
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Theses UAH Electronic Theses and Dissertations

2015

Novel experimental method for studying trajectories and wing Novel experimental method for studying trajectories and wing

kinematics of freely flying butterflies kinematics of freely flying butterflies

Jacob Taylor Cranford

Follow this and additional works at: https://louis.uah.edu/uah-theses

Recommended Citation Recommended Citation
Cranford, Jacob Taylor, "Novel experimental method for studying trajectories and wing kinematics of
freely flying butterflies" (2015). Theses. 698.
https://louis.uah.edu/uah-theses/698

This Thesis is brought to you for free and open access by the UAH Electronic Theses and Dissertations at LOUIS. It
has been accepted for inclusion in Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/uah-theses
https://louis.uah.edu/uah-etd
https://louis.uah.edu/uah-theses?utm_source=louis.uah.edu%2Fuah-theses%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/uah-theses/698?utm_source=louis.uah.edu%2Fuah-theses%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages

vi

ACKNOWLEDGEMENTS

 This thesis was only possible through the guidance, help and support from

my advisors, friends and family. Through the process of this research over the past

two years, I have learned more than just what is found in the contents of these pages.

I have learned from many great mentors and friends throughout the process, and I

would like to thank them all.

 I would first like to acknowledge the National Science Foundation for

providing funding for this project. It has been an honor to work with this prestigious

group to develop technologies for the future. I am thankful for the opportunities that

came from this collaboration.

 Dr. Nathan Slegers, thank you for providing me with the opportunity to

further my education while performing cutting edge research. I appreciate the

guidance which was instrumental in helping me develop the initial experiments and

analysis within this thesis.

 I am Indebted to my advisor, Dr. Chang-Kwon Kang who was always active

and interested in my research. This thesis would not have been possible without your

guidance and support throughout the data analysis and writing portion of my time

here. I am also grateful for the insightful comments and suggestions which really

drove this research throughout even the hardest times.

 My committee chair, Dr. David Brian Landrum, needs to be commended for

seamlessly taking over his role in a difficult situation. I appreciated the long

discussions we had which provided insight and motivation for research and life in

vii

general. I am grateful for the extra opportunities that you helped me achieve, and all

of the effort you put into ensuring that I would succeed.

 My work at the Propulsion Research Center, and the friends that I made

there, helped sustain me through even the most difficult times. Dr. Robert Frederick,

thank you for the opportunity to work with you and your team, it was a priceless

opportunity. Dr. David Lineberry, thank you for introducing me to the wonders of

MATLAB, as well as always providing good advice and insight, no matter the

problem. I appreciate the help and insight provided by Matthew Hitt whenever I had

a question or needed correction. I would also like to thank you for your help in

conducting some of the experiments.

 To Dr. John Bennewitz who was a mentor and a friend from the very

beginning of my research career, thank you for setting the bar high and always

believing I would achieve it. I am grateful to have had the opportunity to work with

you and learn all that I could from our work together. I appreciate the extra time you

spent helping me learn to be a better researcher and person, and I will always

remember all the great times we had.

 To my colleagues who helped conduct my experiments, I appreciate your

enthusiasm and companionship during the long hours of testing. Thank you Jasmine

Conway, Dr. Shreyas Bidadi, James Bluman, Dan Jones, Raisa Chowdhury, and

Amit Patel for the help that you provided.

 Finally, I would like to thank my family for their support and willingness to

listen throughout this entire process. Everything I have accomplished can be traced

back to your love and support.

viii

TABLE OF CONTENTS

PAGE

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Research Objectives... 4

1.3 Thesis Outline ... 5

2 Literature Review .. 6

2.1 Lepidoptera ... 6

2.2 Monarch Butterfly (Danaus plexipus) .. 8

2.3 Unsteady Aerodynamic Mechanisms ... 9

2.3.1 Clap and Fling ... 10

2.3.2 Leading Edge Vortex ... 11

2.3.3 Wing Rotation.. 13

2.3.4 Wake Capture .. 14

2.4 Review of Experimental Work ... 16

2.4.1 Videography .. 16

2.4.2 Photogrammetry/Videogrammetry ... 17

2.5 Conclusions from Literature... 18

3 Experimental Methods .. 19

3.1 Vicon Motion Capture System ... 19

3.2 Camera Calibration .. 23

3.3 Markers and Camera Placement ... 29

3.4 Post Processing in Nexus ... 34

3.5 Monarch Butterflies Handling Procedure ... 36

3.6 Flight Testing Procedure .. 41

ix

4 Analysis .. 43

4.1 Data Export ... 43

4.2 Data Import ... 45

4.3 Data Analysis .. 45

4.3.1 Flapping Angle Calculation .. 45

4.3.2 Flapping and Trajectory of an Entire Flight .. 47

4.3.3 Graphical User Interface .. 48

4.3.4 Disappearing Markers .. 49

4.3.5 Cubic Spline Interpolation .. 51

4.3.6 Flapping Characteristics ... 52

4.3.7 Detrending of Vertical Trajectory ... 54

4.3.8 Vertical Body Oscillations ... 56

4.4 Results and Discussion .. 56

5 Conclusions .. 62

5.1 Summary ... 62

5.2 Limitations, Consequences, and Implications ... 64

5.3 Future Work .. 65

APPENDIX A: MATLAB Code.. 68

8 References .. 119

x

LIST OF FIGURES

 Figure Page

Figure 1-1. Examples of MAVs. a) Rigid fixed wing design [4]; b) flexible fixed

wing design [5]; c) Hornet 2-b (Prox Dynamics) [9]; d) Nano Hummingbird [6,10];

e) DelFly flapping wing MAV [7,11]; f) Harvard Robobee [8,12]. 2

Figure 2-1. Diagram of the clap (a-c) and fling (d-f) mechanisms used by some

insects to generate large lift coefficients. The black lines indicate fluid flow, dark

blue arrows show induced velocity. Light blue arrows indicate net forces acting on

the airfoil. Image reproduced with permission from [17]. ... 11

Figure 2-2. Schematic of the leading edge example adopted from [17]. a) Suction

force produced by sharp diversion of flow about blunt airfoil which acts in the

direction of the chord. b) The diversion of flow for the thin airfoil is caused by the

leading edge vortex. The suction force augments the normal force, enhancing the lift

and drag of the wing. Image reproduced with permission from [17]. 13

Figure 2-3. Wing wake interactions. a) The flow around the airfoil contains a leading

edge vortex at somewhat modest angle of attack. b) As the wing approaches stroke

reversal, the wing rotates about the spanwise axis, shedding a leading and trailing

edge vortex into the wake. The shed vortices induce a jet between them c) The wing

reverses direction and continues to rotate. d) The leading edge encounters the vortex

from the upstroke and the jet of induced flow, increasing the lift. f) The wing

continues the downstroke. Image reproduced with permission from [38]. 15

Figure 3-1. ATOM lab capture volume [52]. a) Actual image of capture volume; b)

Virtual capture volume environment in Nexus with three-dimensional positions of

the motion tracking cameras; c) Top view of the ATOM Lab capture volume along

with the camera positions marked as red boxes. ... 20

Figure 3-2. Vicon T40s camera with strobe on. Image source: svga.ru. 21

Figure 3-3. Demonstration of the onboard processing of each camera. a) The marker

is identified as a grouping of pixels; b) The pixels are then represented as a best fit

circle and the centroid is calculated; c) Only the radius and centroid of the circle are

recorded during motion capture. .. 22

Figure 3-4. Images of the capture volume in different states of calibration. a) The

cameras are randomly spaced and not representative of the physical capture volume.

b) The location of each camera is known in relation to every other camera, but the

coordinate system is not representative of the physical capture volume. c) The origin

of the physical capture volume has been defined. The virtual capture volume is

representative of the physical capture volume. ... 24

xi

Figure 3-5. Calibration tool with the coordinate frame that is recognized by the

cameras during the process of setting the volume origin... 25

Figure 3-6. Results of camera masking on an image from camera 12 (see Figure 3-1).

a) The two markers recognized are actually a collection of markers which

correspond to the strobes of cameras 1 and 2. b) The markers have been masked and

no data will be collected from those pixels. .. 26

Figure 3-7. Image from all 22 cameras during calibration. The green tabs located at

the bottom right hand corner of some frames indicate that less than 850 wand counts

have been recorded. The color of the tabs indicates how close to this limit each

camera is, such as the tab for camera 3 is a darker green color indicating it is close to

the 850 mark. The yellow-green color of the tabs seen for camera 21 indicates that

the wand count is further away from the 850 limit. .. 28

Figure 3-8. Demonstration of the difference between a) a good calibration with

relatively even distribution of wand images and b) a poor calibration with a clustered

distribution of wand images, leaving areas with no wand images. 29

Figure 3-9. Markers that are used in the ATOM lab for motion tracking studies.

Marker #5 is used for all butterfly testing and is a flat tape while the other markers

are hemispherical. .. 30

Figure 3-10. Depiction of resolution tests conducted to characterize effects of

distance and angle on the quality of the marker image. An image of the collection of

markers was taken from cameras 2 and 17 for each height increment, h. 31

Figure 3-11. Comparison of the resolution for each size marker recorded from

camera 17, (identified in Figure 3-1c) which was directly overhead of the markers so

that the viewing angle does not change as height is increased. The images were taken

from heights of a) 0h b) 2h c) 5h d) 8h and e) 12h. ... 32

Figure 3-12. Comparison of resolution from Camera 2, highlighted in Figure 3-1 c,

which provided an angled view of the markers. As the height of the markers was

increased, the angle between the camera and markers increased. The images were

taken from heights of a) 0h b) 2h c) 4h d) 6h and e) 8h. ... 32

Figure 3-13. Marker locations on the a) dorsal and b) ventral side of the butterfly.......... 34

Figure 3-14. Demonstration of the loss of markers during data capture and refitting

the subject which consists of an orange head marker, blue left wing marker, a green

right wing marker and a gold rear wing marker. a) First, all markers are represented,

the subject is denoted by the colored markers. b) As the butterfly wings close, the

yellow rear wing marker is lost. c) as the wings continue to close, the rear wing

marker appears unfitted to the subject, while the blue right wing marker disappeared.

d) The user is manually fitting the subject to the rear wing marker, e) then the right

wing marker appears unfitted to the subject and is manually added. f) Once again all

markers are present and subject is fully fitted. .. 36

xii

Figure 3-15. Handling as well as placing markers on the butterfly. The images

demonstrate accessing a) the ventral side of the forewing, b) the dorsal side of both

wings as well as c) the head marker. Note that the butterflies were held as close to

the body as possible, which was both due to an increase in robustness of the wings

near the body as well as mitigating the effects of accidental scale removal..................... 38

Figure 3-16. Comparison of a) male and b) female monarch butterflies. The scent

marks (indicated by white circles) which are present in a, but absent in b gives clear

indication about each butterfly's gender. .. 39

Figure 3-17. Butterflies sunning in incandescent lamp light in the terrarium. In the

bottom of the terrarium a butterfly is feeding in the bowl containing Gatorade soaked

cotton balls. The Citizon CX 120 scales used for weighing the butterflies is next to

the terrarium. ... 39

Figure 3-18. Comparison of butterfly a) with scales and b) without scales. Note the

transparency of the wings of the butterfly without scales. This comparison is

presented of two different butterflies. ... 40

Figure 4-1. Example data from flight 1139 of butterfly 46 exported from Nexus into

a CSV file, viewed in Microsoft Excel. .. 44

Figure 4-2. Visualization of parameters used in analysis. a) Markers and the vectors

in Nexus. b) Butterfly in flight with important parameters highlighted. 46

Figure 4-3. Raw flapping and altitude data from flight 1139 of Butterfly 46. a)

Flapping angle of the two forewings where γ=0
o
 at the end of the upstroke. b)

Altitude of head marker which shows three different trajectories (1,2,3). Trajectories

1 and 2 show climbing flight while trajectory 3 is a descending trajectory

corresponding to a glide in part a). ... 48

Figure 4-4. Plunging and vertical trajectory data for the two distinct climbing

trajectories seen in Figure 4-3. a) Plunging angle recorded during frames 340 - 440.

b) Vertical trajectory recorded during frames 340 - 440. c) Plunging angle recorded

during frames 480 - 560. d) Vertical trajectory recorded during frames 480 - 560. 50

Figure 4-5. Plot of two interpolation methods which were investigated to replace

data that was lost by disappearing markers. .. 52

Figure 4-6. Flapping angle with the peaks identified using the averages of the

extrema. The red diamonds represent local maxima while the red circles represent

local minima. ... 54

Figure 4-7. Example of mean trend extraction. a) Mean trend compared to the actual

data, b) differentiated mean trend against recorded velocity data. 55

Figure 4-8. Body undulations calculated by subtracting the mean trend from the

vertical position data. ... 56

xiii

Figure 4-9. Time signal of the flapping and body oscillations normalized using the

maximum value of each. .. 59

xiv

LIST OF TABLES

Table Page

Table 3-1. Properties of each marker shown in Figure 3-9.. 30

Table 3-2. Distance between Marker 5 and both cameras and the angle between the

marker and camera 2. These distances and angles correspond to the images seen in

Figure 3-11 and Figure 3-12. ... 33

Table 4-1. Physical characteristics of the 9 butterflies compared in this thesis. 57

Table 4-2. Mean and standard deviation of flight characteristics of 9 butterflies over

75 flights. The frequency of the body oscillations were found to be the same as that

of the flapping frequency, and therefore they are listed as one entity. 58

Table 4-3. Mean and standard deviation of non-dimensional parameters of 9

butterflies over 75 flights. .. 60

xv

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOL DEFINITION UNITS

 Frequency of flapping motion [Hz]

 Reduced frequency [1]

 Length from root to tip of forewing [mm]

 Position vector from head to left wing [mm]

 Position vector from head to right wing [mm]

 Position vector from head to rear wing [mm]

 Reynolds number [1]

 (Span - 1)/2 [1]

 Moving average filter parameter [1]

 Strouhal number [1]

 Magnitude of velocity of butterfly [mm/s]

 Data into moving average filter [mm]

 Data out of moving average filter [mm]

 Instantaneous flapping angle [deg]

 Phase angle between flapping and body motions [deg]

 Kinematic viscosity of air [mm2/s]

 Complex frequency [Hz]

1

Chapter 1

1 Introduction

1.1 Motivation

Micro air vehicles (MAVs) and nano air vehicles (NAVs) are a rapidly

developing field of flight research. These categories encompass aircraft with a maximum

dimension of 15 cm and a mass no more than 100 g (MAV) or 20 g (NAV) [1]. The

desired duration of flight for each of these vehicles is 20 minutes or longer. Applications

range from military intelligence, surveillance and reconnaissance to disaster search and

rescue missions [1,2]. These missions require the capability to maneuver in confined

spaces such as indoors or urban areas, as well as deal with unsteady wind gusts during

outdoor operation [3].

