is
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collected. The limited data will cause the entropy estimator to converge to near

zero as there are not enough unique blocks and the test will indicate that there

are grammar restrictions for words that can occur, but haven not been observed

in the tested dataset. On the other hand, using too small of a block size is also

an issue. When a smaller block size than the Markov order is is used, grammar

restrictions that only occur for larger block sizes will not be noticed and the

block entropy estimation will be larger than the true entropy rate. For the tests

here a block size of 16 was chosen as a balance between a more representative

measure without needing far more data to be collected. A graphical justification

is shown in Figure 5.10. A block size of 16 is not greater or equal to the Markov

order, so this measurement should be kept in the context of other block entropy

measurements of block size 16 and not taken as a measure of the entropy rate.

Figure 5.10: Block entropy calculated with Shannon’s formula evaluates entropy by
measuring the frequency of sequences of a certain fixed block length. Smaller block
lengths tend to overestimate the true entropy rate. Larger block lengths do not observe
all possible sequences the system may produce. As a balance, a block length of 16 was
chosen to be more accurate than smaller blocks, but not lose information compared to
larger block sizes.

The other feature that is obviously apparent is that the estimations break

from the linearly decreasing trend starting with the sample at a slope of 1.4.
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This phenomenon is explained by the Bifurcation diagram 2.4. The tent map’s

bifurcation diagram shows a region from 1 until
√

2 where there is a large gap

in the values that can occur. For slopes in this region the tent map constructed

also has a discontinuous region, shown in Figure 5.8 and the symbolic dynamics

breakdown in unpredictable ways. The entropy estimators can no longer make

correct predictions about the entropy of the system. Entropy estimations from

this region should not be used to characterize the system. Taken as a whole, for

regions where the slope of the map is greater than
√

2, there is a direct relationship

between the symbol entropy of the system and slope of the map. We can assume

that the true entropy rate of the system for any slope in this region lies between

the base 2 logarithm of the slope and the minimum estimation.

Table 5.2 shows the symbol entropy estimations for the data 10 million

bits taken from the oscillator. As predicted, the Block entropy is an overestimate

of the true entropy per-symbol which should be bounded by the slope estimate

of 0.9495. The lowest estimator was the Tuple estimate at 0.8755. We should

assume the actual symbol entropy lies between those values. The Block entropy is

an overestimation. Without a much larger sample of data, it will not approach the

true entropy of the system. Increasing the block size above 16 returns inaccurate

measurements since the full grammar of the system cannot be captured.

These results prove the system is a predictable and measurable high quality

source of entropy. The system is close to reaching the maximum possible entropy

for a binary system. We can also know the entropy beforehand from the relation-

ship between the tunable growth rate and the entropy. This greatly improves on
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Table 5.2: Table containing entropy estimations. The slope estimate is calculated as
the base 2 logarithm of the calculated or lowest measured slope. Shannon entropy is
calculated from bit sequences with different block lengths. The longer the block length,
the closer the entropy gets to the true value. All other estimators are taken from the
NIST 800-90B document. The lowest value is taken as the minimum symbol entropy
of the system.

Entropy Estimator Entropy Value (bits)

Ideal 1

Slope Estimation (Calculated) 0.912650

Slope Estimation (Measured) 0.949498

Shannon Entropy (Block Size 16) 0.9947

Markov Estimate 0.917802

Most Common Value Estimate 0.937776

Most Common Window Estimate 0.941281

Tuple Estimate 0.875501

other systems that rely on tenuous methods of extracting bits that do not have

entropy rates that can be known with much certainty [9]. With improvements

to the design, it may be able to reach higher entropy rates through more precise

tuning.

5.4 Statistical Binary Measurements

The binary data will also be evaluated based on its statistical properties

and adherence to a uniform binary variable. These tests are performed three

times. Once on the original bit sequence, again on bit sequences after correc-

tion from the Von-Neumann whitening algorithm and once more after an XOR

operation.
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Figure 5.11: Left: Auto-Correlation plot of the binary dataset from the symbol
sequence extracted from the oscillator.
Right: A zoomed in picture of the Auto-Correlation plot to better show relevant data.

The auto-correlation plot of the original voltage samples indicates there

are no extreme correlative peaks, as seen in Figure 5.11. Observing the complete

image shows all correlations shifted in either direction are close to zero. The

largest shifted correlation only showed a similarity of just over 0.15% or 15300

bits similar within 10.2 million bits. More detailed measures will better quantify

the independence of the data.

The first comparative measure of the binary datasets will be their unifor-

mity and basic statistical properties. As outlined in the methodology, an overlap-

ping 12-bit window, with the leftmost bit being the MSB, is used to convert the

binary sequence into decimal values. The decimal values are in the region of 0 to

1. Figure 5.12 graphically shows how the uniformity changes after correction. As

predicted, the samples taken directly from the symbol sequence have poor unifor-

mity in sequences that require long runs of 0s. Most obviously, near 0 and at 0.5,
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0.75, and 0.875. These bins need values with a leading one, or ones, followed by

zeros for the remainder of the 12-bit sequence. From the tent map, we observed

the left branch slope to be both lower and shorter than the right. To maintain

stability in the system, the oscillator must be tuned away from the minimum

bound. This minimum value is also a fixed point in the system. The tent map

produces long runs of symbols only when it reaches a state in the neighborhood

of a fixed point. Iterates will grow away from the fixed point over time, but will

produce a run of the same symbol. Since the system cannot get as close to the

lower fixed point, it will not produce long runs of 0’s.

Performing either bit correction method greatly improves the uniformity.

Between the two methods, XOR bit correction seems to have better uniformity

while retaining twice as much data. Looking at the measurements in Table 5.3

confirms this. Overall, XOR bit correction returns a mean and variance closer to

an ideal uniform random variable. Von-Neumann correction only gives slightly

worse results within 1% difference. This is not significant enough to determine

whether one method is objectively better than the other.
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Figure 5.12: These three graphs show the distribution of values for decimal converted
values of 12-bit binary sequences.
Top-Left: 10.2 million samples from the circuit’s symbol sequence.
Top-Right: 2.68 million samples remaining after Von-Neumann correction.
Bottom: 5.1 million samples remaining after XOR bit correction.

While it is good to acknowledge the tests that succeeded, it is more impor-

tant to consider the tests that failed and why. The original bit sequence, before

any correction, fails nearly all statistical tests. It is clear to see that there are is-

sues in distribution uniformity as shown in Figure 5.12. An ideal random variable

will have a completely uniform distribution of values. Each state should have an

62



Table 5.3: The measure of mean, variance and standard deviation for three bit se-
quences compared to an ideal uniform random variable. Original data consists of 10.2
million bits. Von-Neumann corrected data has 2.68 million bits. XOR corrected data
is 5.1 million bits. These measures were taken from decimal converted values of 12-bit
overlapping blocks.

Mean Variance Standard Deviation

Ideal 0.500000 0.083333 0.288675

Original 0.512230 0.077599 0.278566

Von-Neumann 0.499745 0.084173 0.290126

XOR 0.499901 0.083715 0.289336

Table 5.4: Table containing statistical test results of the original 10 million bits.

Test Name P-Value (Original) Result (Original)

Frequency (Monobit) 0.00000 FAIL

Frequency Within a Block 0.00000 FAIL

Runs Test Incomplete FAIL

Longest Run of Ones in a Block 0.015976 PASS

Binary Matrix Rank 0.900518 PASS

Discrete Fourier Transform 0.00000 FAIL

Non-Overlapping Template Matching Incomplete FAIL

Overlapping Template Matching 0.00000 FAIL

Maurer’s ’Universal Statistic’ 0.00000 FAIL

Linear Complexity 0.687602 PASS

Serial 0.00000, 0.000018 FAIL

Approximate Entropy 0.00000 FAIL

Cumulative Sums 0.00000, 0.00000 FAIL

Random Excursions Incomplete FAIL

Random Excursions Variant Incomplete FAIL
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equal probability of occurrence. After correction, the data is much closer to an

ideal uniform distribution. As a result, all but three tests fail to indicate the data

was from a non-random sequence.

The underlying biases and grammar restrictions cause the two Frequency

tests to fail on grounds of uneven distributions of 1s and 0s within large and small

blocks of the dataset. The result from the Discrete Fourier Transform test shows

that the data has some underlying spectral content which indicates sequences

can repeat when given enough time. The Random Excursions tests cannot be

completed at all. They require a random walk that crosses the origin at least 500

times within a sample. Testing shows there are only 50 zero crossings in the entire

10 million bit dataset. The bias towards 1s over 0s prevents data from cycling

evenly. The Runs test also refuses to execute as the distribution of 1s and 0s is

not close enough to a uniform distribution.

The only front where the tests indicate positive results towards randomness

are Linear Complexity, Binary Matrix Rank and Longest Run of Ones in a Block.

The Longest Run of Ones in a Block test likely passes as the system tends towards

longer runs of ones. If the test was repeated on the longest run of zeros, it would

surely fail. The two other tests measure statistical independence between bits

and sequences. As the system is highly entropic it is not surprising to see results

that indicate strong independence.

Table 5.5 shows the results from the tests performed on the Von-Neumann

corrected data of 2.6 million bits. 13 of the 15 tests indicate strongly that the

measured data came from a random sequence. More interestingly, are the three
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Table 5.5: Table containing Statistical Test Results from the binary sequence after
Von-Neumann correction.

Test Name P-Value (Corrected) Result (Corrected)

Frequency (Monobit) 0.343843 PASS

Frequency Within a Block 0.931430 PASS

Runs Test 0.000000 FAIL

Longest Run of Ones in a Block 0.548034 PASS

Binary Matrix Rank 0.163638 PASS

Discrete Fourier Transform 0.101155 PASS

Non-Overlapping Template Matching 0.179838 PASS

Overlapping Template Matching 0.000763 FAIL

Maurer’s ’Universal Statistic’ 0.300869 PASS

Linear Complexity 0.752528 PASS

Serial 0.425430, 0.883963 PASS

Approximate Entropy 0.000071 FAIL

Cumulative Sums 0.421252, 0.511154 PASS

Random Excursions 0.47 0.72 0.87 0.75 0.91
0.59 0.37 0.31

PASS

Random Excursions Variant 0.29 0.20 0.31 0.30 0.17
0.18 0.20 0.14 0.16 0.60
0.41 0.17 0.11 0.18 0.34
0.36 0.21 0.14

PASS
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tests that still reject the null hypothesis and indicate the sequence is not from a

random sequence.

The Runs test fails when the distribution of runs of a given set is not

statistically appropriate for a random binary variable. This is specifically an area

where humans are not good at representing random data. A human tasked with

saying a random sequence of bits will often switch between the two states often,

only letting runs go on for 3 or 4 bits. Saying the same bit over and over does

not feel random, but for an extremely large sample of data, consisting of millions

or billions of bits, it should be expected that long runs of occur. If there are too

many runs found in a sequence, then the data oscillates too quickly with smaller

run lengths. If too few runs are observed, the data tends to stay in long runs more

than would be probable to observe. For the data tested here, too many runs were

found, indicating that there are more shorter runs than expected. Perhaps the

Von-Neumann algorithm is not robust enough to condition the data well. It is

possible that the use of a different algorithm or the XOR method may yield better

results on this test.

The Approximate Entropy test also fails. The way its test statistic is

computed, it is incredibly difficult to pass. The test calculates what it calls the

Approximate Entropy of the data in nats. A difference is taken between the

maximum entropy, ln(2), and the computed Approximate Entropy. This makes

sense, low entropy would be an indicator of poor randomness. However, the test

statistic is not merely this difference. The test statistic is the difference of the

two values multiplied by the number of bits in the sequence tested. Given that
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the test requires over one million bits to be significant, the Approximate Entropy

cannot be more than 0.000005 off from the ideal value without failing the test.

This problem worsens for testing larger datasets. The test encourages the use of

cherry-picked, small data sets to pass, even when a larger sample of data from the

same source might not. For the tested data, the calculated Approximate Entropy

was 0.692317. That is very close to the ideal, but the difference is blown up by the

number of bits tested. The data needed to pass this test needs to be maximally

entropic with high uniformity in the distribution of data.

The Overlapping Template Matching test returns a P-value greater than

zero, but not by much. This test searches for the frequency of patterns with

an overlapping window [25]. A weak result from this test indicates that the

distribution is still not close enough to a uniform random binary variable to be

considered statistically random.

The results from the XOR post-processing are seen in Table 5.6. Similar

to the Von-Neumann corrected data, this sample passes Most of the NIST tests

with 5.1 million bits. Notably, the Approximate Entropy Test is passed, which

the other datasets particularly struggled with. The Runs test still fails outright,

but produces a larger p-value indicating the data is more fitting of the statistical

ideal. This tracks with the improved mean variance, and distribution over the

original sample and the Von-Neumann corrected data.

Both Excursion tests failed on the grounds that there were an insufficient

number of crossings to perform the analysis. The data here likely still contains

long runs that need longer to cycle back down to an even number of 1s and 0s.
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Table 5.6: Table containing Statistical Test Results from two binary sequences after
an XOR operation.

Test Name P-Value (Corrected) Result (Corrected)

Frequency (Monobit) 0.456927 PASS

Frequency Within a Block 0.214911 PASS

Runs Test 0.000038 FAIL

Longest Run of Ones in a Block 0.892183 PASS

Binary Matrix Rank 0.589465 PASS

Discrete Fourier Transform 0.666666 PASS

Non-Overlapping Template Matching 1.00000 PASS

Overlapping Template Matching 0.734506 PASS

Maurer’s ’Universal Statistic’ 0.717100 PASS

Linear Complexity 0.499607 PASS

Serial 0.397615, 0.907350 PASS

Approximate Entropy 0.476261 PASS

Cumulative Sums 0.117542, 0.502430 PASS

Random Excursions Incomplete FAIL

Random Excursions Variant Incomplete FAIL

Since the two binary datasets were taken from the same oscillator it is possible

that the resulting data carries some of the same biases, like long runs of ones. A

longer collection of data is needed to evaluate this property with significance.