Figure 1-1 shows examples of MAVs that have been developed. The rigid fixed

wing design built by Wu et al. [4] follows a traditional approach to designing MAVs. Ifju

et al. [5] incorporated a novel flexible wing design. The Hornet 2-b developed by Prox

Dynamics is a rotary design which resembles a full scale rotorcraft. The Nano

Hummingbird developed by Keenon et al. [6] is a flapping wing design modeled after a

2

hummingbird. The DelFly [7] is an autonomous flapping wing vehicle. Finally the

Robobee [8] is the first insect-scale flapping wing robot that weighs less than 100 mg.

Figure 1-1. Examples of MAVs. a) Rigid fixed wing design [4]; b) flexible fixed wing

design [5]; c) Hornet 2-b (Prox Dynamics) [9]; d) Nano Hummingbird [6,10]; e) DelFly

flapping wing MAV [7,11]; f) Harvard Robobee [8,12].

3

Flight time is a significant issue that affects all of the MAV designs shown in

Figure 1-1. The black hornet has the longest flight time of the MAVs shown, up to 25

minutes [13]. However this still falls in the bottom of the desired range. A large

contributor to restricted flight time is the poor aerodynamic efficiency of conventional

aircraft flying at low Reynolds numbers which produces a low lift to drag ratio [2,14].

This reduction in lift to drag ratio and inability to hover severely limit the capabilities of

fixed wing MAV platforms. Rotary wing aircraft demonstrate high maneuverability

which includes hovering and vertical takeoff and landing, but these also suffer from the

reduction in lift to drag [2] and have relatively large power requirements for takeoff and

hover [1]. A strong case for studying flapping flight can be made by looking at the flight

performance of biological fliers, many of which operate at the same Reynolds number as

MAVs. Insects in particular are noted by Petricca et al. [1] for their ability to produce

high lift coefficients, execute vertical take offs or landings, as well as hover.

The flight of insects has inspired scientists and engineers for over 100 years

[14,15]. In order to explain insect aerodynamics, numerous studies have explored insect

flapping wing kinematics and unsteady aerodynamic mechanisms beyond the

conventional stationary wing aerodynamics. Unsteady aerodynamic mechanisms such as

clap and fling, leading edge vortices, rapid wing rotation and wing-wake interactions

have been identified as lift enhancement techniques used by insects [3,14,16,17]. These

techniques will be reviewed in Section 2.1. Methods for measuring kinematics and fluid

flow, reviewed in Section 2.2, have advanced the understanding of aerodynamics of

insects as well as providing strategies that can be applied to sensing and control of MAVs

[14–16].

4

Butterflies present desirable flight characteristics such as maneuverability,

efficiency and relatively simple flapping motions. With a large wing to body size ratio

compared to other insects [18], butterflies have been noted for their rapid accelerations

and evasive flight as well as the ability to maneuver in tight spaces [19,20]. It has been

suggested that a hybrid of flapping and gliding flight could provide enhanced efficiency

in birds [21] and butterflies [18]. The flapping motion of butterflies is also greatly

simplified by restrictions of feathering created by closely coupled fore and hind wings

[22]. This simplicity could be applied to development of similar scale MAVs using the

same flight strategies.

The Monarch butterfly (Danaus plexipus) was the test subject chosen for this

thesis. The migration of the Monarch is a spectacle in North America in the fall of every

year. This migration extends up to 3,600 kilometers over the course of three months,

which is the longest of any known insect [23]. Such a long migration suggests that

Monarchs may have evolved into incredibly efficient fliers. Mimicry of the wing

kinematics and trajectories of Monarchs could therefore prove invaluable to increasing

the efficiency of MAV design.

1.2 Research Objectives

The objective of the study described in this thesis is to develop an effective

method to gather statistically significant data on wing kinematics and trajectories of

Monarch butterflies over large segments of free flight. A total of 22 high speed motion

tracking cameras were used to measure and report the motion of specialized reflectors

placed on the wings and body of the butterflies. The 5.7m × 9.1m × 3.0m capture volume

provides enough space to let the butterflies fly unobstructed for a large sequence of flaps.

5

This research used a turnkey Vicon motion capture system. Data analysis was performed

using Microsoft EXCEL and Mathwork’s MATLAB. The large number of cameras and

the semi-automated post processing Nexus software provide a unique opportunity to

record and process large amounts of data relatively quickly. Over 2,000 untethered free

flights of 86 different butterflies were recorded and some preliminary results are reported

on the main characteristics of butterfly flight during climbing trajectories.

1.3 Thesis Outline

A review of the literature pertaining to unsteady aerodynamic mechanisms and

experimental techniques for gathering wing kinematic data for Monarch butterflies can be

found in Chapter 2. A description of the Vicon system, handling of the butterflies, and

description of the experiments conducted are found in Chapter 3. A detailed look at the

analysis procedure and a presentation of some initial results are found in Chapter 4.

Finally, concluding remarks and recommendations of future work can be found in

Chapter 5.

6

CHAPTER 2

2 Literature Review

This chapter provides a review of the unsteady aerodynamics and wing kinematic

measurement state of the art. First, the morphology of insects of the order Lepidoptera,

containing butterflies and moths, is reviewed, and then the Monarch butterfly, Danaus

plexippus, is described in more detail. The unsteady aerodynamics of flapping insect

flight are next discussed. Finally, methods for measuring the flight kinematics of insects

using imaging techniques are presented.

2.1 Lepidoptera

Butterflies and moths make up the order of Lepidoptera in the class of insects.

This is the second largest order of insects with more than 165,000 species identified to

date [24]. Lepidoptera are identifiable by very small scales that cover the surface of two

pairs of membranous wings [25]. The fore wing and hind wing are typically structurally

coupled either by overlapping of the wings or a locking mechanism near the wing root

[25]. The wings contain prominent venation which consists of tubular veins along which

nerves are located and blood flows to the wing. This venation also provides additional

7

stiffness to the wing [26]. The wing scales give the Lepidoptera the bright coloring and

complex patterning that are generally associated with them. There is preliminary data that

suggest that the scales of Lepidoptera also increase the aerodynamic efficiency of flight

[27]. Another defining trait of Lepidoptera is a "complete" metamorphosis in which the

larval stage of the insect changes not only in appearance, but also in function. The larval

stage exists to eat and store food so that the adult stage can focus almost exclusively on

reproducing. In some cases, mature adults even lack the ability to feed [25]. Lepidoptera

feed using a proboscis, which is a long hollow tube for the intake of fluids. Examples of

foods which attract these insects include honey, blood, tears, decaying organic matter, sap

and nectar from flowers. The nectar of flowers is generally visited by diurnal butterflies,

which include the Monarch butterfly [25]. While butterflies nominally feed on natural

substances, it has been demonstrated that they will also feed on concentrations of

glucose, such as sugar water or Gatorade.

The wing beat frequency of butterflies is similar to the undulating motion of the

body, suggesting that the flapping wing aerodynamics and flight dynamics are closely

coupled to each other. Moreover, the butterfly wings significantly deform during flight.

An accurate measurement of both wing kinematics and the body motion is crucial to

understanding the dynamic flight stability and control of a flapping insect [15]. This

information is typically neglected in simple flight dynamics models of most insects

because wing flapping time is typically much faster than the motion of the entire flyer

[14,28].

8

2.2 Monarch Butterfly (Danaus plexipus)

The Monarch is a commonly known butterfly in Northern America. The Monarch

is of the family Nymphalidae, and subfamily Danaini [24]. The bright orange, black and

white coloration on the wings make the Monarch a distinctly recognizable butterfly.

Another feature of these insects is the extraordinary multi-generational migration pattern

which is very prominent in populations that are found east of the Rocky Mountains. The

small insects migrate during the colder winter months from their summer breeding

grounds which reach up into Canada, down to the overwintering sites in the Neovolcanic

belt in central Mexico [29]. The population west of the Rockies finds its overwintering

spots in Southwest California. The migration of the eastern population spans a distance of

up to 3,600 kilometers, the longest of any other known insect [23,30]. This large distance

is covered over the span of days between late August and early December. Overwintering

sights are located at approximately 10,000 ft in altitude. It is thought that a combination

of the high altitude and tropical latitude results in a generally stable daily and seasonal

thermal regime. Ambient temperature has been shown to affect the expenditure of

butterfly lipid reserves which must last for approximately 90 days during overwintering

[31]. It has been observed that body temperatures below -2
o

C can kill butterflies, while

ambient temperatures above 20
o
 C have been found to prematurely induce migration in

some colonies [32]. The spring migration sees the butterflies return from Mexico to the

Gulf Coast states to lay eggs and die [23]. The generation born in the spring continues the

migration up to the summer breeding grounds. Depending on ambient temperatures, two

or three generations remain in the north during the summer breeding months before

9

increasingly cold temperatures again drive the monarchs on their long migration south

[23].

2.3 Unsteady Aerodynamic Mechanisms

The aerodynamic theories used to model the flow physics of fixed winged aircraft

rely on steady-state analysis. Flow around flapping wings is unsteady due to the time-

dependent wing motions and the nonlinear interactions with vortical structures in the flow

field. Accurate closed-form analytic solutions that describe the unsteady aerodynamics of

flapping wings have not been derived yet. Instead, many modern flapping wing

aerodynamics analyses rely on numerical solutions of the Navier-Stokes equations or

physical experiments of abstracted configurations [3].

Quasi-steady theory of flapping wings is an approximation enabling a quick

analysis. This methodology discretizes the continuous system into a series of static

conditions and uses standard steady analysis techniques without any attempt to model

wing-wake interactions. A review of this method is provided by Ellington et al. [33] and

Sane [17]. However, this method was called into question for small hovering flying

insects [34]. Based on quasi-steady assumptions and measurements of wing kinematics,

Dudley and Ellington [33] showed that steady state analysis was insufficient to explain

even fast forward flight of a bumblebee. Further research into insect flight has resulted in

the discovery of lift enhancing unsteady aerodynamic mechanisms that are used by a

multitude of insects, such as clap and fling, leading-edge stall, and wake capture.

10

2.3.1 Clap and Fling

The first unsteady lift enhancing mechanism proposed was the "clap and fling"

mechanism [3]. Weis-Fogh et al. [34] proposed this method to account for the large lift

coefficients generated by the small Chalcid wasp Encarsia formosa. The mechanism

consists of two distinct parts, first the clap and then the fling (see Figure 2-1). At the end

of an upstroke, the leading edge of the wings of some insects come very close together

and trailing edge vortexes are shed into the wake. This is called the clap. Leading and

trailing edge vortices developed during the upstroke are fully shed and flow is induced

between them by their circulation to help the wings close quickly. As the trailing edges of

the wings close, air flow induced by vortices as well as the trailing edges coming together

provide a propulsive force. The fling mechanism is initiated by the separation of the wing

leading edges. Air fills the low pressure gap left by the separating wings while the trailing

edges are still kept together. Additional circulation resulting from the induced flow

between the wings leads to higher lift. This circulation attaches to form leading edge

vortexes on each wing with equal magnitude, but opposite direction. In a slight variation

of the clap and fling mechanism, larger and more deformable wings appear to "peel" as

opposed to fling [35]. The clap and peel mechanism was visualized by Srygley and

Thomas [36] in free flying Red-Admiral butterflies using smoke-wire and high speed

digital images.

11

Figure 2-1. Diagram of the clap (a-c) and fling (d-f) mechanisms used by some insects to

generate large lift coefficients. The black lines indicate fluid flow, dark blue arrows show

induced velocity. Light blue arrows indicate net forces acting on the airfoil. Image

reproduced with permission from [17].

2.3.2 Leading Edge Vortex

Ellington et al. [37] discovered a high lift mechanism of an attached leading edge

vortex through flow visualizations around the wings of a Hawkmoth, as well as a

mechanical flapper. A Leading edge vortex provides a mechanism to delay stall and

augment the production of aerodynamic forces during translating of flapping wings. The

lift enhancing effects of a leading edge vortex is analogous to the suction force that is

present at the leading edge of a blunt airfoil. As shown in Figure 2-2, the flow at the

Clap Fling

a)

b)

c)

d)

e)

f)

12

leading edge of a blunt airfoil bends sharply over the upper surface, creating a region of high flow

velocity and low pressure. This region of low pressure causes the so called suction force that acts

approximately parallel to the chord. In general, insect wings are better represented by thin

airfoils. As air flows over thin airfoils at an angle of attack it separates immediately after the

upper leading edge, creating a vortex. This vortex creates a diversion of flow and suction force

similar to that seen in the blunt airfoil example, but with the resultant force acting perpendicular

to the chord. This force acts to increase both the lift and drag on the wing. The main

characteristics of leading edge vortices have been shown to vary with changes in

Reynolds number, Strouhal number, wing flexibility and flapping kinematics [3,14,36].

Leading edge vortices have been suggested as the single most important feature of flows

around insect wings, as well as the forces that they create [17].

13

Figure 2-2. Schematic of the leading edge example adopted from [17]. a) Suction force

produced by sharp diversion of flow about blunt airfoil which acts in the direction of the

chord. b) The diversion of flow for the thin airfoil is caused by the leading edge vortex.

The suction force augments the normal force, enhancing the lift and drag of the wing.

Image reproduced with permission from [17].

2.3.3 Wing Rotation

Dickinson et al. [38] used an experimental study to show that rapid wing rotations

that advance the wing strokes resulted in positive lift enhancement. In the study, a

dynamically scaled mechanical flapping wing was fabricated and used to determine

forces generated by varying wing kinematics. Two peaks in aerodynamic forces were

recorded at the beginning and end of each stroke, corresponding to a pronation and

14

supination, respectively. The force associated with the first peak was explained as an

effect from rotational circulation, which is also referred to as the Kramer effect [14]. The

Kramer effect occurs when an airfoil is rotating from low angle of attack to high, causing

lift coefficients above the steady flow stall value [14]. As the wing rotates rapidly, the

flow over the trailing edge deviates from the Kutta condition due to the viscosity of the

fluid which resists shear. As the flow attempts to re-establish the Kutta condition,

circulation is induced, generating lift [17,38].