I consider this data the best of the three. It returns one weak result in

the Runs test and two incomplete tests. With enough data, the Excursion tests

may pass, leaving only the Runs test to indicate the data may not be suitably

random. That is a great improvement over the three failures from the Von-

Neumann Correction and the 12 failures from the original data. Considering the

improvements both methods of data correction had, it would be interesting to see

how implementing both correction methods together would impact results.

68



Conclusion

The work here has shown that there is provable link between the growth

rate of the tent map chaotic system and the entropy of binary data the system

is able to produce. That link holds for both a theoretical system, simulated

design, and physical implementation. Primarily, for the use of random number

generation, we can create a system with a known symbol entropy to validate

statistical test results. While other methods of true random bit generation from

entropy measures rely on unproven or entropy sources of unknown quality [9][13],

this chaotic oscillator is designed to produce maximally entropic bits. Modern

statistical tests [25] are excellent at evaluating whether a sequence conforms to

properties of ideal uniformity and indepence. However, these tests can fail to

capture the importance of a high quality entropy source [20]. The next generation

of true random number generators should be built on the principles of high entropy

and evaluated not just on statistical properties, but also for its informational

content.

The tent map circuit implementation requires very few components, con-

sisting mostly of a negative RC filter and few digital logic components. The low

power, low frequency breadboard design is already passing nearly all NIST statis-

tical tests for random bit generation with rudimentary whitening algorithms. Now
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that the fundamentals of the design have been proven, improved implementations

can be worked on. The easiest next step is moving the design to a small PCB.

This implementation could improve overall stability by reducing noise sensitivity.

Further design changes would include using a built-in low frequency square wave

pulse generator, such as the 555-timer circuit, instead of an external function

generator. The design would also be bolstered by the addition of an on device

sampling circuit to extract symbols in real-time. With these design changes the

chaotic oscillator could function fully independently and provide a continuous

stream of random bits.

There are also more ways to test physical realizations of the tent map.

Would using two synchronized oscillators produce significantly different results?

How much improvement can be seen from using two completely oscillators for bit

generation tied together with an XOR? Can improved designs with larger data

collections pass all NIST tests and be tested against other rigorous statistical

tests [18]? More testing should also be performed to verify the results here.
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Derivation of Fixed Points

A.1 Logistic Map

Fixed points of a dynamical system with a discrete time representation can

easily be found by substituting the variable for the next iterate with the current

iterate. Then, by solving for the sole variable, the value or values for which the

system reaches a steady state will be known:

xn+1 = rxn(1 − xn)

xf = rxf (1 − xf ).

(A.1)

Rearranging gives the form of a quadratic equation, where a = −r, b =

r − 1, and c = 0. Equation A.2 implements the quadratic formula and solves for

both possible solutions:
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0 = −rx2
f + (r − 1)xf

xf =
−b±

√
b2 − 4ac

2a

xf =
−(r − 1) ±

√
((r − 1)2 − 0

−2r

xf =
−r + 1 ± (r − 1)

−2r
.

(A.2)

Two solutions arise from equation A.2. The first case is taken when addi-

tion is used in the numerator. The first fixed point is located at 0. Equation A.3

simplifies the case where addition is chosen in the numerator:

xf1 =
−r + 1 + r − 1

−2r

xf1 =
0

−2r

xf1 = 0.

(A.3)

The second solution is the case when subtraction is used in the numerator.

The fixed point is 1 − 1
r
, where r is the growth rate of the system. Equation A.4

simplifies the case where subtraction is chosen in the numerator:
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xf2 =
−r + 1 − r + 1

−2r

xf2 =
−2r + 2

−2r

xf2 = 1 − 1

r
.

(A.4)

A.2 Tent Map

The fixed points of the tent map are found using the same method as with

the logistic map. First, the discrete time equation is altered so the output state

matches the input state. The important difference for the Tent Map is that it is

a piecewise equation, so both equations need to be tested for fixed points. The

fixed point is located at 0. Equation A.5 solves the first case where values are

below the threshold:

xn+1 = µxn

xf = µxf

xf = 0,

(A.5)

The second case for values above the threshold requires a little more effort.

Equation A.6 shows the second fixed point is located at the value µ
(1−µ)

:
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xn+1 = µ(1 − xn)

xf = µ(1 − xf )

xf = µ− µxf

(1 − µ)xf = µ

xf =
µ

(1 − µ)
.

(A.6)

Stability of the two fixed points are a trivial calculation for the tent map

as all equations are linear. The first fixed point, 0 lies below the threshold value,

so equation A.5 will be used to evaluate the stability. Equation A.7 takes the

magnitude of the derivative of the function at the fixed point and solves for the

stability:

| d
dx

f(xf )| = | d
dx

[µxf ]|

| d
dx

f(xn)| = µ.

(A.7)

For all values of µ, where µ > 1, the fixed point located at 0 will be an

unstable source. The second fixed point, xf = µ
(1−µ)

is above the threshold 1
2

for

all values of µ, where µ > 1. As such, the equation from A.6 will be used to

evaluate the fixed point’s stability. Equation A.8 performs the same computation

as before, this time using the equation for values above the threshold:
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| d
dx

f(xf )| = | d
dx

[µ− µxf ]|

d

dx
f(xf ) = | − µ|

| d
dx

f(xf )| = µ.

(A.8)

This fixed point is also an unstable source for all values of µ, where µ > 1.

Both fixed points are unstable, preventing the system from reaching a steady

state.
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Derivation of Tent Map Basis Function

The analytic solution for the basis function of the tent map has been

previously solved [8] [7]. It establishes a set of continuous time functions with

a discrete switching condition to guard against the system becoming unstable.

The initial differential equation is in B.1 features a continuous state u(t) and a

discrete state s(t) [8]:

du

dt
= u− s

s(t) ∈ −1,+1

u(t) ∈ R.

(B.1)

The discrete state is defined by the sign of the continuous state. When

u(t) > 0, s(t) = 1 and when u(t) ≤ 0, s(t) = −1. The switching condition

bounds the system so long as the switching period is smaller than the time the

system needs to grow past the bounds [8]. Equation B.2 defines the boundingg

conditions:

s(nT ) =


+1, u(nT ) > 0

−1, u(nT ) ≤ 0
. (B.2)
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The equation in B.3 is chosen to satisfy the conditions of B.1 and B.2

as the forcing function of the differential equation. The summation will switch

between the positive and negative guard conditions as the solution u(t) grows in

either direction and the pulse timing remains within T [8]. ϕ(t) is defined for time

t, where 0 ≤ t < T in equation B.4:

s(t) =
∞∑

n=−∞

snϕ(t− nT ). (B.3)

ϕ(t) =


1, 0 ≤ t < T

0, otherwise
(B.4)

We assume equation B.1 is a first order linear ODE with forcing function

s(t) defined in equation B.3. e−t is the chosen integrating factor to solve the

differential equation [8]. This results in equation B.5:

u(t) =

∫ ∞

t

s(τ)et−τ dτ. (B.5)

s(τ) in equation B.5 can be substituted with the full equation from B.3

resulting in equation B.6 [8]:

u(t) =
∞∑

n=−∞

sn

∫ ∞

t

ϕ(t− nT )et−τ dτ. (B.6)

A simple change of variable will simplify the integration [8]. τ − nT is

substituted for θ in equation B.7:

80



u(t) =

∫ ∞

t

ϕ(t− nT )et−τ dτ = et−nT

∫ ∞

t−nT

ϕ(θ)e−θ dθ. (B.7)

The integration only depends on the interval of t − nT for all time [8].

Equation B.8 shows how the integration of u(t) will be defined as the function

P (t):

u(t) =
∞∑

n=−∞

snP (t− nT ). (B.8)

P (t) is integrated over all time to derive the basis pulse of the system, B.9

[8]:

P (t) = et
∫ ∞

t

ϕ(τ)eθ dθ. (B.9)

From the integration, P(t) is defined for three regions as seen in B.10. For

t < 0, P (t) is exponentially increasing from to and bounded to 1 − e−T at t = 0.

For 0 ≤ t < T , P (t) exponentially decreases from 1 − e−T to 0 over the period

of T . For all other time, The function is 0 [8]. Equation B.10 defines the basis

function P (t) for all three cases:

P (t) =


(1 − e−T )et, t < 0

1 − et−T , 0 ≤ t < T

0, T ≤ t

. (B.10)
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Shannon Entropy to Lyapunov Exponent

Claude Shannon developed a versatile method of measuring entropy [26] for

systems with any number of states where each state has an observed probability

probability of occurrence, pi. Equation C.1 shows Shannon’s equation for entropy:

H = −K
n∑
i

pi × log2 pi. (C.1)

For an ideal uniform random binary variable, the probability of both states

will be exactly 1
2
. The units of the entropy measurement can be changed by

altering the base of the logarithm used with constant K. Log base 2 will give

entropy in units of bits and the natural logarithm will give entropy in units of

nats. The rule of logarithms allows the change of base by dividing the current

logarithm by a logarithm with the same base of the desired base in equation C.2:

p0 = p1 =
1

2

K =
1

log2(e)
.

(C.2)

Expanding the equation for each iteration of the summation gives equation

C.3:
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H = − 1

log2(e)
× (p0 × log2(p0) + p1 × log2(p1)). (C.3)

Calculating the result with the known variables and constants gives equa-

tion C.4:

H = − 1

log2(e)
× (

1

2
× log2(

1

2
) +

1

2
× log2(

1

2
)). (C.4)

Computing the final result in equation C.5 shows that the entropy in nats

is the natural logarithm of 2:

H = −
log2(

1
2
)

log2(e)
= 0.6931. (C.5)

The Lyapunov exponent of a chaotic systems measures the rate of diver-

gence from two close points over time [2]. For a continuous time map, this is

defined in equation C.6 as the limit of the natural logarithm of the state at time

t divided by an initial state at time t0 all divided by the time since t0 as time

goes to infinity. This equation is different for a discrete time system. The new

equation, shown in C.7, is the limit of the average of the natural logarithm of

the absolute value of the derivative of the system for n number of states, as n

goes to infinity. Equations C.6 and C.7 show the two methods for calculating the

Lyapunov exponent:

λ = lim
t→∞

1

t
ln

|x(t)|
|x(t0)|

. (C.6)
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λ = lim
n→∞

1

n

n∑
1

ln ∥ d

dx
f(x)| (C.7)

For the tent map system this is a trivial calculation. It is a discrete time

systems, so equation C.7 will be used. The derivative of the system is 2 for all

possible states, so the equation will collapse to the natural logarithm of 2, shown

in equation C.8:

λ = ln | d
dx

 2xn, xn ≤ 1
2

2(1 − xn), xn > 1
2

| = ln |2| = 0.6931. (C.8)

There is an established link between the growth rate of the Tent Map and

its entropy when it is operating under ideal conditions as a full height map.
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Negative Impedance Converter Solution

The negative impedance converter is the backbone of the negative RC

circuit which creates the chaotic waveform. It is important to know how this

circuit causes current flow in the opposite direction and allows the voltage across

the capacitor to mimic a reverse time charge and discharge. The system is made

with three resistors. R1 and R2 are feedback from the output of the op-amp to

the positive and negative terminals respectively. The third resistor, R3, connects

to the inverting terminal and ground. Ideal op-amp assumptions are used for

infinite input impedance and zero input offset [28]. Rin = ∞ and V+ = v−.

Vin
+

−
TL082

R1

R3 R2

Vo

Figure D.1: Negative Impedance Converter Circuit Diagram - Voltage input at the
non-inverting terminal. Resistors R1 and R2 in the feedback are equivalent. R3 defines
the positive resistance of the NIC. Voltage output at the output of the Op-amp.
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We will also define currents I1, I2, and I3 as the currents across resistors

R1, R2, and R3. The voltage inputs to the op-amp terminals are noted as V+ and

V−. The equations in D.1 are the three currents slowing through their respective

resistors:

I1 =
V+ − Vo

R1

I2 =
V− − Vo

R2

I3 =
V− − 0

R3

.

(D.1)

The first step is to observe from Kirchhoff’s Current Law there is a single

path for current to flow from the input voltage to ground [28]. The result needed

is the voltage at the non-inverting terminal, V+ in terms of the current through

the circuit and the three resistances. Solving for Vo in terms of I1 allows us to

make a substitution in the equation in D.1 for I2. Equation D.2 defines the output

voltage interms of the input voltage:

Vo = Vin − I1R1. (D.2)

Equation D.2 is substituted into equation D.1 to redefine I2 only in terms

of current and resistances:

I2 =
Vin − I1R1 − Vin

R2

I2 =
−I1R1

R2

.

(D.3)
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Another assumption can be made through the observation of the circuit

diagram. Currents I2 and I3 have only one path to ground since there is assumed

to be no current flow to the inverting terminal of the op-amp. As such, it is safe

to assume that these currents are equal. Using the other assumption for zero

input offset, V− in equation D.1 for I3 can be replaced with V+. Then, rearrange

for V+ in terms of I2:

V+ = I2R3. (D.4)

Substitute the result from equation D.3 into equation D.4 to obtain the

non-inverting terminal voltage in terms of I1:

V+ =
−R1

R2

I1R3. (D.5)

For the case where feedback resistors R1 and R2 are equal, the equation

simplifies to only depend on the current I3, which is equal to I1, and resistor R3.

The voltage at the non-inverting terminal is simply the negative of the current

times the resistance of R3:

V+ = −I3R3. (D.6)
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MATLAB Code

E.1 Data Sampling and Testing

E.1.1 Data Extraction

1 %% Extract Data

2 % This code will extract the voltage samples and binary

values from the

3 % data taken from the circuit and store them in binary

files with int -32

4 % precision.