2.3.4 Wake Capture

Wake capture is another unsteady aerodynamic mechanism that was observed by

Dickinson et al. [38]. The second peak in force occurred at the beginning of each stroke

as the wings were reversing direction while rotating about the spanwise axis, shedding

both the leading and trailing edge vortices (see Figure 2-3 (a-c)). The wing encounters the

velocity field of the shed vortices at the beginning of the downstroke (see Figure 2-3 (d-

f)), which can increase the effective fluid velocity at the start of the next stroke. The

magnitude and direction of the augmentation of the forces on the wing due to the increase

in velocity depends on the phase relationship between the translation and rotation. If the

rotation precedes stroke reversal, the wing will encounter its own wake such that the lift

is enhanced. This mechanism is recognized to affect hovering flight of many insects, but

the nature of forward flight would cause the insect to advance past the wake of its wings

and not interact with wakes from a previous wing stroke direction.

15

Figure 2-3. Wing wake interactions. a) The flow around the airfoil contains a leading

edge vortex at somewhat modest angle of attack. b) As the wing approaches stroke

reversal, the wing rotates about the spanwise axis, shedding a leading and trailing edge

vortex into the wake. The shed vortices induce a jet between them c) The wing reverses

direction and continues to rotate. d) The leading edge encounters the vortex from the

upstroke and the jet of induced flow, increasing the lift. f) The wing continues the

downstroke. Image reproduced with permission from [38].

16

2.4 Review of Experimental Work

Obtaining kinematic information of insects during free flight is crucial to studying

the aerodynamics and dynamics of insect flight. Their small size makes direct

measurements of the fluid flow and forces acting on flying insect difficult. Instead of

direct measurements, some researchers have developed dynamically scaled mechanical

flappers [37–39]. Another method is the use of unsteady Navier-stokes simulations

[40,41]. These two methods for determining aerodynamic forces require a precise

knowledge of the wing kinematics employed during insect flight. The high flapping

frequency as well as small size of most insects also makes intrusive measurements

difficult. Developments in photography, videography and photogrammetry offer

researchers a non-intrusive measurement technique which can provide very good spatial

and temporal resolution [17].

2.4.1 Videography

High speed videography is a valuable technique that has become prominent in the

study of insect flight kinematics. High speed video was first utilized to film the tethered

flight of a locust in order to determine the aerodynamic forces produced by the

kinematics of the wings [16]. It was later demonstrated that tethering of locust could

significantly reduce the wing beat frequency and, therefore, new methods for measuring

kinematics and aerodynamics of insect flight were required [42]. New videography

techniques were developed to capture kinematic data of specimens in hovering flight

[16,34,43] and refine the models developed for tethered flight.

The main difficulty associated with using videography to record kinematic data of

17

a forward flying insect is that it must fly in a controlled trajectory through a relatively

small volume that is in full camera view. An early method for controlling the trajectory of

an insect utilized an ultraviolet light to take advantage of the optomotor response of a

bumblebee to elicit forward flight within a wind tunnel. The flight of the bee was

captured using a single high speed camera strategically placed so that the wing tip

kinematics as well as angle of attack could be observed and extrapolated into three

dimensions [43]. The use of a wind tunnel and an outside stimuli to produce forward

flight was also used to investigate the flight of a Hawkmoth [42], as well as to visualize

the various unsteady aerodynamic mechanisms that are used by a red admiral butterfly to

generate lift at varying velocities [36]. Instead of using a wind tunnel, Tanaka and

Shimoyana [44] captured the flight of a swallowtail butterfly as it navigated towards a

light that was placed as a goal. One common aspect of each of these experiments is that

the presented data was gathered using the two dimensional images from only one or two

cameras.

2.4.2 Photogrammetry/Videogrammetry

Researchers have recently begun to use photogrammetric methods to track insect

kinematics. These techniques utilize multiple synchronized cameras placed to record

motion inside a three dimensional frame or 'capture volume' in order to estimate the

coordinates of an object in three dimensional space. This technique has been used to

record a variety of different phenomena. In typical studies of insect flight, multiple high

speed cameras record three dimensional data inside a relatively small capture volume

[45,46]. Data is recorded over relatively few wing beats, during either a free flight

segment [19,47], a hovering flight segment [48], tethered flight [45], or using a subject

18

trained to fly in a specific capture volume [49,50]. The issue with the methods presented

in these works is the limited size of the capture volume. Free flight like that presented by

Lin et al. [19] and Ristroph et al. [47] is restricted to very short flapping sequences. The

flapping sequences are not only kept short by the small capture volume, but also by the

time required to process the data. Zheng et al. recorded data at 2000 fps with each frame

requiring the user to identify 35 characteristic points. Walker et al. [48] automated the

tracking of a tethered locust, but the free flying hover fly required the manual location of

15 wing locations in every image at 947 fps. The limited volume size and relatively short

data captured limits the ability to capture large collections of consecutive flaps as well as

the corresponding global trajectory

2.5 Conclusions from Literature

The state of the art identified by this literature review provided the basis for the

development of the experiments and analysis outlined in the following chapters. It was

determined that an experimental technique which could capture wing kinematics as well

as trajectories for butterflies could prove invaluable to the design and development of

MAVs. The study of unsteady aerodynamics of insect flight could also benefit from

determining how and when the mechanisms reviewed in this chapter are employed.

Finally, a method for quickly recording and calculating photogrammetric information in

larger capture volumes and with more cameras can provide more statistically significant

data.

19

CHAPTER 3

3 Experimental Methods

3.1 Vicon Motion Capture System

The experiments discussed in this thesis were conducted in the Autonomous Tracking

and Optical Measurements (ATOM) laboratory at the University of Alabama in

Huntsville (UAH). The ATOM lab is a motion capture facility which uses 33 VICON

T40s cameras, an Mx Giganet, and Nexus software [51] to track reflective markers in

three dimensional space. The maximum capture volume is 17.2m × 9.1m × 3.0m. Twenty

two cameras were placed inside a reduced capture volume of 5.7m × 9.1m × 3.0m shown

in Figure 3-1. The relatively large size of even the reduced capture volume with respect

to a butterfly enables data capture on unrestricted free flight trajectories.

20

Figure 3-1. ATOM lab capture volume [52]. a) Actual image of capture volume; b)

Virtual capture volume environment in Nexus with three-dimensional positions of the

motion tracking cameras; c) Top view of the ATOM Lab capture volume along with the

camera positions marked as red boxes.

5
.7

 m

9.1 m

912

2

17

a)

b)

c)

21

The VICON T40s cameras (Figure 3-2) record at 515 fps at a full resolution of 4

megapixels. They are equipped with a near infrared (NIR) strobe, and visible light filter

to allow for operation under a variety of lighting conditions. The cameras track reflective

markers specifically designed for motion capture systems to efficiently reflect the NIR

light.

Figure 3-2. Vicon T40s camera with strobe on. Image source: svga.ru.

Each camera contains an onboard processer which locates all markers recorded in a

frame, calculates a circle fit and determines the centroid of the circle (see Figure 3-3).

The location of the centroid and radius are the only data that are sent to the Mx Giganet

during a motion capture test. The Mx Giganet calculates the three dimensional position of

all markers seen simultaneously by two or more cameras and sends it to the Vicon

workstation and into Nexus. Depending upon the user's requirements, the data can be

transmitted to a monitor for real time monitoring, or recorded for post processing. The

output environment is the virtual work space, which provides a three dimensional

representation of the location of all cameras and markers detected (see Figure 3-1b).

22

Figure 3-3. Demonstration of the onboard processing of each camera. a) The marker is

identified as a grouping of pixels; b) The pixels are then represented as a best fit circle

and the centroid is calculated; c) Only the radius and centroid of the circle are recorded

during motion capture.

a)

b)

c)

23

3.2 Camera Calibration

The system does not recognize camera locations in the capture volume when they are

initially connected to Nexus. Each camera must be calibrated so that its location with

respect to the other cameras is known, and location data can accurately be calculated

from the images captured by two or more cameras. After the cameras are calibrated to

each other, an origin and coordinate system must be defined so that the exported data has

a global reference. Figure 3-4 demonstrates the state of the capture volume at the three

stages of calibration.

24

Figure 3-4. Images of the capture volume in different states of calibration. a) The cameras

are randomly spaced and not representative of the physical capture volume. b) The

location of each camera is known in relation to every other camera, but the coordinate

system is not representative of the physical capture volume. c) The origin of the physical

capture volume has been defined. The virtual capture volume is representative of the

physical capture volume.

a)

b)

c)

25

The motion capture system requires regular calibration before data is collected. In this

dynamic calibration, an L-shaped tool (Figure 3-5) with five precisely spaced markers is

used. The configuration of the five markers is recognized by the motion capture system.

When two or more cameras record all five markers in a simultaneous frame, the system

can begin to calculate information on the location of each camera. This process is

repeated at least 850 times for each camera as the wand is moved throughout the capture

volume. A complete dynamic calibration results in what is seen in part b) of Figure 3-4.

Finally, the calibration tool is also used to set the volume origin and the corresponding

camera frame of reference by placing it in the capture volume.

Figure 3-5. Calibration tool with the coordinate frame that is recognized by the cameras

during the process of setting the volume origin.

To begin the calibration process, all cameras are checked using the camera view in

Nexus to ensure that no unexpected markers or reflective surfaces are visible in the

capture volume. Because the markers used for the butterflies are small and had a

tendency to fall off during flight, this time was taken to remove these markers from the

capture volume floor. Another cause of unexpected reflections is a high concentration of

26

camera strobes in small regions of the capture volume. These concentrations caused

objects such as the carpet, walls, and the test operator to reflect the NIR light above the

threshold of the cameras. Detecting a large number of reflections in small areas can cause

some cameras to crash and stop recording data. This problem was solved by adjusting the

strobe intensity of each camera. For all tests, the strobe intensity was kept at 80% for all

cameras except camera 9 (see Figure 3-1) which had to be reduced to 60%. Camera 12's

viewing angle caused it to see the strobes of cameras 1 and 2, which created false

markers. This was solved using the masking feature. This feature creates dead pixels only

where a false marker is seen at the time of masking. The masking process is automated

and only takes a few seconds. The results of the masking process are shown in Figure

3-6.

Figure 3-6. Results of camera masking on an image from camera 12 (see Figure 3-1). a)

The two markers recognized are actually a collection of markers which correspond to the

strobes of cameras 1 and 2. b) The markers have been masked and no data will be

collected from those pixels.

Once the false markers and reflections have been removed, the calibration application

is started. The operator takes the calibration tool into the capture volume and waves it

around. As two or more cameras see all five markers in the same frame, an image is

27

recorded and each camera that records it receives a number, called a wand count. This

wand count is used to stop the calibration once all 22 cameras have recorded at least 850

wand counts. When the wand count limit is reached, Nexus automatically begins

calculating the calibration constants used to determine the location of each camera with

respect to all other cameras. The result of this calculation is seen in Figure 3-4 (c).

After the cameras have been calibrated, an image error is provided for each camera.

This error is a numerical value used to provide a standard to ensure the quality of each

calibration. The testing standard for a quality calibration is all cameras recording an error

less than 0.25. This number was selected after a series of calibration tests were performed

in which flat tape markers, such as those used to test the butterflies, were attached to a

sheet of paper. The paper was then placed at various locations in the capture volume. A

poor calibration caused the markers to appear to vibrate slightly when viewed in Nexus,

while a good calibration would not indicate any marker vibration. The image error was

minimized by ensuring that the frames recorded during the calibration were thoroughly

spread across each of the cameras views. Live feedback of the images recorded during

calibration was provided so that the test operator could spread the images about the

capture volume more efficiently. Each time a frame was recorded, a representation of

each marker is shown as a colored marker path in the camera view (see Figure 3-7). A 42

inch Samsung TV was used to mirror the desktop PC window so that the test operator

could see the camera images real time on a sufficiently large screen.

28

Figure 3-7. Image from all 22 cameras during calibration. The green tabs located at the

bottom right hand corner of some frames indicate that less than 850 wand counts have

been recorded. The color of the tabs indicates how close to this limit each camera is, such

as the tab for camera 3 is a darker green color indicating it is close to the 850 mark. The

yellow-green color of the tabs seen for camera 21 indicates that the wand count is further

away from the 850 limit.

 The distribution of the colored marker path gives an indication of the quality of the

spread of images for each camera. Figure 3-8 demonstrates a camera with good coverage

and one with poor coverage. The system requires calibration only when cameras move

due to wall vibrations, slippage, or relocation. It was found that a calibration at the

beginning of each day of testing was sufficient to retain uniform, accurate resolution.

29

Figure 3-8. Demonstration of the difference between a) a good calibration with relatively

even distribution of wand images and b) a poor calibration with a clustered distribution of

wand images, leaving areas with no wand images.

3.3 Markers and Camera Placement

Four different size markers made by MoCap Solutions and a custom flat marker made

from reflective tape were evaluated (see Figure 3-9). MoCap markers, labeled 1 to 4, are

spherical in shape and are covered in a tape that is designed to efficiently reflect NIR

light. The custom made marker is labeled as Marker 5. Table 3-1 summarizes the size of

each marker and its relative mass to a typical Monarch butterfly. The reflective tape

marker was chosen over the spherical MoCap solutions markers for its significantly

reduced mass. This choice was critical to reduce the changes in flight behavior that could

be caused by the addition of mass to the butterfly.

30

Figure 3-9. Markers that are used in the ATOM lab for motion tracking studies. Marker

#5 is used for all butterfly testing and is a flat tape while the other markers are

hemispherical.

Table 3-1. Properties of each marker shown in Figure 3-9.

Marker # Diameter mm Mass g % Butterfly Mass (0.5g)

1 14 2.0377 407.5

2 9 0.5915 118.3

3 6 0.1871 37.4

4 3 0.0317 6.3

5 3x5 0.0058 1.2

Conversely, the size and shape of the custom made Marker 5 limited the ability of the

cameras to effectively track the motion of the butterfly. One cause of this was the small

size of the marker which reduced the resolution of the image the camera records,

especially as distance between the two increased. To visualize this, a resolution test was

conducted in which all five markers were placed directly under camera 17 (see Figure

3-1). The markers were tested at the same horizontal position, but at twelve different

heights in the capture volume. The height was changed by placing the markers on T40s

packaging boxes, which measured 7" in height, on top of each other (see Figure 3-10). At

every height increment, h, an image was recorded from camera 17 and camera 2. Camera

Marker #1 Marker #2 Marker #3 Marker #4 Marker #5

31

17 provided a direct viewing angle to the marker, while camera 2 provided an image with

an angle of incidence similar to the diagram seen in Figure 3-10.