5
6 % Use a loop to continue prompting for data files until

all data has been

7 % extracted

8
9 %% Set up environment

10 clear

11 addpath (" funnctions \")

12
13
14 %% First data sample

15
16 % Have the user select the text file with the circuit

output data

17 [baseName , folder] = uigetfile ("*. bin*",'Select a File'
,'C:\Users\tinma\Documents\Master_Thesis\Data\');

18 bin_file_name = fullfile(folder , baseName);

19 disp(baseName)

20 disp ("")

21
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22 clear baseName folder

23 TIME = input('Time Length: '); %10*60;

24 RATE = input('Sample Rate: '); %5e5;

25 FREQ = input('Oscillator Frequency: '); %~363Hz

26 threshold = 2.5;

27 fileID = fopen(bin_file_name);

28 data = fread(fileID ,[2,TIME*RATE],'float32 '); %'float32
'

29 fclose(fileID);

30
31 % Imported Data

32 vc = data (1,:);

33 clk = data (2,:);

34 clear data

35
36 % Sample data from circuit

37 disp('Sampling Values ')
38 x = []; % array to hold sampled points

39
40 if RATE <= 250000

41 N = 1;

42 elseif RATE <= 312500

43 N = 2;

44 elseif RATE <= 400000

45 N = 3;

46 else

47 N = 4;

48 end

49
50 crossings = (( circshift(clk < 2.5 ,1) - (clk <2.5)) ~= 0)

;

51 clear clk

52
53 samples = circshift(crossings ,-N).*vc;

54 x = samples(samples ~=0);

55 clear crossings samples vc

56
57 % Partition samples and convert to binary
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58 partition = FindPartition(x);

59 fprintf('Partition: %f\n\n', partition)

60 bits = (x>= partition);

61
62
63 % Create files to write voltages and bits to

64 % date_TIME(s)_FREQ(Hz)

65 file_name_v = strcat(string(datetime('today ','Format ','
uuuu -MM-dd')),"_",string(round(FREQ)),"Hz","_voltages
.bin");

66 fileID = fopen(file_name_v ,'w');
67 fwrite(fileID ,x,'double ');
68 fclose(fileID);

69
70 file_name_b = strcat(string(datetime('today ','Format ','

uuuu -MM-dd')),"_",string(round(FREQ)),"Hz","_bits.bin
");

71 fileID = fopen(file_name_b ,'w');
72 fwrite(fileID ,bits ,'logical ');
73 fclose(fileID);

74 %% Remaining Data samples

75
76 [baseName , folder] = uigetfile ("*. bin*",'Select a File'

,'C:\Users\tinma\Documents\Master_Thesis\Data\');
77 bin_file_name = fullfile(folder , baseName);

78 disp(baseName)

79 disp ("")

80
81 % Loop through all needed data

82 while (baseName ~= 0)

83 clear baseName folder

84
85 TIME = input('Time Length: '); %10*60;

86 RATE = input('Sample Rate: '); %5e5;

87 FREQ = input('Oscillator Frequency: '); %~363Hz

88 threshold = 2.5;

89 fileID = fopen(bin_file_name);

90



90 data = fread(fileID ,[2,TIME*RATE],'float32 '); %'
float32 ','float64 ','int16 '

91 fclose(fileID);

92
93 % Imported Data

94 vc = data (1,:);

95 clk = data (2,:);

96 clear data

97
98 % Sample data from circuit

99 disp('Sampling Values ')
100 x = []; % array to hold sampled points

101
102 if RATE <= 250000

103 N = 1;

104 elseif RATE <= 312500

105 N = 2;

106 elseif RATE <= 400000

107 N = 3;

108 end

109
110 crossings = (( circshift(clk < 2.5 ,1) - (clk <2.5))

~= 0);

111 clear clk

112
113 samples = circshift(crossings ,-N).*vc;

114 x = samples(samples ~=0);

115 clear crossings samples vc

116
117 % Partition samples and convert to binary

118 partition = FindPartition(x);

119 fprintf('Partition: %f\n\n', partition)

120 bits = (x>= partition);

121
122 % Write to previously created files

123 file_name_v = strcat(string(datetime('today ','
Format ','uuuu -MM-dd')),"_",string(round(FREQ)),"
Hz"," _voltages.bin");
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124 fileID = fopen(file_name_v ,'a');
125 fwrite(fileID ,x,'double ');
126 fclose(fileID);

127
128 file_name_b = strcat(string(datetime('today ','

Format ','uuuu -MM-dd')),"_",string(round(FREQ)),"
Hz","_bits.bin");

129 fileID = fopen(file_name_b ,'a');
130 fwrite(fileID ,bits ,'logical ');
131 fclose(fileID);

132
133
134 % Attempt to open next file

135 [baseName , folder] = uigetfile ("*. bin*",'Select a

File','C:\Users\tinma\Documents\Master_Thesis\
Data\');

136 bin_file_name = fullfile(folder , baseName);

137 disp(baseName)

138 disp ("")

139 end

140
141 % clear all

This code takes in time series data taken from an oscilloscope for two
waveforms, the chaotic wave and the clock. Multiple data captures can be input
and appended together. A user inputs the length of the data in seconds and the
frequency at which it was sampled. Then, the code samples the chaotic wave at
each rising and falling edge and writes the voltage values out to a binary file. It
also calls a function to calculate the partition of the tent map in order to generate
the symbol sequence. The binary symbols are also written to a file.
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E.1.2 Binary to Text Conversion

1 %% Binary to Text

2 % This code will take a bitstream binary file and

convert it into a

3 % text file with 50 columns

4
5 %% Set up environment

6 clear

7 addpath (" funnctions \")

8
9

10 %% IMPORT DATA

11 [baseName , folder] = uigetfile ("*. bin*");

12 bin_file_name = fullfile(folder , baseName);

13 fileID = fopen(bin_file_name);

14 bits = fread(fileID ,'logical ') '>0;
15 fclose(fileID);

16
17 %% Reshape Array

18
19 c_size = 100;

20 r_size = floor(length(bits)/c_size);

21
22 %% Write to File

23
24 file_name = strcat(string(c_size*r_size) ,"_bits.txt");

25 fileID = fopen(file_name ,'w');
26
27 for i=1: r_size

28 % turn row into string

29 line = strcat(strrep(num2str(bits(c_size *(i-1) +1:

c_size*i)),' ',''),'\n');
30 % frwite string + newline (\n)

31 fprintf(fileID ,line);

32 end

33
34 fclose(fileID);
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This code converts a binary data file into an ASCII test file format.
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E.1.3 Analog Testing

1 %% Analog Testing

2
3 clear

4 close all

5 addpath (" funnctions \")

6 addpath ("NIST Entropy Tests \")

7 addpath ("NIST Stat Function \")

8 addpath (" Entropy Estimation \")

9
10 %% Import analog voltage samples

11 [baseName , folder] = uigetfile ("*. bin*");

12 bin_file_name = fullfile(folder , baseName);

13 fileID = fopen(bin_file_name);

14 x = fread(fileID ,'double ') ';
15 fclose(fileID);

16
17 %% TESTS

18
19 L = length(x);

20
21 % Volt Hist

22 VoltHist(x)

23
24 % Partition Tent

25 partition = FindPartition(x(1:800000));

26 fprintf('Partition: %f\n\n', partition)

27
28 % Slopes

29 [pL ,pR,pA] = Calculate_Slopes(x(1:800000) ,partition);

30 fprintf (" Left Branch slope: %f\n Right Branch Slope: %

f\n Overall Slope: %f\n\n",pL,pR ,pA)

31
32 ENTROPY_TEST_NAME = [];

33 ENTROPY_TEST_STAT = [];

34
35 %% NIST Entropy tests
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36 T = Excursion(x);

37 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Max Deviation

from Avg "];

38 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

39 fprintf (" Maximum Deviation from average: %f\n\n", T)

40
41 T = DirectionalRunNum(x);

42 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "# of

Directional Runs "];

43 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

44 fprintf (" Number of Directional Runs: %d\n\n",T)

45
46 T = DirectionalRunLen(x);

47 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Longest Run "];

48 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

49 fprintf (" Longest Run Length: %d\n\n",T)

50
51 T = NumUpDown(x);

52 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Max Increase|

Decrease "];

53 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

54 fprintf (" Maximum number of increases or decreases: %d\

n\n",T)

55
56 T = MedianRunNum(x);

57 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "# of Runs based

on Median "];

58 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

59 fprintf (" Number of Runs based on Median: %d\n\n",T)

60
61 T = MedianRunLen(x);

62 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Max Run Based

on Median "];

63 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

64 fprintf (" Maximum run length based on Median: %d\n\n",T

)

65
66 [aT , mT] = Collisions(x);
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67 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Avg Length

before Collision "];

68 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT aT];

69 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Longest

Distance between Collision "];

70 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT mT];

71 fprintf (" Average length before a collision: %f\n\n",aT

)

72 fprintf (" Longest distance between collisions: %d\n\n",

mT)

73
74
75 T = Periodicity(x);

76 y = [1 2 8 16 32];

77 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME strcat(string(y)

,repmat (" Period Structures",1,length(y)))];

78 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

79 fprintf (" 01 period structures: %d\n 02 period

structures: %d\n 08 period structures: %d\n" + ...

80 " 16 period structures: %d\n 32 period structures:

%d\n\n",T(1),T(2),T(3),T(4),T(5))

81
82 T = Covariance(x);

83 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME strcat(string(y)

,repmat (" Period Covariance",1,length(y)))];

84 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

85 fprintf (" 01 period covariance: %d\n 02 period

covariance: %d\n 08 period covariance: %d\n" + ...

86 " 16 period covariance: %d\n 32 period covariance:

%d\n\n",T(1),T(2),T(3),T(4),T(5))

87
88
89 ENTROPY_TESTS = table(ENTROPY_TEST_NAME ',

ENTROPY_TEST_STAT ');
90 ENTROPY_TESTS.Properties.VariableNames = [" Entropy Test

Name","Test Value "];
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91 xl_filename = strcat(string(datetime('today ','Format ','
uuuu -MM-dd')),"_TESTING_RESULTS_",string(L),"_Samples
.xlsx");

92 writetable(ENTROPY_TESTS ,xl_filename ,'Sheet ',"Voltage
Samples",'Range ','F1','WriteVariableNames ',true)

93
94
95
96 %% Entropy Estimations

97
98 ENTROPY_EST_NAME = [];

99 ENTROPY_EST_VAL = [];

100
101 % Most Common Value Estimate

102 T = MostCommonValue(x(1:2e6));

103 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Most Common Value

Estimate "];

104 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

105 fprintf (" Most Common Value Estiamte: %f\n\n",T)

106
107 % Tuple Estimate

108 T = TupleEstimateVoltage(x(1:2e6));

109 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Tuple Estimate "];

110 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

111 fprintf (" Tuple Estimate: %f\n\n",T)

112
113 % Most Common Window Estimate

114 T = MostCommonWindowEstimate(x(1:2e6));

115 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Most Common

Window Estimate "];

116 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

117 fprintf (" Tuple Estimate: %f\n\n",T)

118
119
120 ENTROPY_ESTS = table(ENTROPY_EST_NAME ',ENTROPY_EST_VAL

');
121 ENTROPY_ESTS.Properties.VariableNames = [" Entropy

Estimate Name","Estimate Value "];
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122 writetable(ENTROPY_ESTS ,xl_filename ,'Sheet ',sheets(
corrected +1),'Range ','I1','WriteVariableNames ',true)

This code reads the binary data file of voltage samples and calls many
functions to run tests on the data. This includes generating a tent map and
calculating the slopes. Results are written to a CSV file.
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E.1.4 Digital Testing

1 %% Digital Testing

2
3 clc

4 clear

5 close all

6 addpath (" funnctions \")

7 addpath ("NIST Entropy Tests \")

8 addpath ("NIST Stat Function \")

9 addpath (" Entropy Estimation \")

10
11
12 %% IMPORT DATA

13 [baseName , folder] = uigetfile ("*. bin*");

14 bin_file_name = fullfile(folder , baseName);

15 fileID = fopen(bin_file_name);

16 bits = fread(fileID ,'logical ') '>0;
17 fclose(fileID);

18
19 % bits = bits (1:3699200); % FOR TESTING ONLY

20 %% TESTS

21
22
23 disp(" ORIGINAL BIT TESTS")

24 disp(repmat('~' ,1,45))
25
26 L = length(bits);

27 corrected = 0;

28
29 while 1

30
31 % Auto -Correlation

32 AutoCorr(bits);

33
34 % Binning

35 bn = MakeBins(bits);

36
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37 % Distribution of converted binary values

38 % Should be close to uniform ditribution

39 figure('DefaultAxesFontSize ',10,'DefaultAxesFontName ','
Times New Roman ', 'Color ', 'White ');

40 histogram(bn ,100);

41 if corrected > 0

42 t = "Histogram of Corrected Bins";

43 else

44 t = "Histogram of Original Bins";

45 end

46 title(t)

47 xlabel('Measured values ')
48 ylabel('Count ')
49
50 clear bn

51
52
53 STAT_TEST_NAME = [];

54 STAT_TEST_RESULT = [];

55 STAT_TEST_PVAL = [];

56
57 ENTROPY_TEST_NAME = [];

58 ENTROPY_TEST_STAT = [];

59
60 ENTROPY_EST_NAME = [];

61 ENTROPY_EST_VAL = [];

62
63
64 %% NIST STAT TESTS

65 [P,pass] = Monobit(bits);

66 STAT_TEST_NAME = [STAT_TEST_NAME "Monobit "];

67 STAT_TEST_RESULT = [STAT_TEST_RESULT pass];

68 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

69 if pass > 0

70 fprintf (" Monobit: PASS\nP -Value: %f\n\n",P)

71 else

72 fprintf (" Monobit: FAIL\nP -Value: %f\n\n",P)

73 end
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74
75 [P,pass] = Block(bits);