Figure 3-10. Depiction of resolution tests conducted to characterize effects of distance

and angle on the quality of the marker image. An image of the collection of markers was

taken from cameras 2 and 17 for each height increment, h.

Figure 3-11 and Figure 3-12 demonstrate the results of this test, while Table 3-2

reports the distance from Marker 5 to each camera, and the viewing angle between

Marker 5 and camera 2 as boxes are added. Figure 3-11 demonstrates that the number of

pixels representing the marker increases as the distance between the marker and the

camera decreases. However, all markers were clearly visible even at the greatest distance.

To increase the resolution of the smaller markers the width of the capture volume was

reduced to 5.7m while the number of cameras was doubled.

32

Figure 3-11. Comparison of the resolution for each size marker recorded from camera 17,

(identified in Figure 3-1c) which was directly overhead of the markers so that the viewing

angle does not change as height is increased. The images were taken from heights of a)

0h b) 2h c) 5h d) 8h and e) 12h.

Figure 3-12. Comparison of resolution from Camera 2, highlighted in Figure 3-1 c, which

provided an angled view of the markers. As the height of the markers was increased, the

angle between the camera and markers increased. The images were taken from heights of

a) 0h b) 2h c) 4h d) 6h and e) 8h.

a) b) c) d) e)

Marker #2 Marker #2 Marker #2 Marker #2 Marker #2

Marker #3 Marker #3Marker #3Marker #3Marker #3

Marker #4 Marker #4 Marker #4 Marker #4 Marker #4

Marker #5Marker #5Marker #5Marker #5Marker #5

Marker #1Marker #1Marker #1Marker #1Marker #1

a) b) c) d) e)

Marker #2 Marker #2 Marker #2 Marker #2 Marker #2

Marker #3 Marker #3Marker #3Marker #3Marker #3

Marker #4 Marker #4 Marker #4 Marker #4 Marker #4

Marker #5Marker #5Marker #5Marker #5Marker #5

Marker #1Marker #1Marker #1Marker #1Marker #1

33

Table 3-2. Distance between Marker 5 and both cameras and the angle between the

marker and camera 2. These distances and angles correspond to the images seen in Figure

3-11 and Figure 3-12.

 0h 2h 4h 5h 6h 8h 11h

Camera 17

Distance

[mm]
4152 3778 3405 3218 3030 2652 2093

Camera 2

Distance

[mm]
3853 3504 3170 2998 2840 2512 2077

Angle

[degrees]
22.0 24.2 27.1 28.5 30.4 34.2 43.0

The second cause for a loss in resolution was the flatness of Marker 5. The spherical

geometry of the MoCap markers makes the area of the marker seen by the camera less

sensitive to incidence angle. A flat marker is significantly affected by the incidence angle

as is evident in Figure 3-12. As the viewing angle increases, the marker reduces in

resolution and eventually disappears, even though the distance from the camera is

comparable to the images captured in Figure 3-11. The addition of cameras to the capture

volume increased the range of detection angles inside the capture volume.

As shown in Figure 3-13, a total of seven markers were placed on each butterfly: six

on the wings and one on the thorax (head). Wing markers were placed on the top and

bottom of each forewing and one of the hindwings so that the flapping motion would not

interfere with the camera's view of each marker throughout the stroke. The forewings

provided data on flapping of the butterfly, the thorax provided information on the

trajectory, and the hindwing aided in post processing and identification.

34

Figure 3-13. Marker locations on the a) dorsal and b) ventral side of the butterfly.

3.4 Post Processing in Nexus

The use of markers on the butterflies prevents the need for manual frame-by-frame

identification of the butterfly motion and replaces complex shape recognition algorithms.

Each unassigned marker is initially represented as a grey sphere in the three dimensional

virtual work space of the Nexus post processing environment. Once a series of markers

are identified as the butterfly, a subject is manually fitted to the markers. A subject

consists of all markers of interest and the segments that connect the markers. The markers

of each subject are set to a series of colors, such as in Figure 3-14 where the orange, blue,

green, and gold represent the head, right wing, left wing and rear wing, respectively.

Nexus uses this subject to identify the markers throughout the entire data capture

sequence. The only user input required in the post processing is the creation of the

subject, and inspection of the trajectory. This inspection requires the user to ensure that

the trial contains usable data where all four markers are regularly present. The fitting

provided by Nexus was susceptible to swapping the markers on each forewing at the end

of a flapping wing stroke, when the wings move closely to each other. They could also be

obstructed from the viewing area of a camera or mistaken for a single marker, in which

case one marker would disappear. When this occurred, the Nexus software experienced

a) b)

35

trouble identifying a marker upon reappearance, sometimes assigning markers to

incorrect wings or not reassigning the marker at all. Manual fitting of a subject was then

needed.

The manual fitting process is demonstrated for two disappearing markers in Figure

3-14. The first image demonstrates the representation of a full subject in the Nexus

virtual workspace. In the second, third, and fourth images (b, c and d) both the rear wing

and right wing disappear and the right wing marker is assigned to the physical left wing

marker. The fourth and fifth images (e and f) demonstrate manual fitting of each of the

unassigned markers. Finally the whole subject is presented once again. Once a complete

trajectory was ensured, the position and velocity of each marker were exported to

Microsoft Excel and MATLAB for further analysis.

36

Figure 3-14. Demonstration of the loss of markers during data capture and refitting the

subject which consists of an orange head marker, blue left wing marker, a green right

wing marker and a gold rear wing marker. a) First, all markers are represented, the

subject is denoted by the colored markers. b) As the butterfly wings close, the yellow rear

wing marker is lost. c) as the wings continue to close, the rear wing marker appears

unfitted to the subject, while the blue right wing marker disappeared. d) The user is

manually fitting the subject to the rear wing marker, e) then the right wing marker

appears unfitted to the subject and is manually added. f) Once again all markers are

present and subject is fully fitted.

3.5 Monarch Butterflies Handling Procedure

The test matrix for the experiments described in this thesis was developed to gather

data comparing the flight of butterflies with scales and with their scales removed. A total

of 108 Monarch butterflies were purchased from Swallowtail farms [53] over five non-

consecutive weeks between March 9 and June 24, 2014. Testing was restricted to these

a)

d)

b) c)

e) f)

37

dates due to the seasonal availability of the Monarch butterfly. The butterflies were

shipped in individual boxes packed in a Styrofoam cooler with ice packs to ensure the

butterflies were kept safe through the shipping process.

Cool temperatures during overwintering reduce the use of butterflies’ lipid reserves

[31] which consequently reduces body activity and even impairs their ability to fly [32].

This state of reduced activity was also used by the research team to more safely handle

the specimens. Upon arrival, the butterflies were placed inside a refrigerator which was

kept at approximately 2
o
 Celsius. One at a time, the butterflies were removed from the

refrigerator and weighed on a Citizon CX 120 scale which measures to 0.1 milligram

precision. The butterfly was identified by a number which was assigned as consecutive

numbers from 1 for the first butterfly of the first test week and extended to 86 for the last

butterfly tested. In order to place the reflective markers, the butterflies were then

transferred from the mass scale directly to a work station which consisted of an ice-pack

covered with a paper towel. The wings of the Monarch butterfly are covered with

microscopic scales which detach easily. To ensure that the markers were securely

attached, the scales directly under the marker were removed before application. The

butterfly was again placed on the ice-pack and immobilized by gently using a finger to

hold the wing down as close to the body as possible. A cotton swab was then used to very

gently brush the scales from the desired location, until the wing became transparent.

Once the scales were removed, the marker was carefully applied using a finger. The

markers were placed in such a manner that four butterflies could be kept in a single

terrarium. This was done by recording which hind wing was marked as well as slightly

offsetting one marker in the spanwise direction.

38

Figure 3-13 shows an example butterfly which has the right hind wing marked with a

slight offset from the location of the right forewing marker. Another use for the offset in

the forewing marker was to prevent the cameras from mistaking the markers on each

forewing as a single marker when the wings were very close together. Slightly offsetting

the one marker helped to reduce the frequency of this marker disappearance. The head

marker was placed last, and did not require the removal of scales. Figure 3-15 shows

images of butterflies being handled during marker application. The butterflies were

lightly held as close to the root of the wing as possible.

Figure 3-15. Handling as well as placing markers on the butterfly. The images

demonstrate accessing a) the ventral side of the forewing, b) the dorsal side of both wings

as well as c) the head marker. Note that the butterflies were held as close to the body as

possible, which was both due to an increase in robustness of the wings near the body as

well as mitigating the effects of accidental scale removal.

After the addition of markers, the butterflies were placed once again into the

refrigerator for a brief time. The butterflies were then weighed once more on the scale

and the length of a single forewing was measured from root to tip. The gender of the

specimen was identified using the scent markers which appear on the rear wing of male

butterflies but not on females (see Figure 3-16). Finally, the butterflies were placed in a

terrarium where they were kept until testing (Figure 3-17). The terrariums had directed

incandescent light to provide warmth to the butterflies. Food was supplied in the form of

39

Gatorade soaked cotton balls which were present in the terrariums throughout the entire

week of testing.

Figure 3-16. Comparison of a) male and b) female monarch butterflies. The scent marks

(indicated by white circles) which are present in a, but absent in b gives clear indication

about each butterfly's gender.

Figure 3-17. Butterflies sunning in incandescent lamp light in the terrarium. In the bottom

of the terrarium a butterfly is feeding in the bowl containing Gatorade soaked cotton

balls. The Citizon CX 120 scales used for weighing the butterflies is next to the

terrarium.

40

After flight tests with scales were performed, the scales of the butterflies were

removed. The process of scale removal consisted of placing the butterflies back into the

refrigerator to reduce their activity. Once removed from the refrigerator, the butterflies

were again placed on the ice pack covered with a paper towel. The scales were removed

using a cotton swab and very delicate strokes. The tips of the wings and the trailing edge

proved to be extremely fragile, and great care was needed so that the wing was not

ripped. If the wing did rip during scale removal, the test operator made a judgment as to

whether the effect of the rip was negligible. Due to the large number of butterflies tested

at a time, the operator tended to err on the side of caution. Any butterfly whose wing was

deemed too damaged for a comparison was released at the end of the day of scale

removal. The scales provide the bright coloring of the wing so that the wing became

transparent when the scales were removed. Figure 3-18 shows the difference between a

butterfly with scales and without scales.

Figure 3-18. Comparison of butterfly a) with scales and b) without scales. Note the

transparency of the wings of the butterfly without scales. This comparison is presented of

two different butterflies.

41

3.6 Flight Testing Procedure

A flight test consisted of a 20 second motion capture trial, during which a butterfly

was released and allowed to fly freely. The butterfly was released from the operator's

hand, and the location of the release within the capture volume was subject to change.

Early in the testing cycle it was observed that the camera coverage inside the capture

volume was extremely heterogeneous. This resulted in areas where data could not be

collected because one or more markers could not be seen regularly. The butterflies were

observed to fly in consistently similar paths. Therefore, subsequent release points of a

butterfly were refined after observing previous flight paths to ensure that usable data

could be collected. Trials were also performed in which Gatorade soaked cotton balls and

an incandescent light source were placed in the capture volume to attract a butterfly.

These methods proved ineffective and were abandoned. It is speculated that the

Monarchs would be attracted to milkweed, which provides food as well as a place to lay

eggs. After Nexus had recorded data, the butterfly was captured in preparation for

another test.

Testing was conducted the day after marker placement so that adverse effects of

handling and additional mass of markers were reduced as much as possible. The first task

completed on test day was calibrating the cameras. Next, the butterflies were removed

from terrariums one at a time and flights recorded for the first round of 10 consecutive

motion capture tests. At the end of the first round of 10 tests, the butterfly was placed

back in the terrarium and the next butterfly was immediately removed for testing. Once

all of the butterflies had been through the initial round of tests, a second round of similar

42

flight tests were performed on each butterfly. The second round of testing completed the

first day of testing.

 The day after testing consisted of removing scales which was described in Section 3-

5. The scale removal process was very time intensive, and also took a toll on the

butterflies. To mitigate the effects due to handling during scale removal, the butterflies

were not tested during scale removal day. The next day consisted of testing the butterflies

without scales, and the test procedure was identical to that of the first day of testing. At

the end of the second flight testing day, all remaining butterflies were released.

This process of testing was refined during the first and second weeks and fully

implemented in the third through fifth test weeks. The first two weeks represented the

learning curve of the handling and testing of the butterflies. It was noted that room

temperature had a noticeable effect on the butterfly flights. Temperatures higher than

75F increased the length of time the butterfly flew without trying to land. Capturing the

butterflies after each test proved time consuming. Therefore the temperature in the test

volume was set at 75F as this was the lowest temperature that could be maintained

consistently.

43

CHAPTER 4

4 Analysis

The data collected from the Vicon motion capturing system included the frame and the

position and velocity of each of the four independent marker locations. Sections 4.1-4.3

detail the analysis that was used to calculate the flapping wing motion and flight

trajectory of the body. The data presented in this chapter was collected during Flight

1139, which was conducted using butterfly 46 recorded during the third week of testing.

4.1 Data Export

Nexus exports the data recorded during a motion capture trial in the form of an ASCII

text file or a comma separated value (CSV) file. The CSV file was chosen as an output

format as the MATLAB analysis software provides a simple method for data import from

this file type. Details of the data import in MATLAB are explained in Section 4.2. As

discussed in Section 3.4, the exported data consist of the three components of the position

and velocity of each marker specified in the subject. All butterflies had four marker

points that were tracked, and therefore all the data from this experiment comes in the

44

form of a frame index, twelve position components, and twelve velocity components. The

position is recorded as the coordinates of each marker reported in the camera frame, as

seen in Figure 4-1. The number under the Trajectories label represents the frame rate the

data was collected at in frames per second (100 fps for this thesis). The Frame column

provides the frame index for which the information on each row was captured. The value

of the frame starts at 0 at the start of each motion capture trial. However only the frames

in which a subject is identified is exported to the CSV file. The order that the four

markers appear in the data is dependent on the order the markers are identified in the

process for building subjects in Nexus. In order to create a consistent format across all

data types, the order of marker identification was Head, Left wing, Right wing, and Rear

wing. It can be seen in Figure 4-1 that in two frames (478, 479) position data of the Rear

wing are missing This was caused by the disappearance of the marker on the rear wing

from the cameras. The CSV file also contains the velocity of each marker below the

position data, in the same format.