76 STAT_TEST_NAME = [STAT_TEST_NAME "Block Frequency "];

77 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

78 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

79 if pass > 0

80 fprintf (" Block Frequency: PASS\nP-Value: %f\n\n",P)

81 else

82 fprintf (" Block Frequency: FAIL\nP-Value: %f\n\n",P)

83 end

84
85
86 [P,pass] = Runs(bits);

87 STAT_TEST_NAME = [STAT_TEST_NAME "Runs Test "];

88 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

89 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

90 if pass > 0

91 fprintf ("Runs Test: PASS\nP-Value: %f\n\n",P)

92 else

93 fprintf ("Runs Test: FAIL\nP-Value: %f\n\n",P)

94 end

95
96
97 [P,pass] = LongestRun(bits);

98 STAT_TEST_NAME = [STAT_TEST_NAME "Longest Run"];

99 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

100 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

101 if pass > 0

102 fprintf (" Longest Run: PASS\nP -Value: %f\n\n",P)

103 else

104 fprintf (" Longest Run: FAIL\nP -Value: %f\n\n",P)

105 end
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106
107 [P,pass] = MatrixRank(bits);

108 STAT_TEST_NAME = [STAT_TEST_NAME "Matrix Rank "];

109 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

110 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

111 if pass > 0

112 fprintf (" Matrix Rank: PASS\nP -Value: %f\n\n",P)

113 else

114 fprintf (" Matrix Rank: FAIL\nP -Value: %f\n\n",P)

115 end

116
117 [P,pass] = DFT(bits);

118 STAT_TEST_NAME = [STAT_TEST_NAME "Discrete Fourier

Transform "];

119 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

120 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

121 if pass > 0

122 fprintf (" Discrete Fourier Transform: PASS\nP-Value:

%f\n\n",P)

123 else

124 fprintf (" Discrete Fourier Transform: FAIL\nP-Value:

%f\n\n",P)

125 end

126
127
128 [P,pass] = NonOverlapTemplate(bits);

129 STAT_TEST_NAME = [STAT_TEST_NAME "Non -Overlapping

Template Matching "];

130 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

131 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

132 if pass > 0
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133 fprintf ("Non -Overlapping Template Matching: PASS\nP

-Value: %f\n\n",P)

134 else

135 fprintf ("Non -Overlapping Template Matching: FAIL\nP

-Value: %f\n\n",P)

136 end

137
138
139 [P,pass] = OverlapTemplate(bits);

140 STAT_TEST_NAME = [STAT_TEST_NAME "Overlapping Template

Matching "];

141 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

142 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

143 if pass > 0

144 fprintf (" Overlapping Template Matching: PASS\nP -

Value: %f\n\n",P)

145 else

146 fprintf (" Overlapping Template Matching: FAIL\nP -

Value: %f\n\n",P)

147 end

148
149
150 [P,pass] = Maurer(bits);

151 STAT_TEST_NAME = [STAT_TEST_NAME "Maurer 's Test "];

152 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

153 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

154 if pass > 0

155 fprintf ("Maurer 's Test: PASS\nP -Value: %f\n\n",P)

156 else

157 fprintf ("Maurer 's Test: FAIL\nP -Value: %f\n\n",P)

158 end

159
160
161 [P,pass] = LinearComplexity(bits);
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162 if pass > 0

163 fprintf (" Linear Complexity: PASS\nP-Value: %f\n\n",

P)

164 else

165 fprintf (" Linear Complexity: FAIL\nP-Value: %f\n\n",

P)

166 end

167
168
169 [P1 ,P2,pass] = Serial(bits);

170 STAT_TEST_NAME = [STAT_TEST_NAME "Serial Test "];

171 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

172 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

173 if pass > 0

174 fprintf (" Serial Test: PASS\nP -Values: %f, %f\n\n",

P1 ,P2)

175 else

176 fprintf (" Serial Test: FAIL\nP -Value: %f, %f\n\n",P1

,P2)

177 end

178
179
180 [P,pass] = ApproxEntropy(bits);

181 STAT_TEST_NAME = [STAT_TEST_NAME "Approximte Entropy

Test "];

182 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

183 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

184 if pass > 0

185 fprintf (" Approximate Entropy Test: PASS\nP-Value: %

f\n\n",P)

186 else

187 fprintf (" Approximate Entropy Test: FAIL\nP-Value: %

f\n\n",P)

188 end
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189
190
191 [P,pass] = CumSum(bits ,0);

192 STAT_TEST_NAME = [STAT_TEST_NAME "Cumulative Sums

Forward "];

193 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

194 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

195 if pass > 0

196 fprintf (" Cumulative Sums Forward: PASS\nP-Value: %f

\n\n",P)

197 else

198 fprintf (" Cumulative Sums Forward: FAIL\nP-Value: %f

\n\n",P)

199 end

200
201
202 [P,pass] = CumSum(bits ,1);

203 STAT_TEST_NAME = [STAT_TEST_NAME "Cumulative Sums

Backwards "];

204 if pass >0 STAT_TEST_RESULT = [STAT_TEST_RESULT "PASS "];

else STAT_TEST_RESULT = [STAT_TEST_RESULT "FAIL "];

end

205 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

206 if pass > 0

207 fprintf (" Cumulative Sums Backward: PASS\nP-Value: %

f\n\n",P)

208 else

209 fprintf (" Cumulative Sums Backward: FAIL\nP-Value: %

f\n\n",P)

210 end

211
212
213 [P,pass] = RandomExcursion(bits);

214 x = [-4 -3 -2 -1 1 2 3 4];

215 STAT_TEST_NAME = [STAT_TEST_NAME strcat(repmat (" Random

Excursions ",1,length(x)),string(x))];
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216 RESULT = string(zeros(1,length(pass)));

217 for i=1: length(pass), if pass(i)>0, RESULT(i)="PASS";

else , RESULT(i)="FAIL"; end ,end

218 STAT_TEST_RESULT = [STAT_TEST_RESULT RESULT ];

219 STAT_TEST_PVAL = [STAT_TEST_PVAL P'];
220 for i = 1: length(P)

221 if pass(i) > 0

222 fprintf (" Random Excursion (%d): PASS\nP-Value:

%f\n\n",x(i),P(i))

223 else

224 fprintf (" Random Excursion (%d): FAIL\nP-Value:

%f\n\n",x(i),P(i))

225 end

226 end

227
228 [P,pass] = RandomExcursionVariant(bits);

229 x = [-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9];

230 STAT_TEST_NAME = [STAT_TEST_NAME strcat(repmat (" Random

Excursions Variant ",1,length(x)),string(x))];

231 RESULT = string(zeros(1,length(pass)));

232 for i=1: length(pass), if pass(i)>0, RESULT(i)="PASS";

else , RESULT(i)="FAIL"; end ,end

233 STAT_TEST_RESULT = [STAT_TEST_RESULT RESULT ];

234 STAT_TEST_PVAL = [STAT_TEST_PVAL P];

235 for i = 1: length(P)

236 if pass(i) > 0

237 fprintf (" Random Excursion Variant (%d): PASS\nP

-Value: %f\n\n",x(i),P(i))

238 else

239 fprintf (" Random Excursion Variant (%d): FAIL\nP

-Value: %f\n\n",x(i),P(i))

240 end

241 end

242
243 STAT_TESTS = table(STAT_TEST_NAME ',STAT_TEST_RESULT ',

STAT_TEST_PVAL ');
244 STAT_TESTS.Properties.VariableNames = ["Stat Test Name

","Test Result","P-Value "];
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245 xl_filename = strcat(string(datetime('today ','Format ','
uuuu -MM-dd')),"_DIGITAL_TESTING_RESULTS_",string(L) ,"
_BITS.xlsx");

246 sheets = [" Original Bits" "Corrected Bits "];

247 writetable(STAT_TESTS ,xl_filename ,'Sheet ',sheets(
corrected +1),'Range ','B1','WriteVariableNames ',true)

248
249
250 %% NIST ENTROPY TESTS

251
252 T = Excursion(bits);

253 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Max Deviation

from Avg "];

254 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

255 fprintf (" Maximum Deviation from average: %d\n\n", T)

256
257 T = DirectionalRunNum(bits);

258 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "# of

Directional Runs "];

259 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

260 fprintf (" Number of Directional Runs: %d\n\n",T)

261
262 T = DirectionalRunLen(bits);

263 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Longest Run "];

264 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

265 fprintf (" Longest Run Length: %d\n\n",T)

266
267 T = NumUpDown(bits);

268 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Max Increase|

Decrease "];

269 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

270 fprintf (" Maximum number of increases or decreases: %d\

n\n",T)

271
272 T = MedianRunNum(bits);

273 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "# of Runs based

on Median "];

274 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];
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275 fprintf (" Number of Runs based on Median: %d\n\n",T)

276
277 T = MedianRunLen(bits);

278 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Max Run Based

on Median "];

279 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

280 fprintf (" Maximum run length based on Median: %d\n\n",T

)

281
282 [aT , mT] = Collisions(bits);

283 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Avg Length

before Collision "];

284 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT aT];

285 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME "Longest

Distance between Collision "];

286 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT mT];

287 fprintf (" Average length before a collision: %f\n\n",aT

)

288 fprintf (" Longest distance between collisions: %d\n\n",

mT)

289
290 T = Periodicity(bits);

291 x = [1 2 8 16 32];

292 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME strcat(string(x)

,repmat (" Period Structures",1,length(x)))];

293 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

294 fprintf (" 01 period structures: %d\n 02 period

structures: %d\n 08 period structures: %d\n" + ...

295 " 16 period structures: %d\n 32 period structures:

%d\n\n",T(1),T(2),T(3),T(4),T(5))

296
297 T = Covariance(bits);

298 x = [1 2 8 16 32];

299 ENTROPY_TEST_NAME = [ENTROPY_TEST_NAME strcat(string(x)

,repmat (" Period Covariance",1,length(x)))];

300 ENTROPY_TEST_STAT = [ENTROPY_TEST_STAT T];

301 fprintf (" 01 period covariance: %d\n 02 period

covariance: %d\n 08 period covariance: %d\n" + ...
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302 " 16 period covariance: %d\n 32 period covariance:

%d\n\n",T(1),T(2),T(3),T(4),T(5))

303
304 ENTROPY_TESTS = table(ENTROPY_TEST_NAME ',

ENTROPY_TEST_STAT ');
305 ENTROPY_TESTS.Properties.VariableNames = [" Entropy Test

Name","Test Value "];

306 writetable(ENTROPY_TESTS ,xl_filename ,'Sheet ',sheets(
corrected +1),'Range ','F1','WriteVariableNames ',true)

307
308 if corrected == 1

309 break

310 end

311
312
313 %% ENTROPY ESTIMATION

314
315 % Shannon Entropy

316 Hs = Block_Entropy(bits);

317 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Shannon Entropy

"];

318 ENTROPY_EST_VAL = [ENTROPY_EST_VAL Hs];

319 fprintf (" Stochastic Entropy: %f\n\n",Hs)

320
321 % Most Common Value Estimate

322 T = MostCommonValue(bits (1:2e6));

323 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Most Common Value

Estimate "];

324 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

325 fprintf (" Most Common Value Estiamte: %f\n\n",T)

326
327 % Markov Estimate

328 T = MarkovEstimate(bits (1:2e6));

329 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Markov Estimate

"];

330 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

331 fprintf (" Markov Estimate: %f\n\n",T)

332

110



333 % Tuple Estimate

334 T = TupleEstimate(bits (1:2e6));

335 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Tuple Estimate "];

336 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

337 fprintf (" Tuple Estimate: %f\n\n",T)

338
339 % Most Common Window Estimate

340 T = MostCommonWindowEstimate(bits (1:2e6));

341 ENTROPY_EST_NAME = [ENTROPY_EST_NAME "Most Common

Window Estimate "];

342 ENTROPY_EST_VAL = [ENTROPY_EST_VAL T];

343 fprintf (" Most Common Window Estimate: %f\n\n",T)

344
345 ENTROPY_ESTS = table(ENTROPY_EST_NAME ',ENTROPY_EST_VAL

');
346 ENTROPY_ESTS.Properties.VariableNames = [" Entropy

Estimate Name","Estimate Value "];

347 writetable(ENTROPY_ESTS ,xl_filename ,'Sheet ',sheets(
corrected +1),'Range ','I1','WriteVariableNames ',true)

348
349
350 bits = VNB_Correction(bits);

351 corrected = 1;

352
353 disp("VON -NEUMANN BIT CORRECTION TESTS")

354 disp(repmat('~' ,1,45))
355
356 end

This code reads the binary data file of the binary symbol sequence and
calls many function to run tests on the data. These tests include statistical
measurements, NIST statistical tests, and NIST entropy estimators. This code
also runs multiple times on corrected datasets. Results are written to a CSV file.
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E.1.5 Bifurcation and Entropy

1 %% Bifurcation and Entropy Testing harness

2
3 % clear

4 close all

5 addpath (" funnctions \")

6 addpath ("NIST Entropy Tests \")

7 addpath ("NIST Stat Function \")

8 addpath (" Entropy Estimation \")

9 figure (1);

10 title('Bifuraction of Tent Circuit ')
11 xlabel('Tent Slope')
12 ylabel('Possible Values ')
13 slopes = [];

14 % Make multiple arrays for each entropy estimator

15 % Markov , Most Common Window , Tuple , Shannon ,

Topological

16 Mark_entropy = [];

17 slope_est = [];

18 MCV_entropy = [];

19 MCW_entropy = [];

20 Tuple_entropy = [];

21 Topological_entropy = [];

22 Block_ent = [];

23
24 % Desktop Sampled

25 volt_dir = 'C:\Users\user\Documents\folder_name\';
26 bit_dir = 'C:\Users\user\Documents\folder_name\';
27
28
29 volt_files = dir([ volt_dir '*.bin']);
30 bit_files = dir([ bit_dir '*.bin']);
31
32 T = struct2table(volt_files); % convert the struct

array to a table

33 sortedT = sortrows(T, 'name'); % sort the table by 'DOB
'
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34 volt_files = table2struct(sortedT);

35
36 T = struct2table(bit_files); % convert the struct array

to a table

37 sortedT = sortrows(T, 'name'); % sort the table by 'DOB
'

38 bit_files = table2struct(sortedT);

39
40 % Loop through all collected data samples

41 for i = 1: length(volt_files)

42
43 bin_file_name = fullfile(volt_files(i).folder ,

volt_files(i).name);

44 fileID = fopen(bin_file_name);

45 x = fread(fileID ,'double ') ';
46 fclose(fileID);

47
48 %% IMPORT Binary Data

49 bin_file_name = fullfile(bit_files(i).folder ,

bit_files(i).name);

50 fileID = fopen(bin_file_name);

51 bits = fread(fileID ,'logical ') '>0;
52 fclose(fileID);

53
54 %% create tent map from sampled data

55 figure('DefaultAxesFontSize ',24,'
DefaultAxesFontName ','Times New Roman ', 'Color ',
'White ');

56 scatter(x(1:end -1), x(2:end),'.');
57 t = strcat ("Tent Map ",string(i));

58 title(t);%'Tent Map ')
59 xlabel('X(n)')
60 ylabel('X(n+1)')
61 axis tight

62 hold on

63 scatter(x,x,'.');
64 hold off

65
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66 %% measure the slope of the lhs

67 % Partition Tent

68 partition = FindPartition(x(1:400000));

69 fprintf('Partition: %f\n\n', partition)

70
71 % Slopes

72 [pL ,pR,pA] = Calculate_Slopes(x(1:400000) ,partition

);

73 fprintf (" Left Branch slope: %f\n Right Branch

Slope: %f\n Overall Slope: %f\n\n",pL ,pR,pA)

74
75 slope = abs([pL pR]);

76 % Take the unique values of the voltage samples

77 xu = unique(x);

78 figure (1);

79 hold on

80 scatter(min(slope(slope >1)).*ones(1,length(xu)),xu

,5,'blue','filled ')
81 hold off

82
83 %% calculate the entropy from estimators

84
85 % Most Common Value Estimate

86 Tmcv = MostCommonValue(bits);

87 fprintf (" Most Common Value Estiamte: %f\n\n",Tmcv)

88
89 % Markov Estimate

90 Tmkv = MarkovEstimate(bits);

91 fprintf (" Markov Estimate: %f\n\n",Tmkv)

92
93 % Tuple Estimate

94 T_tup = TupleEstimate(bits);

95 fprintf (" Tuple Estimate: %f\n\n",T_tup)

96
97 % Shannon & Topological Entropy

98 % [Hs, Ht] = Calculate_Entropy(bits);

99 [Hs ,block_lengths] = Block_Entropy(bits);

100 fprintf (" Stochastic Entropy: %f\n\n",Hs)
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101 % fprintf (" Topological Entropy: %f\n\n",Ht)

102 Block_ent(i,:) = Hs;

103
104 % store slope and entropy in array to plot later

105 slopes(i) = min(slope(slope >1));

106 slope_est(i) = log2(slopes(i));

107 Mark_entropy(i) = Tmkv;

108 MCV_entropy(i) = Tmcv;

109 % Topological_entropy(i) = Ht;

110 Shannon_entropy(i) = Hs(end);

111 Tuple_entropy(i) = T_tup;

112
113
114
115 end

116 % end loop

117
118
119
120 %% Plot the entropy vs slope

121 figure('DefaultAxesFontSize ',36,'DefaultAxesFontName ','
Times New Roman ', 'Color ', 'White ');

122 plot(slopes , slope_est , '-diamond ', ...

123 slopes , Mark_entropy ,'-r.', ...

124 slopes , MCV_entropy , '-b*', ...

125 slopes , Block_ent (:,7), '-k+', ...

126 slopes , Tuple_entropy , '-^')
127
128 title(" Entropy Decay with Slope ")

129 xlabel (" Measured Tent Slope")

130 ylabel (" Entropy (bits)")

131 legend (" Slope Estimate","Markov Estimate","MCV

Estimate","Block Entropy","Tuple Estiamte ")

132
133 %% 3d Block Entropy

134
135 figure('DefaultAxesFontSize ',32,'DefaultAxesFontName ','

Times New Roman ', 'Color ', 'White ');
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136 for i = 1: length(volt_files)

137 plot(block_lengths ,Block_ent(i,:));

138 hold on

139 end

140 legend(string(slopes),Location =" southwest ")

141 title(" Entropy Measurements with Larger Block Sizes")

142 xlabel (" Block Size")

143 ylabel (" Entropy (bits)")

This code measures the bifurcation and entropy of data for tent maps at a
variety of slopes. The code reads files in a fixed folder, generates a tent map from
the data and calculates the slope. For each dataset, it plots a range of unique
values on an orbit diagram and performs several entropy calculations. Any data
stored in a binary file format can be input including simulated or measured data.
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E.2 NIST 800-22 Statistical Tests

E.2.1 Frequency Monobit Test

1 function [P,pass] = Monobit(bits)

2 % Frequecny (Monobit) Test for randomness

3 % This test determines randomness by looking at how

equal the number of

4 % ones and zeros are

5
6 % Count the number of bits

7 n = length(bits);

8
9 % Turn bits into +/-1

10 X = 2.*bits -1;

11
12 % Sum all values of x

13 Sn = sum(X);

14
15 % Test Statistic

16 Sobs = abs(Sn)/sqrt(n);

17
18 % Compute P-Value

19 P = erfc(Sobs/sqrt (2));

20
21 pass = P > 0.01;

22
23 end

The Frequency Test [25] and Frequency Test within a Block [25] measure
how closely the dataset conforms to the ideal measure of mean. Half of all bits
within a set should be one and the mean should be one-half. This property should
be consistent for the entire set or subsets. Deviance from the ideal is measured
with a chi-squared test. A computed P-value is compared to a known test statistic
to determine if the dataset sufficiently matches the properties of an ideally random
dataset.
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E.2.2 Frequency Test within a Block

1 function [P,pass] = Block(bits)

2 % Freuency Test with a Block checks for even

distribution of ones and zeros

3 % Bits are goruped into blocks to check for an equal

distribution of

4 % values throughout the dataset. There should be

fewer than than 100

5 % blocks and the block size should be greater than 20

6 % M > 20

7 % N < 100

8 % n > MN

9
10 % Determine optimal Block size

11 M = 0;

12 N = 100;

13 while M < 20

14 if M ~= 0

15 N = N - 10;

16 end

17 M = floor(length(bits)/N);

18 end

19
20 % Loop through bits in blocks of size M, N times

21 proportions = [];

22
23 for i = 1:N

24 proportions = [proportions sum(bits((i-1)*M+1:i*M))

/M];

25 end

26
27 % Form the Chi -Squared distribution

28 chi_square = 4*M*sum(( proportions -1/2) .^2);

29
30 % Use inverse gamma function to determine P-value

31 P = gammainc(chi_square /2,N/2,'upper ');
32
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33
34 pass = P > 0.01;

35
36 end
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E.2.3 Runs Test

1 function [P,pass] = Runs(bits)

2 %Runs counts the nuber of sequential bits that do not

change

3 % Detailed explanation goes here

4
5 % Number of bits in the array

6 n = length(bits);

7
8 % Number of runs in the bitstream

9 v = nnz(diff(bits))+1;

10
11 % Proportion of 1 bits in array

12 o = sum(bits)/n;

13
14 % Test statistic

15 P = erfc(abs(v-2*n*o*(1-o))/(2* sqrt (2*n)*o*(1-o)));

16
17 pass = P > 0.01;

18
19
20 end

The Runs Test [25] looks for substrings of consecutive matching values
in the dataset. In a random distribution there is a precise likelihood of a run
occurring, given the length of the dataset and the length of the run. Sets with
more samples are expected to have runs with a longer maximum length as there
are more opportunities for each sample to match its predecessor. Sequences with
many long runs oscillate too slowly. Sequences with few runs oscillate too quickly.
Both scenarios lead to highly predictable data with lower entropy. Similarly, the
Test for the Longest Run of Ones in a Block [25] measures how commonly long
runs occur in the set. The distribution of longest runs is compared to known
probabilities of occurrence.
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E.2.4 Longest-Run-of-Ones in a Block

1 function [P,pass] = LongestRun(bits)

2 %LongestRun counts counts the distribution of Runs in

the array

3 % The array is divided into blocks based on the

length of the array.

4 % Within each block the longest run of ones is

counted. The distribution

5 % of all the counted longest runs should fit a X-

squared distribution.

6
7 % Length of the bit stream

8 n = length(bits);

9
10 % Choose Block Size and assign constants

11 if n >= 750000

12 M = 1e4;

13 K = 6;

14 N = floor(n/M);

15 count = [10 11 12 13 14 15 16];

16 probs = [0.0882 0.2092 0.2483 0.1933 0.1208 0.0675

0.0727];

17 elseif n >= 6272

18 M = 128;

19 K = 5;

20 N = floor(n/M);

21 count = [4 5 6 7 8 9];

22 probs = [0.1174 0.2430 0.2493 0.1752 0.1027

0.1124];

23 elseif n >= 128

24 M = 8;

25 K = 3;

26 N = floor(n/M);

27 count = [1 2 3 4];

28 probs = [0.2148 0.3672 0.2305 0.1875];

29 else

30 return
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31 end

32
33 runs = [];

34
35 % Loop through array in blocks of size M

36 i = 1;

37 while i+M-1 < n

38
39 % Separate bits into block

40 block = bits(i:i+M-1);

41
42 % Count of longest Run in block

43 longest=max(accumarray(nonzeros (( cumsum (~ block)+1)

.*block) ,1));

44
45 % Apend value to array of runs

46 runs = [runs longest ];

47
48 % Increment loop counter

49 i = i + M;

50
51 end

52
53
54 % Create observed distribution

55
56 v = zeros(1,K+1);

57 for k=1:K+1

58 % Count the occurences of runs

59 if k == 1

60 % min value

61 v(k) = sum(runs <=count(k));

62 elseif k == K+1

63 % max value

64 v(k) = sum(runs >=count(k));

65 else

66 % in between values

67 v(k) = sum(runs==count(k));
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68 end

69 end

70
71 % Test Statistic

72 X = sum(((v-N.*probs).^2) ./(N.* probs));

73
74 % Perform test

75 P = gammainc(X/2,K/2,'upper ');
76
77 pass = P > 0.01;

78 end

The Longest Run of Ones in a Block test [25] is similar to the regular Runs
test. It measures the longest run of ones in an M-bit block. The counts of runs
should be distributed according to a predicted distribution. The test statistic is
computed from the difference in the computed and measured distribution values.
The test’s P-value is the incomplete gamma function of the test statistic. Large
deviations from the expected distribution of runs will result in a low P-value.
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E.2.5 Binary Matrix Rank Test

1 function [P,pass] = MatrixRank(bits)

2 %MatrixRank Tests the linear dependence of fixed

substrings of the sequence

3 % Note: For this test , bits must be single or double

4
5 % Number of bits in array

6 bits = single(bits);

7 n = length(bits);

8
9 M = 32; % Rows of Matrix

10 Q = 32; % Columns of Matrix

11
12 N = floor(n/(M*Q));

13
14 % Loop through array of bits in MxQ length blocks

determine Ranks

15 Ranks = zeros(1,N);

16
17 for i = 1:N

18 A = reshape(bits((i-1)*(M*Q)+1:(i)*(M*Q)),M,Q);

19 %Ranks(i) = rank(A); OLD CODE

20
21 % Forwards

22 % loop through 1,1 to 31,31

23 for j = 1:M-1

24 % if A(j,j) == 0; then swap with another row

that has a 1

25 % if A(j,j) == 1; then XOR with other rows A(:,

j) containing 1

26 % else; continue the loop

27 if A(j,j) == 0

28
29 % Find any other rows with leading 1

30 b = find(A(j+1:end ,j)==1)+j;

31 if ~isempty(b)

32 % Swap row with first leading 1
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33 A([j b(1)],:) = A([b(1) j],:);

34 end

35
36 end

37 if A(j,j) == 1

38
39 % find other rows with ones

40 b = find(A(j+1:end ,j)==1)+j;

41 if ~isempty(b)

42 % XOR all found rows

43 for k=1: length(b)

44 A(b(k) ,:) = xor(A(j,:),A(b(k) ,:));

45 end

46 end

47
48 end

49 end

50 % Backwards

51 % repeat from 32,32 to 2,2

52 for j = M:-1:2

53 % if A(j,j) == 0; then swap with another row

that has a 1

54 % if A(j,j) == 1; then XOR with other rows A(:,

j) containing 1

55 % else; continue the loop

56 if A(j,j) == 0

57
58 % Find any other rows with leading 1

59 b = find(A(1:j-1,j)==1);

60 if ~isempty(b)

61 % Swap row with first last 1

62 A([j b(end)],:) = A([b(1) j],:);

63 end

64
65 end

66 if A(j,j) == 1

67
68 % find other rows with ones

125



69 b = find(A(1:j-1,j)==1);

70 if ~isempty(b)

71 % XOR all found rows

72 for k=1: length(b)

73 A(b(k) ,:) = xor(A(j,:),A(b(k) ,:));

74 end

75 end

76
77 end

78 end

79
80 % r = sum(A,2);

81 % Ranks(i) = sum(r~=0);

82 Ranks(i) = sum(diag(A));

83 end

84
85 Fm = sum(Ranks == M);

86 Fm_1 = sum(Ranks == M-1);

87 Fm_rest = N - Fm_1 - Fm;

88
89 % Calculate Test Statistic

90 X = ((Fm -.2888*N)^2) /(.2888*N) + ((Fm_1 -.5776*N)^2)

/(.5776*N) + ((Fm_rest -.1336*N)^2) /(.1336*N);