Figure 4-1. Example data from flight 1139 of butterfly 46 exported from Nexus into a

CSV file, viewed in Microsoft Excel.

45

4.2 Data Import

The process for importing the data was greatly simplified by the consistent formatting

of the CSV file. The data was imported into MATLAB using the xlsread() function.

Blank cells were imported as having a value of Not a Number (NaN). The frame, and

components of position and velocity of each marker were obtained from this matrix and

collected into arrays, where n is the number of frames in data capture sequence.

4.3 Data Analysis

The four marker configuration was presented as a method to record information on the

trajectory of the body, as well as the flapping motion of the wing. The trajectory

information can be developed simply from the motion of the head marker through space.

The flapping motion required additional analysis.

4.3.1 Flapping Angle Calculation

Three vectors, , were defined as extending from the head marker

to the marker located on each wing and were calculated in global frame (see Figure 4-2).

These vectors were used to calculate the flapping information of the wing, and a

visualization of their location and orientation.

46

Figure 4-2. Visualization of parameters used in analysis. a) Markers and the vectors in

Nexus. b) Butterfly in flight with important parameters highlighted.

The flapping or plunge angle is defined as the angle between both wings, where

 is at the end of the upstroke. Using the position vectors, γ is calculated by

 left

 left right
 (1)

The function used to calculate the inverse tangent in MATLAB is atan(). This function

provides quadrant data based off of the sign of the numerator and denominator of

Equation (1). The sign of the cross product found in the numerator depends on the

direction the butterfly is flying, affecting the order of the vectors in the cross product. If

the order of the cross product is flipped, then the angle between the two vectors is equal

to the original angle minus 2π. Therefore this provides an incomplete solution, as the

direction the butterfly is flying dictates the location in the stroke where . To find a

unique value for , the rear wing vector was used to determine the butterly flight

direction by calculating

47

 ign

 left right rear, (2)

where the variable ign

 was only checked for its sign. If this parameter is negative, then

the calculated flapping angle was correct; but if it is positive, then the flapping angle was

subtracted from 180
0
.

4.3.2 Flapping and Trajectory of an Entire Flight

The results of the flapping angle calculation and the vertical position of the head

marker are shown in Figure 4-3. It can be seen that the flapping data from frames 575

through the end of the trial do not represent the same periodic flapping seen earlier in the

segment. There are extended periods in which γ=0
o
 corresponds to the missing data in the

vertical displacement of the head marker. This indicates that the head marker disappeared

from the viewing angle of the cameras. The data during those frames do not represent the

actual flapping of the butterfly.

The vertical displacement of the butterfly shown in Figure 4-3 has three distinct

trends. In two sections, frames 340 - 440 and frames 480 - 560, the climbing rate is

positive. However, the magnitude of the climbing rate in the first segment is visibly

higher than the climbing rate in the second segment. The butterfly actually descends in

what appears to be a short gliding segment in frames 590 - 640. The flapping behavior of

the butterfly clearly changes between the climbing and descending trajectories. There are

distinct flaps in the climbing flights and a lack of periodic oscillations in the gliding

flight. However, there are not obvious differences in flapping frequency between the two

climbing trajectories.

48

Figure 4-3. Raw flapping and altitude data from flight 1139 of Butterfly 46. a) Flapping

angle of the two forewings where γ=0
o
 at the end of the upstroke. b) Altitude of head

marker which shows three different trajectories (1,2,3). Trajectories 1 and 2 show

climbing flight while trajectory 3 is a descending trajectory corresponding to a glide in

part a).

4.3.3 Graphical User Interface

A Graphical User Interface (GUI) was created, to collect the data into smaller

segments for further analysis, and the code used to generate and run this GUI is presented

in Appendix A. The GUI provided a means to display the raw data and interactively

select the frames that bound the segment of interest for display. This method was used to

create the plots shown in Figure 4-4, which demonstrates similar flap angle behavior,

even for the two climbing rates. This indicates that closer analysis of the flapping signal,

and potentially other parameters such as pitching angles, need to be investigated to draw

conclusions on how the butterflies control these trajectories.

49

4.3.4 Disappearing Markers

The plunging data between frames 480 and 560 in Figure 4-3 also appear to have

some anomalies that need to be accounted for. The angle at certain frames jumps to zero.

This physically implies the butterflies wings completely close in one frame, even though

it appears that the flapping cycle is approximately ten frames. These discontinuous jumps

to zero are caused by the disappearance of a head marker or a forewing marker. For

example, at approximately frame 530, the head marker clearly disappears from view for a

frame in Figure 4-4 (d) , while the plunge angle jumps to zero for one frame and jumps

back to the sinusoidal behavior in Figure 4-4 (c). The head marker disappearing was

relatively infrequent, but as demonstrated in Figure 4-4, the wing markers disappear with

more regularity. The wing markers also disappear more frequently at the transition

between strokes when the wings are close together. The research team investigated and

determined that as the flat markers used in this experiment came close together, the

cameras would only see one marker instead of two distinct markers. The offset marker

positioning mentioned in Section 3.3 attempted to mitigate this, but was not able to

eliminate the problem completely.

50

Figure 4-4. Plunging and vertical trajectory data for the two distinct climbing trajectories

seen in Figure 4-3. a) Plunging angle recorded during frames 340 - 440. b) Vertical

trajectory recorded during frames 340 - 440. c) Plunging angle recorded during frames

480 - 560. d) Vertical trajectory recorded during frames 480 - 560.

51

4.3.5 Cubic Spline Interpolation

Multiple methods to eliminate the gaps in data introduced by disappearing

markers were investigated. A linear interpolation was first applied, but this method was

abandoned due to the highly nonlinear behavior of the plunging angle. Because the signal

appears somewhat sinusoidal, a Fourier interpolation was next applied. As seen in Figure

4-5, the Fourier interpolation appeared to poorly represent the frequency of flapping. One

explanation for this is that there are flap-to-flap changes in flapping frequency, which

reduces the effectiveness of interpolating while assuming a periodic function. The final

interpolation method attempted was the cubic spline interpolation, also shown in Figure

4-5. The cubic spline interpolation provided a good fit to the already collected data as

well as a better approximation of missing data points than a linear interpolation.

52

Figure 4-5. Plot of two interpolation methods which were investigated to replace data that

was lost by disappearing markers.

4.3.6 Flapping Characteristics

The frequency of the plunging angle was calculated with the Fast Fourier

Transform (FFT), which provides an average frequency over the entire signal. As

previously mentioned, the frequency appears to slightly shift during each flap. This, is

expected as the butterfly makes minor adjustments to control flight or change its

trajectory. However, the variation in the flapping frequency cannot currently be described

due to the low number of sampled points per flap. Sampling at a higher frequency would

shed more light on this phenomenon, and can be pursued in future flight tests. The phase

 was determined using the complex flapping frequency obtained from the FFT by

53

(

(3)

The peak to peak amplitude of the plunge angle was calculated by checking the

derivative at every time step for a change in sign, which for a periodic function should

indicate a peak. When the sign changed from negative to positive, then a local minimum

was expected, while a change from positive to negative should indicate a local maximum.

To reduce the likelihood of a false peak being detected, five data points on either side of

the current frame were checked to ensure that the frame did in fact correspond to a local

extrema. The results of this algorithm are shown in Figure 4-6. The average of the

minima subtracted from the average of the maxima provided average flapping amplitude.

The results of this algorithm can also be used to segment the data for flap-by-flap

analysis. Comparing individual flaps to changes in trajectory could provide more detailed

information on what effects changes in frequency or flapping amplitude have on climbing

flight. To complete this analysis, the data needs to be sampled at a higher frame rate to

capture the true location of the maxima in question. Figure 4-5 and Figure 4-6

demonstrate the problem of low sampling rate, where it is clear that some peaks are not

captured.

54

Figure 4-6. Flapping angle with the peaks identified using the averages of the extrema.

The red diamonds represent local maxima while the red circles represent local minima.

4.3.7 Detrending of Vertical Trajectory

The trajectory of the butterfly, especially in climbing flight, was observed to

consist of a mean flight path and an oscillation. This is clearly seen in Figure 4-7, where

the trajectory is approximately linear, but the body oscillates about themean trend. In

order to better characterize trajectories, as well as collect data on the body oscillations of

a butterfly in flight, a method for detrending the trajectory was devised. This detrending

process utilized a moving average filter which calculated the mean trend of the signal by

 (4)

where is the original signal, is the mean trend, and pan is a parameter

that was used to tune the filter based on the user defined span length . An example

of the instantaneous vertical position compared to the mean trend can be seen in Figure

4-7.

55

Figure 4-7. Example of mean trend extraction. a) Mean trend compared to the actual data, b)

differentiated mean trend against recorded velocity data.

The value of was determined for each data segment by calculating the

mean trend and differentiating it to get a velocity mean trend (Figure 4-7 (b)). When the

oscillations reached a minimum average value in the velocity mean trend, the span was

optimized for a particular flight. Numerical differentiation magnifies trends in data, and

therefore the new velocity mean was used as the metric for the fit of the moving average

filter. The optimal for calculating data was generally found to be on the order of the

body oscillation frequency. One limitation of the moving average filter was that the

was constrained to odd integers. Data was collected at approximately ten data points per

cycle. This did not provide sufficient resolution to settle the exact period of the signal.

This resulted in small residual oscillations in the velocity mean trend which could not be

eliminated.

56

4.3.8 Vertical Body Oscillations

It has been shown that the forward flight of insects with large wings compared to

the body and overlapping fore and hind wings is realized through the passive body

motion [44]. To better characterize the body motion of the butterfly in flight, the mean

trend was subtracted from the vertical position data (Figure 4-7 (a)) resulting in Figure

4-8. The body motion is relatively sinusoidal in nature, and therefore the frequency,

phase and amplitude of body oscillations were calculated by the same method presented

for the flapping data in Section 4.3.6. This methodology and data can be used in the

future to study the effects of both flapping and body motion upon the general flight of

butterflies.

Figure 4-8. Body undulations calculated by subtracting the mean trend from the vertical

position data.

4.4 Results and Discussion

The analysis process described in the previous sections was implemented into a

GUI. The user can quickly view data from a given flight, select data based on quality, as

well as differing trends in trajectory. When these data are selected, the amplitude and

57

frequency of the flapping angle, the vertical position, and the vertical and horizontal

velocities of the butterfly are presented. Next, the user defines the Span of the moving

average filter that will be used to detrend the vertical position data. The Span is refined

until an optimally smooth velocity profile is obtained. At this point, another GUI was

constructed to calculate, and tabulate average characteristics for the data segment

currently selected. The tabulated data contains information specifying the flight the

segment was obtained from, the bounding frames, and the span used for the moving

average filter. The butterfly is identified by its number, mass, wingspan and gender. Six

flight characteristics are calculated: flapping frequency, flapping amplitude, frequency of

body oscillations, amplitude of body oscillations, phase difference between flapping and

body oscillation, and average vertical velocity. In addition, three aerodynamic parameters

were calculated: Reynolds number, Strouhal number and reduced frequency.

The data recorded over 75 flight segments and 9 different butterflies are tabulated

with physical characteristics in Table 4-1. The specimens were chosen for a diverse

representation of the butterflies tested, as well as the quality of the recorded data. The rest

of the butterfly flight data will be post processed and analyzed in the future.

Table 4-1. Physical characteristics of the 9 butterflies compared in this thesis.

Butterfly # Gender
Span wise wing length

[mm]

Mass

 [g]

46 Male 53 0.55

54 Male 45 0.39

55 Male 47 0.47

56 Male 52 0.54

66 Female 49 0.49

67 Female 51 0.51

71 Male 52 0.52

72 Male 54 0.46

75 Female 50 0.46

58

Table 4-2 summarizes the six flight characteristics of interest. The data is

presented as a mean and standard deviation for each butterfly. This provides information

on the variation in flight characteristics that exist between different flight trajectories as

well as different specimens.

Table 4-2. Mean and standard deviation of flight characteristics of 9 butterflies over 75

flights. The frequency of the body oscillations were found to be the same as that of the

flapping frequency, and therefore they are listed as one entity.

Butterfly #

Vertical

Velocity

[mm/s]

Flapping

Amplitude

[o]

Flapping/Body

Frequency

[Hz]

Body

Amplitude

[mm]

Phase

Difference

[o]

46 476 131

247 8.72

9.57 0.214

10.58 0.578

92.6 1.53

 54 579 201

276 13.71

9.53 0.349

9.77 1.061

92.8 2.67

 55 367 216

251 13.35

9.99 0.307

9.23 0.688

93.0 2.86

 56 660 175

264 9.83

10.24 0.326

9.69 1.783

99.2 6.18

 66 387 90

242 15.77

9.38 0.000

9.77 0.936

81.7 4.34

 67 377 98

239 12.30

9.62 0.358

11.31 1.073

81.0 3.72

 71 418 145

215 24.34

9.99 0.633

10.31 1.963

87.8 5.16

 72 249 82

226 7.64

9.63 0.320

9.81 0.579

86.2 2.25

 75 635 292

258 14.91

10.79 0.358

8.25 0.971

90.6 4.88

Flapping frequency remained fairly uniform between 9 Hz and 11 Hz. Also, the

frequency of the undulating motion of the body was consistent with the flapping

frequency, suggesting that the wing motion and the body motion are closely coupled to

each other. The body of the butterfly is pulled up during the wing downstroke and

undulates with a phase lag with the wing motion, as is clearly seen in Figure 4-9. Most

flight dynamics models of flapping wing insects neglect the influence of wing mass and

inertia on the body motion by assuming that the flapping frequency is much higher than

that of the body oscillation and that wing mass is much smaller than the body mass

[15,54]. However, for the considered Monarch butterflies, both flapping and body

59

frequencies are similar to each other and a simplified flight dynamics models may be

inadequate to analyze their dynamics and stability.

Figure 4-9. Time signal of the flapping and body oscillations normalized using the

maximum value of each.