91
92 P = gammainc(X/2,1,'upper ');
93
94 pass = P > 0.01;

95
96 end

The Binary Matrix Rank Test [25] checks for linear dependencies in square
matrices comprised of subsets of the original data. Rank is a measure of the
number of columns in a matrix that are not linear combinations of other columns
in the matrix. Most matrices should have a rank calculated near the maximum
possible, with some having a lower rank with little linear dependence. The data
should exhibit properties of linear independence to confirm the sampled random
variable is uncorrelated and IID.
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E.2.6 Discrete Fourier Transform (Spectral) Test

1 function [P,pass] = DFT(bits)

2 % Discrete Fourier Transform Test computes the number

of peaks in the DFT of

3 % the sequence compared to the expected number

4
5 % Count number of bits in array

6 n = length(bits);

7
8 % Convert bit sequence

9 x = (2.* bits) -1;

10
11 % Disctrete Fourier Transform

12 S = fft(x,n);

13
14 % Absolute Vaue of first half of DFT values

15 M = abs(S(1: floor(n/2)));

16
17 % Calculate 95% peak height threshold

18 T = sqrt(log (1/.05)*n);

19
20 % Theoretical # of peaks

21 N0 = 0.95*n/2;

22
23 % Observed number of peaks under threshold

24 N1 = sum(M<T);

25
26 % Calculate Test statistic

27 d = (N1 -N0)/sqrt(n*(.95*.05) /4);

28
29 % Compute P-value

30 P = erfc(abs(d)/sqrt (2));

31
32 % Plot FFT and Threshold

33 figure;

34 Fs = 358.45; % change this to be dynamic

variable
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35 plot(Fs/n*(0:n-1),abs(S),[min(Fs/n*(0:n-1)) max(Fs/n

*(0:n-1))],[T T])

36 xlabel('f (Hz)')
37 ylabel('|fft(bits)|')
38 title('Magnitude of FFT Spectrum ')
39
40 pass = P > 0.01;

41
42 end

The Discrete Fourier Transform Spectral Test [25] utilizes analysis of the
frequency domain to detect periodic features. These features can be observed
graphically. A spectral graph with periodic components will have large magnitude
spikes at certain frequencies. A sequence that conforms to the ideal will have a
more uniform magnitude across all frequencies.
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E.2.7 Non-overlapping Template Matching Test

1 function [P,pass] = LongestRun(bits)

2 %LongestRun counts counts the distribution of Runs in

the array

3 % The array is divided into blocks based on the

length of the array.

4 % Within each block the longest run of ones is

counted. The distribution

5 % of all the counted longest runs should fit a X-

squared distribution.

6
7 % Length of the bit stream

8 n = length(bits);

9
10 % Choose Block Size and assign constants

11 if n >= 750000

12 M = 1e4;

13 K = 6;

14 N = floor(n/M);

15 count = [10 11 12 13 14 15 16];

16 probs = [0.0882 0.2092 0.2483 0.1933 0.1208 0.0675

0.0727];

17 elseif n >= 6272

18 M = 128;

19 K = 5;

20 N = floor(n/M);

21 count = [4 5 6 7 8 9];

22 probs = [0.1174 0.2430 0.2493 0.1752 0.1027

0.1124];

23 elseif n >= 128

24 M = 8;

25 K = 3;

26 N = floor(n/M);

27 count = [1 2 3 4];

28 probs = [0.2148 0.3672 0.2305 0.1875];

29 else

30 return
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31 end

32
33 runs = [];

34
35 % Loop through array in blocks of size M

36 i = 1;

37 while i+M-1 < n

38
39 % Separate bits into block

40 block = bits(i:i+M-1);

41
42 % Count of longest Run in block

43 longest=max(accumarray(nonzeros (( cumsum (~ block)+1)

.*block) ,1));

44
45 % Apend value to array of runs

46 runs = [runs longest ];

47
48 % Increment loop counter

49 i = i + M;

50
51 end

52
53
54 % Create observed distribution

55
56 v = zeros(1,K+1);

57 for k=1:K+1

58 % Count the occurences of runs

59 if k == 1

60 % min value

61 v(k) = sum(runs <=count(k));

62 elseif k == K+1

63 % max value

64 v(k) = sum(runs >=count(k));

65 else

66 % in between values

67 v(k) = sum(runs==count(k));
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68 end

69 end

70
71 % Test Statistic

72 X = sum(((v-N.*probs).^2) ./(N.* probs));

73
74 % Perform test

75 P = gammainc(X/2,K/2,'upper ');
76
77 pass = P > 0.01;

78 end
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E.2.8 Overlapping Template Matching Test

1 function [P,pass] = NonOverlapTemplate(bits)

2
3 n = length(bits);

4 m = 10;

5
6 B = zeros(1,m);

7 B(m) = 1;

8
9 % Calculate optimal block size

10 M = 0;

11 N = 100;

12 while M < .01*n

13 if M ~= 0

14 N = N - 4;

15 end

16 M = floor(length(bits)/N);

17 end

18
19 W = zeros(1,N);

20
21 % Double loop to search through blocks

22 for j = 1:N

23 % Create block from bit array

24 block = bits(M*(j-1) +1:M*j);

25 k = 1;

26 while k <= M-m

27 % Search block for template

28 if(block(k:k+m-1) == B)

29 W(j) = W(j) +1;

30 k = k + m;

31 else

32 k = k + 1;

33 end

34 end

35 end

36
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37
38 mean = (M-m+1) /(2^m);

39
40 var = M*(1/(2^m) -(2*m-1) /(2^(2*m)));

41
42 % Compute Test Statistic

43 X = sum(((W-mean).^2)./var);

44
45 P = gammainc(X/2,N/2,'upper ');
46
47 pass = P > 0.01;

48
49 end

The Non-Overlapping and Overlapping Template Matching Tests [25] mea-
sure the frequency of occurrence of predetermined strings in the data. Each ar-
bitrary string should be found in the data roughly as many times as every other
string. If certain strings occur far more frequently, then it indicates that the
random number generator has a tendency to produce certain strings. This bias
unwanted. The difference between the tests is in how they iterate their sliding
window after finding a match. Both tests slide one bit if a match is not found. If
a match is found, the overlapping test will slide one bit and the non-overlapping
test will slide the length of the entire sequence.
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E.2.9 Maurer’s ”Universal Statistical” Test

1 function [P,pass] = OverlapTemplate(bits)

2
3 n = length(bits);

4 m = 10;

5
6 % if n < 1e6

7 % P = 0;

8 % pass = 0;

9 % return

10 % end

11
12 B = ones(1,m);

13
14 K = 5;

15
16 M = floor(sqrt(n)) + 2^K;

17
18 N = floor(sqrt(n)) - 2^K;

19
20 % Array to hold counts of occurences

21 V = zeros (1,6);

22
23 Blocks = reshape(bits (1:M*N),M,N) ';
24
25 % Loop through blocks

26 for i = 1:N

27 % Find occurences of B

28 ind = strfind(Blocks(i,:),B);

29
30 count = length(ind);

31 % if count > 5, increment 5 counter

32 if count > 5

33 count = 5;

34 end

35
36 % increment counter in V
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37 V(count +1) = V(count +1) + 1;

38 end

39
40 % Compute Lambda and Mu

41
42 L = (M-m+1) /(2^m);

43
44 mu = L/2;

45
46 probs = zeros (1,6);

47
48 % Calculate theoretical probabilities

49 probs (1) = exp(-mu);

50
51 probs (2) = mu/2*exp(-mu);

52
53 probs (3) = mu/8*(mu+2)*exp(-mu);

54
55 probs (4) = mu/8*((mu^2)/6+mu+1)*exp(-mu);

56
57 probs (5) = mu /16*(( mu^3) /24+(mu^2) /2+3*mu/2+1)*exp(-mu)

;

58
59 probs (6) = 1-sum(probs (1:5));

60
61
62 % Compute Test Statistic

63 X = sum(((V-N.*probs).^2) ./(N.* probs));

64
65 P = gammainc(X/2,N/2,'upper ');
66
67 pass = P > 0.01;

68
69 end

Maurer’s Test [25] asserts that a quality random number generator should
produce an output that is not compressible. A block is initialized with short
sequences of bits. Measurements are taken to find the distance between the last
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occurrence of each sequence. The test statistic is the cumulative summation of
the base-2 logarithm of the distances. This value is checked against known means
and variances for a given sequence length.
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E.2.10 The Serial Test

1 function [P1,P2,pass] = Serial(bits)

2
3 n = length(bits);

4 m = floor(log2(n)-log(n));

5 if m<3

6 m=3;

7 end

8
9 V_count = zeros (3,2^m);

10
11
12 % Loop through each V array to look for occurences of

bit sequences

13 for i = 0:2

14 V = int2bit (0:2^(m-i) -1,m-i)';
15 aug_bits = [bits ,bits (1:m-i-1)];

16 for j = 1: length(V)

17 % find total occurences of each bit sequence in

aug_bits

18 inds = strfind(aug_bits ,V(j,:));

19 V_count(i+1,j) = length(inds);

20
21 end

22 end

23
24 scale = [(2^m)/n; (2^(m-1))/n; (2^(m-2))/n];

25
26 psi = scale .*sum(( V_count .^2) ,2) - n;

27
28 psi_del = psi(1)-psi(2);

29
30 psi_del2 = psi (1) -2*psi (2)+psi(3);

31
32 P1 = gammainc(psi_del /2,2^(m-2),'upper ');
33 P2 = gammainc(psi_del2 /2,2^(m-3),'upper ');
34
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35 pass = P1 > 0.01 && P2 > 0.01;

36
37 end

The Serial Test [25] observes the number of occurrences of small bit se-
quences. After appending the first two bits of the sequence to the end, a count
of all overlapping combinations of three bit strings is taken. This is repeated for
two bit and one bit string combinations. A test statistic is computed with the
weighted sum of squares of the counts of each string. This tests for uniformity
within the total dataset. Sets with large counts of a particular string will skew
the test statistic and cause the test to fail.
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E.2.11 The Approximate Entropy Test

1 function [P,pass] = ApproxEntropy(bits)

2
3 n = length(bits);

4
5 m = floor(log2(n)-log(n));

6
7 if m >= log2(n) -5

8 m = floor(log2(n) -5);

9 end

10
11 count = zeros (2,2^(m+1));

12
13 % Perform steps for m and m+1

14 for i = 0:1

15 % Augment bits by appending m-1 bits to the end

16 aug_bits = [bits ,bits (1:m+i-1)];

17
18 % Array of bit sequences

19 V = de2bi (0:2^(m+i) -1);

20 for j = 1: length(V)

21 % Count frequency of occurences of bit

sequences

22 inds = strfind(aug_bits ,V(j,:));

23 count(i+1,j) = length(inds);

24 end

25
26 end

27
28 C = count ./n;

29
30 C = C.*log(C);

31
32 C(isnan(C))=0;

33
34 phi = sum(C,2);

35
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36 ApEn = phi(1)-phi(2);

37
38 X = 2*n*(log (2)-ApEn);

39
40 P = gammainc(X/2,2^(m-1),'upper ');
41
42 pass = P > 0.01;

43
44
45 end

The Approximate Entropy test [25] checks the data’s uniformity with a
measure of Shannon entropy. The n-bit sequence is augmented by appending m-1
bits from the beginning onto the end so it can be broken into n overlapping m-bit
strings. The frequency of each bit combination is measured and used to compute
the Shannon entropy. The Process is repeated for m+1 length bit strings. The
Approximate Entropy is the difference of the m-bit entropy and the (m+1)-bit
entropy.
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E.2.12 The Cumulative Sums (Cusums) Test

1 function [P,pass] = CumSum(bits ,mode)

2
3 n = length(bits);

4
5 % convert to +/-1

6 X = 2*bits - 1;

7 z = 0;

8
9

10 % For mode 0

11 if mode == 0

12 S = X(1);

13 for i = 2:n

14 S = S + X(i);

15 if abs(S) > z

16 z = abs(S);

17 end

18 end

19 end

20
21 % For mode 1

22 if mode == 1

23 S = X(n);

24 for i = 1:n-1

25 S = S + X(n-i);

26 if abs(S) > z

27 z = abs(S);

28 end

29 end

30 end

31
32 % Compute P-value

33
34 zn = z/sqrt(n);

35 kStart = round((-n/z +1)/4);

36 kEnd = round((n/z -1)/4);
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37 k = kStart:kEnd;

38 sum1 = 1/2* sum( ( 1-erf( -1*(4*k+1)*zn/sqrt (2) ) ) - (

1-erf( -1*(4*k-1)*zn/sqrt (2) ) ) );

39
40 kStart = round( (-n/z -3)/4 );

41 k = kStart:kEnd;

42 sum2 = 1/2* sum( ( 1-erf( -1*(4*k+3)*zn/sqrt (2) ) ) - (

1-erf( -1*(4*k+1)*zn/sqrt (2) ) ) );

43 P = 1 - sum1 + sum2;

44
45 pass = P > 0.01;

46
47 end

The Cumulative Sums test [25] is a measure of the uniformity of ones
and zeros in a binary dataset with a random walk. The data is normalized
from 1 and 0 to ±1. A cumulative sum is taken over every bit in the sequence.
The largest deviation from zero is tracked throughout the summation process.
This summation should be tested twice, starting from each end of the sequence
and summing forwards or backwards. A P-value is computed using the absolute
maximum deviation in the Standard Normal Cumulative Probability Distribution
Function.
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E.2.13 The Random Excursions Test

1 function [P,pass] = RandomExcursion(bits)

2
3 x = 2.* bits -1;

4
5 S = cumsum(x);

6
7 S = [0, S, 0];

8
9

10 ind = strfind(S,0);

11 J = length(ind) - 1;

12
13 count = zeros(9,J);