Three non-dimensional parameters were calculated to characterize the flapping

wing aerodynamics of butterflies: the Reynolds number Re, Strouhal number St and

reduced frequency k. The Reynolds number was calculated as

 ref ref

, (5)

where the free stream reference velocity ref is the average velocity of the flight segment,

the reference length ref is measured as half the wing span, which is the length of one

forewing root to tip, and the kinematic viscosity of air was found for 75F at 1 atm.

Reynolds number is a critical parameter in aerodynamics, giving the relative importance

of fluid inertia and viscous effects.

The Strouhal number was calculated by

 ref
 ref

 (6)

60

where f is the flapping frequency of the butterfly. The Strouhal number compares the

velocity of the wing tip in flapping motion to the forward flight of the butterfly, providing

a propulsive efficiency.

Finally, the reduced frequency was calculated as

 ref
 ref

 (7)

Reduced frequency provides a characterization of the measure of unsteadiness by

comparing spatial wavelength of flow disturbance to the wing span [14]. All

dimensionless parameters were calculated from average values over the length of a

particular data segment. The mean and standard deviation of these non-dimensional

parameters were calculated for each of the nine butterflies and are shown in Table 4-3.

Table 4-3. Mean and standard deviation of non-dimensional parameters of 9 butterflies

over 75 flights.

These non-dimensional parameters have been compared to values found in the

literature and they are in reasonable agreement. This experimental method can be used in

Butterfly #

46 5999 375 0.631 0.055 0.920 0.054

54 5156 215 0.587 0.049 0.767 0.036

55 5471 419 0.578 0.057 0.831 0.076

56 5737 724 0.742 0.131 1.010 0.162

66 5820 672 0.542 0.091 0.803 0.092

67 5173 511 0.664 0.092 0.996 0.090

71 5653 790 0.596 0.096 0.999 0.111

72 6842 632 0.531 0.055 0.847 0.075

75 6025 838 0.682 0.130 0.951 0.174

61

the future to measure not only wing kinematics but also commonly used non-dimensional

parameters to aid in creating more accurate numerical and analytic models.

The analysis presented in this chapter will provide a framework to retrieve and analyze

data for future insect motion capture studies. Already, this method has been used in

collaboration with Dr. Amy Lang at the University of Alabama to complement her

experiments on the aerodynamic effects of butterfly scales. However, the data from that

work falls outside of the scope of this thesis and therefore is not presented. It is the belief

of the author that this analysis framework can provide valuable information about the

design of MAVs.

62

CHAPTER 5

5 Conclusions

5.1 Summary

A novel technique utilizing turnkey motion capture software was developed to measure

trajectories and wing kinematics of freely flying butterflies. The procurement, handling, and

measurement of some physical characteristics of the specimens were presented. Reflective

markers were modified in order to reduce their weight and effect on the flight of the butterfly.

One marker placed on the thorax was dedicated to tracking the trajectory of the butterfly. Four

markers placed on the top and bottom of the forewings provided the flapping data. Two markers

placed on the top and bottom of one hind wing provided asymmetry for the processing software

and a reference for calculation of the flapping signal. Over 86 butterflies were tested in more than

2,000 flight tests. A general tendency for the butterflies to climb was noted during testing, leading

to an interest in the vertical position and velocity of the trajectory. The butterflies also

demonstrated a prominent body oscillation in all flights. Methods for analyzing the data were

developed to extract the flapping angle, body oscillation, and vertical trajectory from flight data.

Information on frequency, amplitude, and coupling between the flapping and body oscillations

are presented along with altitude and climbing rate.

63

Some experimental observations based on over 2,000 flight tests and 86 test specimens

are as follows:

 The butterflies' natural tendency was to climb after being released, requiring

continual flapping. Trajectories which included gliding flight were captured

infrequently and mostly for butterflies with scales removed.

 A pronounced oscillation in body oscillation was noticed during all flights, but it

was more pronounced in vertical trajectories with lower horizontal velocities.

 After approximately 10 flights, the butterflies began to noticeably change flight

trajectories, exhibiting a lower vertical velocity. This was attributed to either

tiring butterflies, or getting used to being handled. These effects were mitigated

by only testing each butterfly 10 consecutive flight tests.

 Additional markers added to the forewings were poorly recorded. This may be

due to the small size of the markers, and distance from the cameras compounded

with effects from a change in incidence angle.

Based on a literature survey performed by the author, this study represents the first time

that butterfly body undulation was quantified. The mean trend which is used to extract the body

undulation information can also be used to compare flight trajectories to changes to wing

kinematics. Based on a detailed analysis of 75 flight segments observed over 9 different

butterflies, the following observations were made:

 The flapping angle γ and body undulations were approximately sinusoidal with

respect to time.

 The flapping frequency was measured between 9 Hz and 11 Hz. For all flights

analyzed, the frequency of the flapping angle was equal to that of the body

undulations indicating a coupling between the two characteristics.

64

 A nonzero phase offset between wing and body was recorded for every butterfly

between 80
o

and 100
o
. The variation of this phase offset was more prominent

between specimens than between flight trials of the same specimens. This

indicates that this parameter represents physical characteristics as opposed to

flight characteristics.

 The flapping frequency was observed to change slightly, even during apparently

similar climbing rates.

 The flapping amplitude was found to vary significantly between flights and

butterflies. A loose correlation between flapping amplitude and climb rate was

noted which is consistent with what is found in the literature.

 Body undulation amplitude was found to vary between 5 mm and 15 mm from

peak to peak for all butterflies. This oscillation represents approximately 10% of

the wingspan.

 The values of dimensionless variables presented in this thesis compare well to

what are reported in a survey of the literature conducted by the author.

5.2 Limitations, Consequences, and Implications

The wing kinematics of a butterfly is too complicated to be fully characterized with one

marker on each forewing. The pitching angle of the wings, which have been shown to have

significant effects on lift generation, cannot be determined. Information on the deformation of

wings is also not available with the current marker configuration. The large size of the capture

volume requires the use of relatively large markers and sufficient spacing between them. If the

markers are too small and close together, then the cameras will struggle to distinguish separate

markers. Insects with large wings must be used to ensure sufficient marker size and spacing. The

frame rate achievable by the system also limits the wing beat frequency of the specimen to be

65

studied. Large Lepidopteran with relatively slow wing beat frequencies are well suited to this

experimental method. These characteristics along with a simplified flapping motion also make

these good candidates for mimicry in MAV design.

The analysis techniques presented in this thesis can be used to calculate average

frequency, amplitude and phase information of flapping angle and body undulations. This

information can also be collected for multiple different trajectory types such as steady forward

flight, turning flight, descending flight or accelerating flight. The resolution of these calculations

as well as the accuracy are dependent upon the frame rate as well as the tendency for the butterfly

to change frequency during data segments. An increase in frame rate is accompanied by

challenges including increasing post processing time, and potentially negatively affecting the

quality of data (more disappearing markers). A flap-by-flap analysis is easily implemented in the

analysis framework as the peak definition algorithm provides a reliable method to segment data

per flap.

This experimental method was able to calculate three flight parameters - body undulation

frequency, amplitude and phase - which have not been studied up to this point in Lepidopteran. .

The information provided from these parameters can be used to create more realistic dynamic

models which take body oscillation into consideration.

5.3 Future Work

Observing the wing kinematics of relatively large Lepidopteran in the context of their

undirected trajectories has not been possible to this point. This thesis provides an indepth

description of experiments which can be further refined to study any number of interesting flight

phenomena. The method for analyzing the data from these experiments also provides a

framework that can be built upon in future experiments. Some recommendations for future work

are:

66

1. Increase frame rate to at least 200 Hz to increase the resolution of the time averaged

analysis. An analysis which calculates the six flight characteristics during every flap can

be developed and compared with the time averaged characteristics. This investigation

could be used to determine whether changes in flapping frequency and amplitude during

similar trajectories are relevant to the flight trajectory, or if they occur randomly due to

unpredictable animal behavior.

2. Reduce capture volume size and add additional markers to forewings. The size of the

capture volume affects the resolution of the images the cameras collect of each marker.

As this resolution increases, multiple markers can be placed closer together without being

mistaken for a single marker. These additional markers could be utilized to calculate

more kinematic parameters such as changes in pitch angle, and potentially measure the

deflection of the wing during flight. The effects of these parameters have been widely

studied and linked to lift generation in some insects, including butterflies.

3. This experimental set up can also be used to explore the effects of and response to wind

gusts by insects. This information can be invaluable to developing control algorithms that

deal with wind gusts, which pose a major challenge to MAV development.

4. Comparing Monarch flight to other Lepidopteran members can also provide useful

information. The differing flight strategies of migratory and non-migratory species can

provide insight into flight adaptations and their implications for flight behavior. A

migratory species such as the Monarch relies on efficiency to successfully complete its

migration. This may significantly differ from a species that does not migrate but has

significantly more predators where maneuverability is critical.

5. Develop a method to compare relatively nonlinear flight trajectories in three dimensions.

Three dimensional effects of forward flight velocity which are not accounted for in this

thesis could significantly affect the climbing rate. A change in horizontal direction

67

realized in a turn would also require different wing kinematics than those used in solely

forward climbing and steady flight.

68

APPENDIX A

6 MATLAB Code

function varargout = Butterfly_GUI(varargin)

% BUTTERFLY_GUI M-file for Butterfly_GUI.fig

% BUTTERFLY_GUI, by itself, creates a new

BUTTERFLY_GUI or raises the existing

% singleton*.

%

% H = BUTTERFLY_GUI returns the handle to a new

BUTTERFLY_GUI or the handle to

% the existing singleton*.

%

%

BUTTERFLY_GUI('CALLBACK',hObject,eventData,handles,...)

calls the local

% function named CALLBACK in BUTTERFLY_GUI.M with the

given input arguments.

%

% BUTTERFLY_GUI('Property','Value',...) creates a new

BUTTERFLY_GUI or raises the

% existing singleton*. Starting from the left,

property value pairs are

% applied to the GUI before Butterfly_GUI_OpeningFcn

gets called. An

% unrecognized property name or invalid value makes

property application

% stoData.Pos. All inputs are passed to

Butterfly_GUI_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI

allows only one

% instance to run (singleton)".

69

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help

Butterfly_GUI

% Last Modified by GUIDE v2.5 28-Apr-2015 14:27:03

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @Butterfly_GUI_OpeningFcn, ...

 'gui_OutputFcn', @Butterfly_GUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State,

varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Butterfly_GUI is made visible.

function Butterfly_GUI_OpeningFcn(hObject, eventdata,

handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% varargin command line arguments to Butterfly_GUI (see

VARARGIN)

% Choose default command line output for Butterfly_GUI

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

70

% UIWAIT makes Butterfly_GUI wait for user response (see

UIRESUME)

% uiwait(handles.figure1);

cla(handles.axes1)

cla(handles.axes2)

cla(handles.axes3)

cla(handles.axes4)

set(handles.axes1,'visible','off')

set(handles.axes2,'visible','off')

set(handles.axes3,'visible','off')

set(handles.axes4,'visible','off')

set(handles.popup,'string',{'None';'Cubic-spline';'Auto

Smooth';'Manual Smooth';'Dimensionless'})

set(handles.text7,'Visible','off')

set(handles.text94,'Visible','off')

set(handles.span,'Visible','off')

set(handles.mass,'Visible','off')

legend(handles.axes1,'hide')

legend(handles.axes2,'hide')

legend(handles.axes3,'hide')

legend(handles.axes4,'hide')

% --- Outputs from this function are returned to the

command line.

function varargout = Butterfly_GUI_OutputFcn(hObject,

eventdata, handles)

% varargout cell array for returning output args (see

VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in import.

function import_Callback(hObject, eventdata, handles)

% hObject handle to import (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

global GUI Data

71

Funs = ButterflyGUIFuns;

[Data ,GUI] = Funs.import(GUI,handles);

set(handles.axes1,'visible','on')

set(handles.axes2,'visible','on')

set(handles.axes3,'visible','on')

set(handles.axes4,'visible','on')

% --- Executes on button press in browse.

function browse_Callback(hObject, eventdata, handles)

% hObject handle to browse (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

global GUI

[GUI.file GUI.path] = uigetfile('C:\Users\Jake\Google

Drive\ATOM\Butterfly\Data/*.csv');

[GUI.pathname GUI.filename] = fileparts([GUI.path

GUI.file]);

set(handles.filename,'String',GUI.filename)

function filename_Callback(hObject, eventdata, handles)

% hObject handle to filename (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,'String') returns contents of filename

as text

% str2double(get(hObject,'String')) returns contents

of filename as a double

% --- Executes during object creation, after setting all

properties.

function filename_CreateFcn(hObject, eventdata, handles)

% hObject handle to filename (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on

Windows.

% See ISPC and COMPUTER.