14
15 % Loop through all crossings

16 for i=1:J

17 % Loop through walks between crossings

18 for j=ind(i):ind(i+1)

19 % increment counter for levels -4,+4

20 if S(j) ~= 0 && S(j) >= -4 && S(j) <= 4

21 count(S(j)+5,i) = count(S(j)+5,i) + 1;

22 end

23 end

24 end

25
26 count = [count (1:4 ,:); count (6:9 ,:)];

27
28 cycles = zeros (8,6);

29 for k = 0:5

30 if k ~= 5

31 cycles(:,k+1) = sum(count == k,2);

32 else

33 cycles(:,k+1) = sum(count >= k,2);

34 end

35 end

36
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37 % Compute probability values

38 pi = zeros (9,6);

39
40 for k = 0:5

41 for m = -4:4

42 if k == 0

43 pi(m+5,k+1) = 1-1/abs (2*m);

44 elseif k == 5

45 pi(m+5,k+1) = 1/abs(2*m)*(1-1/abs (2*m))^(4)

;

46 else

47 pi(m+5,k+1) = 1/(4*m^2) *(1-1/abs (2*m))^(k

-1);

48 end

49 end

50 end

51
52 pi = [pi(1:4 ,:); pi(6:9 ,:)];

53
54 X = sum(((cycles -J.*pi).^2) ./(J.*pi) ,2);

55
56 P = gammainc(X./2,5/2,'upper ');
57
58 if J<500

59 P=[0 0 0 0 0 0 0 0]';
60 end

61
62 pass = P > 0.01;

63
64 end

E.2.14 The Random Excursions Variant Test

1 function [P,pass] = RandomExcursionVariant(bits)

2
3 x = 2.* bits -1;

4
5 S = cumsum(x);
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6
7 S = [0, S, 0];

8
9 states = [ -9:-1,1:9];

10
11 ind = strfind(S,0);

12 J = length(ind) - 1;

13
14 o = zeros (1 ,18);

15
16 parfor i = 1:18

17 o(i) = length(strfind(S,states(i)));

18 end

19
20 P = erfc(abs(o-J)./sqrt (2.*J.*(4.* abs(states) -2)));

21
22 if J<500

23 P=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

24 end

25
26 pass = P > 0.01;

27
28 end

The Random Excursions and Variant tests [25] measure the distribution
of values in a sequence as a function of the frequency of occurrence of values
in the random walk. Similar to the Cumulative Sums test, the binary values
are normalized and are summed. In the Random excursions test, the sum is
broken into cycles based on where the sum crosses 0. A tally is made from the
count of cycles where the values -4,-3,-2,-1,+1,+2,+3,+4 occur. A test statistic is
computed for each of the eight states that were tallied. It is expected that values
closer to 0 will occur more frequently than those farther from 0. The variant
test differs in 2 main ways. The cumulative sum array is not broken down into
cycles and it is tested against 18 states from -9 to +9. The counts are of each
states occurrence in the whole cumulative array. We expect the distribution of
states to fallow a normal distribution where states closer to 0 are measured more
frequently than those farther away.
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E.3 NIST 800-90B Entropy Estimators

E.3.1 Shannon Block Entropy

1 function [Hb,block_lengths] = Block_Entropy(bits)

2
3 %% Block Entropy

4
5 block_lengths = [1 2 4 6 8 12 16 20 24 36 48 64];

6
7 Hb = [];

8
9 % for each block size

10 for i=1: length(block_lengths)

11 % Reshape vector of bits to matrix of non -

overlapping blocks of length i in each

12 % row

13 Blocks = reshape(bits (1: block_lengths(i)*floor(

length(bits)/block_lengths(i))) ,[],block_lengths(

i));

14
15 % Convert each row from a binary vector to a

decimal value

16 dec_blocks = binaryVectorToDecimal(Blocks);

17
18 counts = [];

19 % Find all unique values in the decinal array

20 possible_vals = unique(dec_blocks);

21 % for each unique value in the decimal array

22 for k = 1: length(possible_vals)

23 % count the number of occurrences

24 counts(k) = sum(dec_blocks == possible_vals(k));

25 end

26
27 Hb(i) = 0;

28 L = sum(counts);

29
30 % Shannon 's calculation of entropy
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31 Hb(i) = -1*sum(counts/L.*log(counts/L))/log (2^

block_lengths(i));

32
33 end

34
35 end

This code implements Shannon’s formula [26] for calculating symbol en-
tropy of an arbitrary word length.
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E.3.2 Most Common Value Estimate

1 function [T] = MostCommonValue(x)

2
3 L = length(x);

4 p = length(find(x==mode(x)))/L;

5
6
7 pu = min([1 p+2.576* sqrt(p*(1-p)/(L-1))]);

8
9 T = -log2(pu);

10
11 end

The Most Common Value Estimate [30] makes an approximation of en-
tropy from the probability of the most common value in the sequence. The test
statistic is calculated based on the distribution of the most common value and the
length of the input sequence. As the sequence length increases to infinity the test
statistic converges to the probability of the most common value and the entropy
estimation converges to the negative base 2 log of that probability.
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E.3.3 Most Common Window Estimate

1 function [T] = MostCommonWindowEstimate(S)

2
3 S = S';
4 % S = S(1:2e6)';
5
6
7 %% Initialize variables

8 L = length(S);

9 % w = [3 5 7 9];

10 w = [63 255 1023 4095];

11 N = L - w(1);

12 correct = zeros(1,N);

13 scoreboard = zeros (1,4);

14 frequent = [];

15 winner = 1;

16
17 %% Generate Scorecard

18 for i = w(1) +1:L

19
20 for j = 1:4

21 if i>w(j)

22 [M,F,C] = mode(S(i-w(j):(i-1)));

23 mcv = cell2mat(C);

24 if length(mcv) > 1

25 % find which value came last

26 lastloc = zeros(1,length(mcv));

27 parfor k = 1: length(mcv)

28 lastloc(k) = find(S(i-w(j):(i-1))==

mcv(k),1,'last');
29 end

30 frequent(j) = sum(mcv '.*( lastloc ==max(
lastloc)));

31 else

32 frequent(j) = mcv(1);

33 end

34 else
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35 frequent(j) = NaN;

36 end

37 end

38
39 prediction = frequent(winner);

40 if prediction == S(i)

41 correct(i-w(1)) = 1;

42 end

43
44 for j = 1:4

45 if frequent(j) == S(i)

46 scoreboard(j) = scoreboard(j) +1;

47 if scoreboard(j) >= scoreboard(winner)

48 winner = j;

49 end

50 end

51 end

52
53 end

54
55 %% Compute Performance indicators

56 C = sum(correct);

57 P = C/N;

58
59 if P == 0

60 Pglobal = 1 -0.01^(1/N);

61 else

62 Pglobal = min(1,P + 2.576* sqrt(P*(1-P)/(N-1)));

63 end

64
65 % CRCT = 2.* correct -1;

66 M = max(accumarray(nonzeros (( cumsum (~ correct)+1).*

correct) ,1));

67 r = M + 1; % Holds the max run length.

68
69 Plocal = 0:1e-6:1;

70 m = floor(length(Plocal)/2);

71 l = 0;
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72 k = 1;

73
74 while abs(0.99-l) > 1e-5

75 q = 1-Plocal(m);

76 x = 1;

77 for j = 1:10

78 x = 1 + q*Plocal(m)^r*x^(r+1);

79 end

80
81 l = (1-Plocal(m)*x)/((r + 1 -r*x)*q)*1/(x^(N+1));

82 if 0.99-l > 1e-5

83 m = m - round(length(Plocal)*1/(2^(k+1)));

84 elseif 0.99-l <-1e-5

85 m = m + round(length(Plocal)*1/(2^(k+1)));

86 else

87 break

88 end

89
90 k = k+1;

91 end

92
93 T = -log2(max([ Pglobal Plocal(m) 1/L]));

94
95 end

The Multi Most Common in Window Estimate [30] uses an algorithm to
track the accuracy of four different windowed prediction. As the four windows
slide across the entire dataset, the most common value in the window will be set as
the prediction. The algorithm counts how many times each window successfully
predicts the next value. It also tracks which window most frequently guesses the
next value correctly, calling it the winner. Every iteration, the winner gets to
choose the prediction and every time it is correct a count is made. Two statistics
are calculated. Pglobal is a measure of the number of correct guesses divided by
the total number of samples. Plocal is a measure calculated from the longest run
of correct guesses. The smaller of the two statistics will be used to compute the
entropy estimation as the negative log base 2 of the minimum statistic.
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E.3.4 Markov Estimate

1 function [T] = MarkovEstimate(bits)

2
3 L = length(bits);

4 p1 = sum(bits)/L;

5 p0 = 1-p1;

6
7 C00 = length(strfind(bits ,[0 0]));

8 C01 = length(strfind(bits ,[0 1]));

9 C11 = length(strfind(bits ,[1 1]));

10 C10 = length(strfind(bits ,[1 0]));

11
12 P00 = C00/(C00+C01);

13 P01 = C01/(C00+C01);

14 P11 = C11/(C11+C10);

15 P10 = C10/(C11+C10);

16
17
18 probs = [p0*P00 ^127 p0*P01 ^64* P10^63 p0*P01*P11 ^126 p1*

P10*P00 ^126 p1*P10 ^64* P01^63 p1*P11 ^127];

19
20 pmax = max(probs);

21
22 T = min(-log2(pmax)/128 ,1);

23
24 end

The Markov Estimate [30] uses the properties of a Markov process to test
the entropy of a given binary dataset. A Markov process is only dependent on
the previous value for the next one in the sequence. First the probabilities of
each binary symbol are calculated, followed by the probability of all four state
transitions. The likelihood of occurrence of six outcomes of 128 symbols are
computed. The six sequences are all ones, all zeros, leading one followed by all
zeros, leading zero followed by all ones, alternating bits starting with one, and
alternating bits starting with zero. The entropy estimation is the negative base 2
logarithm of the most probable outcome divided by 128. For the case where this
is larger than 1, the entropy estimation is 1.
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E.3.5 Tuple Estimate

1 function [T] = TupleEstimate(S)

2
3 Q = [];

4 P = [];

5 Pm = [];

6
7 % Find way to make algorithm only check unique bit

sequences (I don 't need

8 % it to find the # of 1's and 0's 4 million times.

9
10 for u = 1:64

11 b = buffer(S,u,u-1) ';
12 y = b(u:end ,:);

13 dec = binaryVectorToDecimal(y);

14 counts = [];

15 possible_vals = unique(dec);

16 parfor k = 1: length(possible_vals)

17 counts(k) = sum(dec== possible_vals(k));

18 end

19 if max(counts) < 35

20 break;

21 end

22 Q(u) = max(counts);

23 P(u) = Q(u)/( length(S)-u+1);

24 Pm(u) = P(u)^(1/u);

25
26 end

27
28
29 Phat = max(Pm);

30 Pu = min(1, Phat +2.576* sqrt((Phat*(1-Phat))/( length(S)

-1)));

31
32 T = -log2(Pu);

33
34 end
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The Tuple Estimate [30] measures the frequency of subsequences of certain
block lengths to estimate the entropy per sample. It uses an algorithm to deter-
mine the largest block size containing a sequence that occurs at least 35 times
in the entire dataset. A maximum statistic is computed from the lengths of the
most frequent subsequences for each block length. The negative base 2 logarithm
of the statistic is taken as the entropy estimation.
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E.3.6 Collision Estimate

1 function [T] = CollisionEstimate(bits)

2
3 L = length(bits);

4 v = 0;

5 index = 1;

6 t = [];

7
8 while index < L % step through sequence until you find

a repetition

9 j = 1;

10 while length(bits(index:index+j-1)) == length(

unique(bits(index:index+j-1)))

11 j = j+1;

12 if index+j>L

13 break

14 end

15 end

16 if index+j >L

17 break

18 end

19 v = v+1;

20 index = index + j;

21 t(v) = j; %-index +1;

22
23 end

24
25 X = mean(t);

26 sig = std(t);

27
28 Xp = X - 2.576* sig/sqrt(v);

29
30 %% Simplified

31
32 r = roots ([1 -1 (Xp/2-1)]);

33
34 p = max(r);
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35 if ~isreal(p)

36 p=1/2;

37 end

38
39 T = -log2(p);

The Collision Estimate [30] measures the distance between equivalent val-
ues. For binary data, this will commonly be a distance of only 2 or 3 symbols.
The mean and standard deviation of the distances are computed. From the mean
and standard deviation, the lower bound of the 99% confidence interval, X. In the
original specification for the test, the confidence interval is used in a binary search
for the parameters p and q which will be used to compute the entropy. A simpli-
fication can be made to forgo the binary search and speed up the computation of
the entropy estimator [22]:

p =
1 ±

√
1 − 2X

2

. In the case that the polynomial has no real solutions, the entropy estimation is
1.
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E.4 Miscellaneous Functions

E.4.1 Auto-correlation

1 function AutoCorr(bits)

2 % Correlation will be 1 at zero as that is correlating

the data with itself

3 % the shifted correlations should be close to zero. The

more bits used the

4 % lower the noise floor.