72

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on selection change in linterData.Pos.

function popup_Callback(hObject, eventdata, handles)

% hObject handle to popup (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns

popup contents as cell array

% contents{get(hObject,'Value')} returns selected

item from popup

switch get(handles.popup,'value')

 case 1

 set(handles.text7,'Visible','off')

 set(handles.text94,'Visible','off')

 set(handles.span,'Visible','off')

 set(handles.mass,'Visible','off')

 case 2

 set(handles.text7,'Visible','off')

 set(handles.text94,'Visible','off')

 set(handles.text7,'Visible','off')

 set(handles.text94,'Visible','off')

 set(handles.span,'Visible','off')

 set(handles.mass,'Visible','off')

 case 3

 set(handles.text7,'Visible','off')

 set(handles.text94,'Visible','off')

 set(handles.text7,'Visible','off')

 set(handles.text94,'Visible','off')

 set(handles.span,'Visible','off')

 set(handles.mass,'Visible','off')

 case 4

 set(handles.text7,'Visible','off')

 set(handles.text94,'Visible','on')

 set(handles.text7,'String','Vel Span')

 set(handles.text94,'String','Pos Span')

 set(handles.span,'Visible','on')

 set(handles.mass,'Visible','off')

 case 5

 set(handles.text7,'Visible','on')

73

 set(handles.text94,'Visible','on')

 set(handles.text7,'String','Mass (g)')

 set(handles.text94,'String','Wing Span (mm)')

 set(handles.span,'Visible','on')

 set(handles.mass,'Visible','on')

end

% --- Executes during object creation, after setting all

properties.

function popup_CreateFcn(hObject, eventdata, handles)

% hObject handle to popup (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

% Hint: popupmenu controls usually have a white background

on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function start_Callback(hObject, eventdata, handles)

% hObject handle to start (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,'String') returns contents of start as

text

% str2double(get(hObject,'String')) returns contents

of start as a double

% --- Executes during object creation, after setting all

properties.

function start_CreateFcn(hObject, eventdata, handles)

% hObject handle to start (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

74

% Hint: edit controls usually have a white background on

Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function finish_Callback(hObject, eventdata, handles)

% hObject handle to finish (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,'String') returns contents of finish

as text

% str2double(get(hObject,'String')) returns contents

of finish as a double

% --- Executes during object creation, after setting all

properties.

function finish_CreateFcn(hObject, eventdata, handles)

% hObject handle to finish (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on

Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in apply.

function apply_Callback(hObject, eventdata, handles)

% hObject handle to apply (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

75

global GUI Data

Funs = ButterflyGUIFuns;

switch get(handles.popup,'Value')

 case 1

 [Data, GUI] = Funs.limits(GUI, Data,handles);

 case 2

 [Data, GUI] = Funs.filter(GUI, Data, handles);

 case 3

 [Data, GUI] = Funs.autosmooth(GUI, Data,

handles);

 case 4

 [Data, GUI] = Funs.mansmooth(GUI, Data, handles);

 case 5

 [Data, GUI] = Funs.dimensionless(GUI, Data,

handles);

end

% --- Executes on button press in images.

function images_Callback(hObject, eventdata, handles)

% hObject handle to images (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

global GUI Data

fun = ButterflyGUIFuns;

switch get(handles.popup,'Value');

 case 1

 Butterfly_analysis_GUIcode_export_limits

 case 2

 fun.filterplot(GUI, Data)

 case 3

 fun.smoothplot(GUI,Data)

end

% --- Executes on button press in ENERGYcalc.

function ENERGYcalc_Callback(hObject, eventdata, handles)

% hObject handle to ENERGYcalc (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

global GUI

76

GUI.number =

str2double(get(handles.butterflyNumber,'string'));

Butterfly_Test

function butterflyNumber_Callback(hObject, eventdata,

handles)

% hObject handle to butterflyNumber (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,'String') returns contents of

butterflyNumber as text

% str2double(get(hObject,'String')) returns contents

of butterflyNumber as a double

% --- Executes during object creation, after setting all

properties.

function butterflyNumber_CreateFcn(hObject, eventdata,

handles)

% hObject handle to butterflyNumber (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on

Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes during object deletion, before destroying

properties.

function axes1_DeleteFcn(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

77

% --- Executes during object creation, after setting all

properties.

function axes1_CreateFcn(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

function span_Callback(hObject, eventdata, handles)

% hObject handle to span (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,'String') returns contents of span as

text

% str2double(get(hObject,'String')) returns contents

of span as a double

% --- Executes during object creation, after setting all

properties.

function span_CreateFcn(hObject, eventdata, handles)

% hObject handle to span (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on

Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function mass_Callback(hObject, eventdata, handles)

% hObject handle to mass (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles structure with handles and user data (see

GUIDATA)

78

% Hints: get(hObject,'String') returns contents of mass as

text

% str2double(get(hObject,'String')) returns contents

of mass as a double

% --- Executes during object creation, after setting all

properties.

function mass_CreateFcn(hObject, eventdata, handles)

% hObject handle to mass (see GCBO)

% eventdata reserved - to be defined in a future version

of MATLAB

% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on

Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function out = ButterflyGUIFuns

out.energy = @energy;

out.thesis = @thesis;

out.phase = @PhaseDiff;

out.perflap = @thesis_perflap;

out.table = @Maketable;

out.import = @import;

out.limits = @limits;

out.filter = @filter;

out.autosmooth = @AutoSmooth;

out.mansmooth = @ManualSmooth;

out.amplitude = @PEAKtoPEAK;

out.filterplot = @filterplot;

out.smoothplot = @smoothplot;

out.autospan = @AutoSpan;

out.dimensionless = @dimensionless;

out.importbatch = @importBatch;

out.mansmoothbatch = @ManualSmoothBatch;

out.filterbatch = @filterBatch;

out.perflapbatch = @thesisperflapbatch;

out.batch = @Batch;

out.fft = @FFT;

function [Data, GUI] = import(GUI,handles)

79

fun = ButterflyGUIFuns;

% read data using path and filename specified during browse

GUI.data = xlsread([GUI.path GUI.filename '.CSV']);

% clear all axes

cla(handles.axes1)

cla(handles.axes2)

cla(handles.axes3)

cla(handles.axes4)

% use while loop to separate data into usable variables

% while loop is conditioned so that it breaks when there is

not a number

% in the frame column. This only occurs at the end of a

data collection

% segmant

i = 5;

j = 1;

while isnan(GUI.data(i,1)) == 0

 Data.Pos.frame(j,1) = GUI.data(i,1);

 Data.Pos.Headx(j,1) = GUI.data(i,3);

 Data.Pos.Heady(j,1) = GUI.data(i,4);

 Data.Pos.Headz(j,1) = GUI.data(i,5);

 Data.Pos.LeftWingx(j,1) = GUI.data(i,6);

 Data.Pos.LeftWingy(j,1) = GUI.data(i,7);

 Data.Pos.LeftWingz(j,1) = GUI.data(i,8);

 Data.Pos.RightWingx(j,1) = GUI.data(i,9);

 Data.Pos.RightWingy(j,1) = GUI.data(i,10);

 Data.Pos.RightWingz(j,1) = GUI.data(i,11);

 Data.Pos.LowerWingx(j,1) = GUI.data(i,12);

 Data.Pos.LowerWingy(j,1) = GUI.data(i,13);

 Data.Pos.LowerWingz(j,1) = GUI.data(i,14);

 i = i+1;

 j = j+1;

end

clear i j

% remove velocity headers from import and only extract head

information

i = length(Data.Pos.frame)+12;

80

j = 1;

for k = i:length(GUI.data)

 Data.Vel.frame(j,1) = GUI.data(k,1);

 Data.Vel.Headxdot(j,1) = GUI.data(k,3);

 Data.Vel.Headydot(j,1) = GUI.data(k,4);

 Data.Vel.Headzdot(j,1) = GUI.data(k,5);

 j = j+1;

end

clear i j k

%forming 3-D vectors for position and velocity

% distance from left wing to head

Data.Pos.v1x = Data.Pos.LeftWingx - Data.Pos.Headx;

Data.Pos.v1y = Data.Pos.LeftWingy - Data.Pos.Heady;

Data.Pos.v1z = Data.Pos.LeftWingz - Data.Pos.Headz;

Data.Pos.v1 = [Data.Pos.v1x Data.Pos.v1y Data.Pos.v1z]';

% distance from right wing to head

Data.Pos.v2x = Data.Pos.RightWingx - Data.Pos.Headx;

Data.Pos.v2y = Data.Pos.RightWingy - Data.Pos.Heady;

Data.Pos.v2z = Data.Pos.RightWingz - Data.Pos.Headz;

Data.Pos.v2 = [Data.Pos.v2x Data.Pos.v2y Data.Pos.v2z]';

% distance from lower left wing to head

Data.Pos.v3x = Data.Pos.LowerWingx - Data.Pos.Headx;

Data.Pos.v3y = Data.Pos.LowerWingy - Data.Pos.Heady;

Data.Pos.v3z = Data.Pos.LowerWingz - Data.Pos.Headz;

Data.Pos.v3 = [Data.Pos.v3x Data.Pos.v3y Data.Pos.v3z]';

GUI.dt = 1/GUI.data(1,1);

for i = 1:length(Data.Pos.frame)

 % flapping angle

 % calculate angle between two vectors

 Data.Pos.angle(i) =

atan2(norm(cross(Data.Pos.v1(:,i),Data.Pos.v2(:,i))),dot(Da

ta.Pos.v1(:,i),Data.Pos.v2(:,i)));

 % establish sign

 Data.Pos.crossproduct(i) =

dot(cross(Data.Pos.v1(:,i),Data.Pos.v2(:,i)),Data.Pos.v3(:,

i));

 if Data.Pos.crossproduct(i) > 0

81

 Data.Pos.angleindegree(i) = 360-

Data.Pos.angle(i)*180/pi;

 elseif Data.Pos.crossproduct(i) == 0

 Data.Pos.angleindegree(i) =

Data.Pos.angle(i)*180/pi;

 elseif Data.Pos.crossproduct(i) < 0

 Data.Pos.angleindegree(i) =

Data.Pos.angle(i)*180/pi;

 elseif isnan(Data.Pos.crossproduct(i))==1

 Data.Pos.angleindegree(i) = 0;

 end

 % establish time vector

 if i == 1

 Data.Pos.t(i) = 0;

 else

 Data.Pos.t(i) = Data.Pos.t(i-1)+ GUI.dt;

 end

end

for j = 1:length(Data.Vel.frame)

 % calculate horizontal velocity

 Data.Vel.horizontalvel(:,j) =

[Data.Vel.Headxdot(j);Data.Vel.Headydot(j)];

 Data.Vel.horizontalspeed(j) =

norm(Data.Vel.horizontalvel(:,j),2);

 % calculate flight direction

 Data.Vel.direction(j) =

atan2(Data.Vel.Headxdot(j),Data.Vel.Headydot(j));

 % establish time vector

 if j == 1

 Data.Vel.t(j) = 0;

 else

 Data.Vel.t(j) = Data.Vel.t(j-1)+ GUI.dt;

 end

end

% on import, the entire data segment is displayed for

segmenting later

GUI.start = 1;

GUI.finish = length(Data.Pos.frame);

GUI.intv = GUI.start:GUI.finish;

% remove 180 deg jumps in velocity data

Data.Vel.direction = unwrap(Data.Vel.direction);

Data.Vel.directionindegree = Data.Vel.direction*180/pi;

82

% [maxFFTfreq, maxFFTindex , f, Y]

[~,~,Data.Pos.f, Data.Pos.Y] = fun.fft(

Data.Pos.angleindegree);

% average velocity

Data.Vel.Headzdotavg = Data.Vel.Headzdot;

Data.Vel.horizontalspeedavg = Data.Vel.horizontalspeed;

% remove instances where head data does not exist so an

average can

% be taken

Data.Vel.horizontalspeedavg(isnan(Data.Vel.horizontalspeeda

vg)==1) = [];

Data.Vel.Headzdotavg(isnan(Data.Vel.Headzdotavg)==1) = [];

% ensure that velocity data is not shorter than desired

interval

if length(GUI.intv)>length(Data.Vel.Headzdotavg)

 GUI.intvavg = 1:length(Data.Vel.Headzdotavg);

else

 GUI.intvavg = GUI.intv;

end

Data.Vel.AVGhorizontal =

sum(Data.Vel.horizontalspeedavg(GUI.intvavg)) ...

 /length(Data.Vel.horizontalspeed(GUI.intvavg));

Data.Vel.AVGvertical =

sum(Data.Vel.Headzdotavg(GUI.intvavg)) ...

 /length(Data.Vel.Headzdot(GUI.intvavg));

% Plot angle between wing markers

hold(handles.axes1,'off')

plot(handles.axes1,Data.Pos.frame(GUI.intv),Data.Pos.anglei

ndegree(GUI.intv),'k')

xlabel(handles.axes1,'Frame (s)')

ylabel(handles.axes1,'Flapping Angle (deg)')

grid(handles.axes1,'on')

hold(handles.axes1,'off')

% Plot FFT of angle between wings

plot(handles.axes2,Data.Pos.f,Data.Pos.Y)

xlabel(handles.axes2,'Frequency (Hz)')

ylabel(handles.axes2,'|Y(f)|')

grid(handles.axes2,'on')

% Plot average horizontal and vertical speeds

plot(handles.axes3,Data.Vel.frame(GUI.intvavg),Data.Vel.hor

izontalspeed(GUI.intvavg),'r',Data.Vel.frame,Data.Vel.Headz

dot)

xlabel(handles.axes3,'Frame')

83

ylabel(handles.axes3,'Magnitude of Velocity (mm/s)')

legend(handles.axes3,'Horizontal','Vertical','Location','SW

')

grid(handles.axes3,'on')

plot(handles.axes4,Data.Pos.frame(GUI.intv),Data.Pos.Headz(

GUI.intv))

ylabel(handles.axes4,'z-axis position (mm)')

xlabel(handles.axes4,'Frame')

grid(handles.axes4,'on')

function [Data, GUI] = limits(GUI, Data, handles)

% initialize the use of previously defined functions

fun = ButterflyGUIFuns;

% get bounding frames for the interval of interest

GUI.start = str2double(get(handles.start,'string'));

GUI.finish = str2double(get(handles.finish,'string'));

% find index that correspond to the desired frame interval

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

% remove 180 deg jumps in data

Data.Vel.direction = unwrap(Data.Vel.direction);

Data.Vel.directionindegree = Data.Vel.direction*180/pi;

% calculate the fast fourier transform using the function

FFT

[Data, GUI] = fun.fft(GUI, Data);

% average velocity

% define new variables

Data.Vel.Headzdotavg = Data.Vel.Headzdot;

Data.Vel.horizontalspeedavg = Data.Vel.horizontalspeed;

% remove data where head marker is not present

Data.Vel.horizontalspeedavg(isnan(Data.Vel.horizontalspeeda

vg)==1) = [];

Data.Vel.Headzdotavg(isnan(Data.Vel.Headzdotavg)==1) = [];

GUI.intvavg = GUI.startindex:GUI.finishindex;

% calculate averages

Data.Vel.AVGhorizontal =

mean(Data.Vel.horizontalspeedavg(GUI.intvavg));

84

Data.Vel.AVGvertical =

mean(Data.Vel.Headzdotavg(GUI.intvavg));

% generate plots to gui axes

hold(handles.axes1,'off')

plot(handles.axes1,Data.Pos.frame(GUI.intv),Data.Pos.anglei

ndegree(GUI.intv),'k')

xlabel(handles.axes1,'Frame')

ylabel(handles.axes1,'Flapping Angle (deg)')

set(handles.axes1,'xlim',[GUI.start GUI.finish])

grid(handles.axes1,'on')

hold(handles.axes1,'off')

% Plot FFT of angle between wings

hold(handles.axes2,'off')

plot(handles.axes2,Data.Pos.f(GUI.LPF:GUI.NFFT/2+1),2*abs(D

ata.Pos.Y(GUI.LPF:GUI.NFFT/2+1)))

xlabel(handles.axes2,'Frequency (Hz)')

ylabel(handles.axes2,'|Y(f)|')

set(handles.axes2,'ylim', [0 200])

grid(handles.axes2,'on')

hold(handles.axes2,'off')