5
6 % cross correlation with itself measures the

statistical probability between two points

7 [cc ,lags] = xcorr(bits -mean(bits), bits -mean(bits), '
coeff ');

8 figure('DefaultAxesFontSize ',10,'DefaultAxesFontName ','
Times New Roman ', 'Color ', 'White ');

9 plot(lags , abs(cc));

10 title('Auto -Correlation ')
11 xlabel('Shift Amount ')
12 ylabel('Overlap ')
13
14 count = 0;

15
16 for i = 1: length(cc)

17 if abs(cc(i)) >= 0.01

18 count = count + 1;

19 end

20 end

21
22 count = count - 1; % remove the point at 0

23
24 percent = count/length(cc)*100;

25
26 fprintf (" %f%% of overlaps have over 1%% correlation\n\

n",percent)

27
28
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29 end

This code takes an array of data as an input, performs an autocorrelation
operation and then plots the result.
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E.4.2 Tent Slope Calculation

1 %% Calculate Slopes

2 function [slope_L ,slope_R ,slope_A] = Calculate_Slopes(x

,partition)

3
4 % Import x sampled points

5 % Import partition

6
7 % Convert to a single Matrix of x(1:end -1) and x(2:end)

8 % Transpose x matrix

9 x_array = [x(1:end -1); x(2:end)]';
10
11 % sortrows of x matrix and transpose

12 A = sortrows(x_array) ';
13
14 % use partition to find last location of a 0

15 split = sum(A(1,:) < partition);

16
17 % split the x matrix into left and right halves

18 left = A(:,1: split);

19 right = A(:,split +1: end);

20
21 % use function polyfit to determine the approximate

slope of the line

22 % for the right side , use the abs value of the y-

axis

23 pL = polyfit(left (1,:),left (2,:) ,1);

24 slope_L = max(abs(pL));

25 pR = polyfit(right (1,:),right (2,:) ,1);

26 slope_R = -max(abs(pR));

27
28 % Create continuous line

29 all = [[left (1,:); left (2,:)-max(left (2,:))] [right

(1,:); abs(right (2,:))+max(right (2,:))]];

30
31 pA = polyfit(all(1,:),all(2,:) ,1);

32 slope_A = max(abs(pA));
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33
34 % Create x and y vectors for linspace to plot slope

lines

35 xL = linspace(min(left (1,:)),max(left (1,:)));

36 xR = linspace(min(right (1,:)),max(right (1,:)));

37
38 yL = polyval(pL ,xL);

39 yR = polyval(pR ,xR);

40
41 end

This code takes data from the chaotic oscillator and the partition of the
tent map. It uses the known partition to separate data into two arrays, one for
each half of the tent map. A polyfit function is run on each half of the tent map’s
data to approximate the slope of the map.
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E.4.3 Partition Tent Map

1 function partition = FindPartition(x)

2
3 middles = [];

4 for r = 1:30

5 % find indices of highest 30 samples

6 [M,ind] = max(x(2:end));

7 middles = [middles ,x(ind)];

8 x(ind+1) = -Inf;

9 end

10
11 partition = mean(middles);

12
13 end

This code computes the partition of the tent map. It finds the 100 highest
points on the y-axis of the map and averages the corresponding x-axis values.
The average of the x-axis points is returned as the map’s partition.
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E.4.4 Longest Repeated Sequence

1 function [last_size] = LongestSequence(s,t,vc,indeces ,

partition)

2 % Pass in bits , time , and sampled voltages

3 % Return the last size of the sequnces

4
5 start = 1;

6 size = 1;

7 locations = [];

8
9

10 % Search for longest repeated sequence

11 while start+size < length(s)

12 % initial search

13 locations = strfind(s(start +1:end),s(start:start+

size -1));

14
15 while ~isempty(locations)

16 % increment size of sub -array

17 size = size + 1;

18 locations = strfind(s(start +1:end),s(start:

start+size -1));

19
20 if isempty(locations)

21 % hold last location of longest run

22 last_location = strfind(s(start +1: end),s(

start:start+size -2));

23 last_start = start;

24 last_size = size -1;

25 end

26 end

27 % shift sub -array over by 1

28 start = start + 1;

29 end

30
31 % Find start and end locations of longest sequences

32 a_start = last_start;
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33 a_end = last_start+last_size -1;

34
35 b_start = last_start+last_location;

36 b_end = last_start+last_location+last_size -1;

37
38 a_time_start = indeces(a_start -3);

39 a_time_end = indeces(a_end +3);

40
41 b_time_start = indeces(b_start -3);

42 b_time_end = indeces(b_end +3);

43
44 %%

45 % Plot longest repeated sequence

46 figure('DefaultAxesFontSize ',18,'DefaultAxesFontName ','
Times New Roman ', 'Color ', 'White ');

47 subplot (2,1,1)

48 hold on

49 % signals

50 plot(t(a_time_start:a_time_end)-t(a_time_start),vc(

a_time_start:a_time_end),'-.','LineWidth ' ,2.5)
51 plot(t(b_time_start:b_time_end)-t(b_time_start),vc(

b_time_start:b_time_end),'LineWidth ' ,2.5)
52
53 % partition line

54 plot([t(a_time_start)-t(a_time_start) t(a_time_end)-t(

a_time_start)],partition .*[1 1],'-c',LineWidth =2)
55
56 % start/stop lines

57 plot([t(indeces(a_start))-t(a_time_start) t(indeces(

a_start))-t(a_time_start)],[min(vc(b_time_start:

b_time_end)) max(vc(b_time_start:b_time_end))],'-r','
LineWidth ' ,2)

58 plot([t(indeces(a_end))-t(a_time_start) t(indeces(a_end

))-t(a_time_start)],[min(vc(b_time_start:b_time_end))

max(vc(b_time_start:b_time_end))],'-r','LineWidth '
,2)

59
60 % sampled points
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61 plot(t(indeces(a_start -3: a_end +3))-t(a_time_start),vc(

indeces(a_start -3: a_end +3)),'or','MarkerSize ' ,10)
62 plot(t(indeces(a_start -3: a_end +3))-t(a_time_start),vc(

indeces(b_start -3: b_end +3)),'ob','MarkerSize ' ,10)
63 hold off

64 axis tight

65 legend('Signal 1','Signal 2','Partition ',Location='
southeast ')

66 title('Synchronization Region ')
67 xlabel('Time (s)')
68 ylabel('Voltage (v)')
69
70 % plot the differences between the two signals

71 subplot (2,1,2)

72 plot(t(a_time_start:a_time_end)-t(a_time_start),abs(vc(

a_time_start:a_time_end)-vc(b_time_start:b_time_start

+(a_time_end -a_time_start))),'-.','LineWidth ' ,2)
73 axis tight

74 title('Difference in signals ')
75 xlabel('Time (s)')
76 ylabel('Voltage (v)')
77
78 end

This code takes the symbol sequence, time series, time data, partition and
an array of the indices of the samples from the times series as inputs. It recursively
finds the longest symbol sequence that is repeated in the array. This repeated
sequence corresponds to regions of the time series where the waveforms almost
perfectly overlap and then diverge over time. The two time series waves and the
difference between them is plotted.
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E.4.5 Binary Data Binning

1 function bn = MakeBins(bits)

2
3 SL = 12; % Length of bit sequeces [1 0 1 1 0 0 1 1 1 1

0 0]

4 b = (1/2) .^(1:SL); % Array of fractional decimal

values 0.5 to (0.5) ^12

5 bn = []; % # of SL length sequences

6
7 % Loop through sets of 12 bits and multiply by their

corresponding decimal

8 % values to get a final decimal value for a given set

of bits

9
10 % Helps to show the likelyhood of certain bit

combinations

11 for i = 1:SL:length(bits)-SL

12 bn = [bn b*bits(i:i+SL -1) '];
13 end

14
15 fprintf (" Bins Average: %f\n Bins Variance: %f\n Bins

Deviation: %f\n\n", mean(bn),var(bn),std(bn));

16
17 end

This code takes the binary symbol sequence as an input. It returns a
set of fractional decimal values converted from an overlapping 12-bit window. It
also computes the mean, variance, and standard deviation of the binned decimal
values.
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E.4.6 Von-Neumann Bit Correction

1 function vnbits = VNB_Correction(bits)

2
3 % This whitening algorithm removes instances where the

circuit output can get "stuck"

4 % and have a long run. It will remove about 75% of the

data , but the

5 % reamining bits will be highly uncorrelated.

6
7 % It will compare bits two at a time with no overlap

and remove any 11 or

8 % 00 combinations 10 will become 0 and 01 will become

1.

9
10 k = 1;

11 for j = 2:2: length(bits)

12 if bits(j-1) == 1 && bits(j) == 0

13 vnbits(k) = 0;

14 k=k+1;

15 elseif bits(j-1) == 0 && bits(j) == 1

16 vnbits(k) = 1;

17 k=k+1;

18 end

19 end

20
21
22 % Mean of the bitstream should be close to 0.5 or have

an equal amount of

23 % 1s and 0s

24 fprintf(' Mean of Bits: %f\n', mean(vnbits))

25 fprintf(' Efficiency: %f%%\n\n', length(vnbits)/length(

bits)*100)

26
27 end

This code takes the binary symbol sequence as an input and returns a
binary sequence that has undergone Von-Neumann bit correction.
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E.4.7 Voltage Histogram

1 function VoltHist(x)

2
3 % histogram of sampled voltage values

4
5 figure('DefaultAxesFontSize ',20,'DefaultAxesFontName ','

Times New Roman ', 'Color ', 'White ');
6 histogram(x,100)

7 title('Histogram of Sampled Voltages ')
8 xlabel('Measured values ')
9 ylabel('Count ')

This code plats a histogram of the input voltage samples with 100 bins.
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E.5 NIST 800-90B IID Permutation Testing

The following tests are taken from the NIST 800-90B document [30]. They
create statistical measures of entropy sources. This data can be used to compare
relative performance between two unique systems.
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E.5.1 Conversion 1

1 function [x] = Conversion1(b)

2 % Convert a Binary sequence into integers

3 % Detailed explanation goes here

4
5 b = [b zeros(1,8-mod(length(b) ,8))];

6 x = zeros(1,length(b)/8);

7
8 for i = 1: length(b)/8

9 x(i) = sum(b((i-1) *8+1:i*8));

10 end

11
12 end

169



E.5.2 Conversion 2

1 function [x] = Conversion2(b)

2 % Converts binary blocks to decimal representation

3 % Detailed explanation goes here

4
5 b = [b zeros(1,8-mod(length(b) ,8))];

6 x = zeros(1,length(b)/8);

7
8 for i = 1: length(b)/8

9 x(i) = binaryVectorToDecimal(b((i-1) *8+1:i*8));

10 end

11
12 end
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E.5.3 Excursion Test

1 function [T] = Excursion(x)

2 % This function measures the maximum deviation from the

average value.

3
4 L = length(x);

5 m = mean(x);

6
7 k = (1:L).*m;

8
9 T = max(abs(cumsum(x)-k));
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E.5.4 Number of Directional Runs

1 function [d] = DirectionalRunNum(x)

2
3 % Binary conversion I

4 if min(x)==0 && max(x)==1

5 x = Conversion1(x);

6 end

7
8 S = 2.*(x(1:end -1)-x(2: end) <=0) -1;

9
10 % find number of runs in S

11 d = sum((S(1:end -1)+S(2: end)) == 0)+1;

12 end
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E.5.5 Length of Directional Runs

1 function [T] = DirectionalRunLen(x)

2
3 % Binary conversion I

4 if min(x)==0 && max(x)==1

5 x = Conversion1(x);

6 end

7
8 S = 2.*(x(1:end -1)-x(2: end) <=0) -1;

9
10 % find longest run of +/-1

11 [M,V] = regexp(sprintf('%i' ,[0 diff(S)==0]),'1+','match
');

12 [M,I] = max(cellfun('length ',M));
13 T = M + 1; % Holds the max length.

14 end
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E.5.6 Number of Increases and Decreases

1 function [T] = NumUpDown(x)

2
3 if min(x)==0 && max(x)==1

4 x = Conversion1(x);

5 end

6
7 S = 2.*(x(1:end -1)-x(2: end) <=0) -1;

8
9 T = max([sum(S==1) sum(S==-1)]);

10
11 end
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E.5.7 Number of Runs Based on the Median

1 function [T] = MedianRunNum(x)

2
3 if min(x)==0 && max(x)==1

4 m = 0.5;

5 else

6 m = median(x);

7 end

8
9 S = 2.*(x>=m) -1;

10
11 % find number of runs in S

12 T = sum((S(1:end -1)+S(2: end)) == 0)+1;

13 end
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E.5.8 Length of Runs Based on the Median

1 function [T] = MedianRunLen(x)

2
3 if min(x)==0 && max(x)==1

4 m = 0.5;

5 else

6 m = median(x);

7 end

8
9 S = (x>=m);%2.*(x>=m) -1;

10
11 % find longest run of +/-1

12 [M,V] = regexp(sprintf('%i' ,[0 diff(S)==0]),'1+','match
');

13 [M,I] = max(cellfun('length ',M));
14 T = M + 1; % Holds the max length.

15 end
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E.5.9 Average & Maximum Collision Test

1 function [aT, mT] = Collisions(x)

2
3 % Binary conversion II

4 if min(x)==0 && max(x)==1

5 x = Conversion2(x);

6 end

7
8 L = length(x);

9 %%

10 i = 1;

11 C = [];

12
13 while i<L

14 j = 2;

15 while length(unique(x(i:i+j-1)))== length(x(i:i+j-1)

) && i+j-1 < L

16 j=j+1;

17 end

18 C = [C j];

19 i = i+j;

20 end

21
22
23 aT = mean(C);

24 mT = max(C);

25
26 end
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E.5.10 Periodicity Test

1 function [T] = Periodicity(x)

2
3 % Binary conversion I

4 if min(x)==0 && max(x)==1

5 x = Conversion1(x);

6 end

7
8 p = [1 2 8 16 32];

9 T = [0 0 0 0 0];

10
11 for k = 1: length(p)

12 count = 0;

13 for i = 1: length(x)-p(k)

14 if x(i)==x(i+p(k))

15 count = count + 1;

16 end

17 end

18
19 T(k) = count;

20
21 end

22
23 end
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E.5.11 Covariance Test

1 function [T] = Covariance(x)

2
3 % Binary conversion I

4 if min(x)==0 && max(x)==1

5 x = Conversion1(x);

6 end

7
8 p = [1 2 8 16 32];

9 T = [0 0 0 0 0];

10
11 for k = 1: length(p)

12 T(k) = sum(x(1:end -p(k)).*x(1+p(k):end));

13 end

14
15 end
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