% Plot average horizontal and vertical speeds

hold(handles.axes3,'off')

plot(handles.axes3,Data.Pos.frame(GUI.intv),Data.Vel.horizo

ntalspeed(GUI.intv),'r',Data.Pos.frame(GUI.intv),Data.Vel.H

eadzdot(GUI.intv))

xlabel(handles.axes3,'Frame')

ylabel(handles.axes3,'Magnitude of Velocity (mm/s)')

legend(handles.axes3,'Horizontal','Vertical','Location','SW

')

grid(handles.axes3,'on')

set(handles.axes3,'xlim',[GUI.start GUI.finish])

hold(handles.axes3,'off')

hold(handles.axes4,'off')

plot(handles.axes4,Data.Pos.frame(GUI.intv),Data.Pos.Headz(

GUI.intv))

xlabel(handles.axes4,'Frame')

ylabel(handles.axes4,'Vertical displacement(mm)')

grid(handles.axes4,'on')

set(handles.axes4,'Xlim',[GUI.start GUI.finish])

hold(handles.axes4,'off')

85

function [Data, GUI] = filter(GUI, Data, handles)

% initialize the use of other functions

fun = ButterflyGUIFuns;

% gather data from gui text boxes

GUI.start = str2double(get(handles.start,'string'));

GUI.finish = str2double(get(handles.finish,'string'));

Data.Pos.Span = str2double(get(handles.span,'string'));

Data.Vel.Span = str2double(get(handles.mass,'string'));

% define the index interval for the frames of interest

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

% define new variables for wing angle (x) and frame (t)

x = Data.Pos.angleindegree(GUI.intv);

t = Data.Pos.frame(GUI.intv);

% remove all frames where wing angle is equal to 0

t(x == 0) = [];

x(x ==0) = [];

% create a time increment for the spline interpolation

tinc = GUI.data(1,1)/100;

Data.Pos.frame_spl = GUI.start:tinc:GUI.finish;

% calculate interpolation

Data.Pos.anglefilt = spline(t,x,Data.Pos.frame_spl);

% amplitude of wing angle using PEAKtoPEAK

[Data.Pos.Wing.Max, Data.Pos.Wing.Min] =

fun.amplitude(Data.Pos.frame_spl, Data.Pos.anglefilt);

% remove 180 deg jumps in data

Data.Vel.direction = unwrap(Data.Vel.direction);

Data.Vel.directionindegree = Data.Vel.direction*180/pi;

% calculate fast fourier transform using function FFT

[Data, GUI] = fun.fft(GUI ,Data);

% average velocity

% define new variables

Data.Vel.Headzdotavg = Data.Vel.Headzdot;

Data.Vel.horizontalspeedavg = Data.Vel.horizontalspeed;

% remove data where head marker is not present

86

Data.Vel.horizontalspeedavg(isnan(Data.Vel.horizontalspeeda

vg)==1) = [];

Data.Vel.Headzdotavg(isnan(Data.Vel.Headzdotavg)==1) = [];

GUI.intvavg = GUI.startindex:GUI.finishindex;

% calculate averages

Data.Vel.AVGhorizontal =

mean(Data.Vel.horizontalspeedavg(GUI.intvavg));

Data.Vel.AVGvertical =

mean(Data.Vel.Headzdotavg(GUI.intvavg));

% clear axes

cla(handles.axes1)

cla(handles.axes2)

cla(handles.axes3)

cla(handles.axes4)

% Plot angle between wing markers

hold(handles.axes1,'off')

plot(handles.axes1,Data.Pos.frame_spl,Data.Pos.anglefilt,'k

')

hold(handles.axes1,'on')

plot(handles.axes1,Data.Pos.Wing.Max(:,1),Data.Pos.Wing.Max

(:,2),'xr')

plot(handles.axes1,Data.Pos.Wing.Min(:,1),Data.Pos.Wing.Min

(:,2),'ro')

text(GUI.start,10,num2str(mean(Data.Pos.Wing.Max(:,2))- ...

 mean(Data.Pos.Wing.Min(:,2))), 'Parent',handles.axes1)

xlabel(handles.axes1,'Frame')

ylabel(handles.axes1,'Flapping Angle (deg)')

set(handles.axes1,'xlim',[GUI.start GUI.finish])

grid(handles.axes1,'on')

hold(handles.axes1,'on')

% Plot FFT of angle between wings

hold(handles.axes2,'off')

plot(handles.axes2,Data.Pos.f(GUI.LPF:GUI.NFFT/2+1),2*abs(D

ata.Pos.Y(GUI.LPF:GUI.NFFT/2+1)))

hold(handles.axes2,'on')

plot(handles.axes2,Data.Pos.maxFFTfreq,Data.Pos.maxFFT,'xr'

)

text(floor(Data.Pos.maxFFTfreq)+2,Data.Pos.maxFFT, ...

 num2str(Data.Pos.maxFFTfreq),'Parent',handles.axes2)

xlabel(handles.axes2,'Frequency (Hz)')

ylabel(handles.axes2,'|Y(f)|')

set(handles.axes2,'ylim', [0 200])

set(handles.axes2,'xlim', [0 50])

grid(handles.axes2,'on')

87

hold(handles.axes2,'off')

% Plot average horizontal and vertical speeds

hold(handles.axes3,'off')

plot(handles.axes3,Data.Pos.frame(GUI.intv),Data.Vel.horizo

ntalspeed(GUI.intv),'r',Data.Pos.frame(GUI.intv),Data.Vel.H

eadzdot(GUI.intv))

xlabel(handles.axes3,'Frame')

ylabel(handles.axes3,'Magnitude of Velocity (mm/s)')

legend(handles.axes3,'Horizontal','Vertical','Location','SW

')

grid(handles.axes3,'on')

set(handles.axes3,'xlim',[GUI.start GUI.finish])

hold(handles.axes3,'off')

hold(handles.axes4,'off')

plot(handles.axes4,Data.Pos.frame(GUI.intv),Data.Pos.Headz(

GUI.intv))

xlabel(handles.axes4,'Frame')

ylabel(handles.axes4,'Vertical displacement(mm)')

set(handles.axes4,'xlim',[GUI.start GUI.finish])

grid(handles.axes4,'on')

hold(handles.axes4,'off')

function [Data, GUI] = ManualSmooth(GUI, Data, handles)

% initialize the use of other functions

fun = ButterflyGUIFuns;

% gather data from gui text boxes

GUI.start = str2double(get(handles.start,'string'));

GUI.finish = str2double(get(handles.finish,'string'));

Data.Pos.Span = str2double(get(handles.span,'string'));

Data.Vel.Span = str2double(get(handles.mass,'string'));

% define the index interval for the frames of interest

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

% create extra variables for the frame, position and

velocity of head

% marker

f = Data.Vel.frame(GUI.intv);

fP = Data.Pos.frame(GUI.intv);

zdotspl = Data.Vel.Headzdot(GUI.intv);

zspl = Data.Pos.Headz(GUI.intv);

88

% remove data where the head marker position and velocity

are not available

f(isnan(zdotspl)==1)=[];

zdotspl(isnan(zdotspl)==1)=[];

fP(isnan(zspl) == 1)=[];

zspl(isnan(zspl)==1)=[];

% create a spline interpolation for every frame on the

interval

Data.Vel.Headzdotspline =

spline(f,zdotspl,GUI.start:GUI.finish);

Data.Pos.Headzspline =

spline(fP,zspl,GUI.start:GUI.finish);

% moving average filter over position data using input from

GUI textbox

Data.Pos.smooth = smooth(Data.Pos.Headzspline,

Data.Pos.Span);

% differentiate smoothed data with respect to time for

comparison with

% measured velocity

Data.Vel.smooth = diff(Data.Pos.smooth)/0.01;

Data.Vel.smooth = [Data.Vel.smooth; Data.Vel.smooth(end)];

% subtract smoothed data from the initial data

Data.Pos.Smooth.undulation = Data.Pos.Headzspline'-

Data.Pos.smooth;

% calculate peaks using the function PEAKtoPEAK

[Data.Pos.Smooth.Max Data.Pos.Smooth.Min] =

fun.amplitude(...

 Data.Pos.frame(GUI.intv), Data.Pos.Smooth.undulation);

% calculate fast fourier transform using function FFT

[Data, GUI] = fun.fft(GUI ,Data);

% generating plots on each of the axes

hold(handles.axes1,'off')

plot(handles.axes1,Data.Pos.frame(GUI.intv),

Data.Pos.Smooth.undulation)

hold(handles.axes1,'on')

plot(handles.axes1,Data.Pos.Smooth.Max(:,1),Data.Pos.Smooth

.Max(:,2),'xr')

plot(handles.axes1,Data.Pos.Smooth.Min(:,1),Data.Pos.Smooth

.Min(:,2),'ro')

line(get(handles.axes1,'Xlim'),[mean(Data.Pos.Smooth.undula

tion) ...

89

mean(Data.Pos.Smooth.undulation)],'Parent',handles.axes1)

set(handles.axes1,'xlim',[GUI.start GUI.finish])

xlabel(handles.axes1,'Frame')

ylabel(handles.axes1,'Vertical displacement(mm)')

grid(handles.axes1,'on')

hold(handles.axes1,'off')

hold(handles.axes2,'off')

plot(handles.axes2,Data.Pos.Smooth.f(GUI.LPF:GUI.NFFT/2+1),

2*abs(Data.Pos.Smooth.Y(GUI.LPF:GUI.NFFT/2+1)))

hold(handles.axes2,'on')

plot(handles.axes2,Data.Pos.Smooth.maxFFTfreq,Data.Pos.Smoo

th.maxFFT,'xr')

text(floor(Data.Pos.Smooth.maxFFTfreq)+2,Data.Pos.Smooth.ma

xFFT, ...

num2str(Data.Pos.Smooth.maxFFTfreq),'Parent',handles.axes2)

xlabel(handles.axes2,'Frequency (Hz)')

ylabel(handles.axes2,'|Y(f)|')

set(handles.axes2,'ylim', [0 10])

set(handles.axes2,'xlim', [0 50])

grid(handles.axes2,'on')

hold(handles.axes2,'off')

hold(handles.axes3,'off')

plot(handles.axes3,

Data.Vel.frame(GUI.intv),Data.Vel.Headzdot(GUI.intv),...

 Data.Vel.frame(GUI.intv),Data.Vel.smooth)

xlabel(handles.axes3,'Frame')

ylabel(handles.axes3,'Vertical velocity (mm/s)')

set(handles.axes3,'xlim',[GUI.start GUI.finish])

grid(handles.axes3,'on')

legend(handles.axes3,'Data',['Span '

num2str(Data.Vel.Span)],'location','SouthEast')

hold(handles.axes3,'off')

hold(handles.axes4,'off')

plot(handles.axes4,Data.Pos.frame(GUI.intv),Data.Pos.Headz(

GUI.intv), ...

 Data.Pos.frame(GUI.intv),Data.Pos.smooth);

set(handles.axes4,'xlim',[GUI.start GUI.finish])

grid(handles.axes4,'on')

xlabel(handles.axes4,'Frame')

ylabel(handles.axes4,'Vertical displacement(mm)')

legend(handles.axes4,'Data',['Span '

num2str(Data.Pos.Span)],'location','SouthEast')

hold(handles.axes4,'off')

90

function [Data, GUI] = AutoSmooth(GUI, Data, handles)

% initialize the use of other functions

fun = ButterflyGUIFuns;

% gather data from gui text boxes

GUI.start = str2double(get(handles.start,'string'));

GUI.finish = str2double(get(handles.finish,'string'));

Data.Pos.Span = str2double(get(handles.span,'string'));

Data.Vel.Span = str2double(get(handles.mass,'string'));

% define the index interval for the frames of interest

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

% spline interpolate the head velocity and position

Data.Vel.Headzdotspline = spline(Data.Vel.frame(GUI.intv),

...

 Data.Vel.Headzdot(GUI.intv),GUI.start:GUI.finish);

Data.Pos.Headzspline = spline(Data.Pos.frame(GUI.intv), ...

 Data.Pos.Headz(GUI.intv),GUI.start:GUI.finish);

% call function AutoSpan from list to calculate optimal

span

[Data.Pos.Span, Data.Vel.Span] = fun.autospan(...

 Data.Pos.frame(GUI.intv), Data.Pos.Headzspline ...

 ,Data.Vel.frame(GUI.intv), Data.Vel.Headzdotspline);

% apply smoothing average filter to the data with the

corresponding

% values of span calculated in the lines above

Data.Pos.smooth = smooth(Data.Pos.Headzspline,

Data.Pos.Span);

Data.Vel.smooth = smooth(Data.Vel.Headzdot(GUI.intv),

Data.Vel.Span);

% subtract the smoothed data from the captured data, result

is sine like

% wave

Data.Pos.Smooth.undulation =

spline(Data.Pos.frame(GUI.intv), ...

 Data.Pos.Headz(GUI.intv)-

Data.Pos.smooth,GUI.start:GUI.finish);

% calculate amplitude of body undulations calculated in the

previous step

91

[Data.Pos.Smooth.Max Data.Pos.Smooth.Min] =

fun.amplitude(...

 Data.Pos.frame(GUI.intv), Data.Pos.Smooth.undulation);

% calculate the fast fourier transform of the undulations

[Data, GUI] = fun.fft(GUI, Data);

% generate plots for the GUI

hold(handles.axes1,'off')

plot(handles.axes1,Data.Pos.frame(GUI.intv),

Data.Pos.Smooth.undulation)

hold(handles.axes1,'on')

plot(handles.axes1,Data.Pos.Smooth.Max(:,1),Data.Pos.Smooth

.Max(:,2),'xr')

plot(handles.axes1,Data.Pos.Smooth.Min(:,1),Data.Pos.Smooth

.Min(:,2),'ro')

line(get(handles.axes1,'Xlim'),[mean(Data.Pos.Smooth.undula

tion) ...

mean(Data.Pos.Smooth.undulation)],'Parent',handles.axes1)

set(handles.axes1,'xlim',[GUI.start GUI.finish])

xlabel(handles.axes1,'Frame')

ylabel(handles.axes1,'Vertical displacement(mm)')

legend(['Span ' num2str(Data.Pos.Span)],['Average ' ...

 num2str(mean(Data.Pos.Smooth.Max(:,2))- ...

 mean(Data.Pos.Smooth.Min(:,2)))])

grid(handles.axes1,'on')

hold(handles.axes1,'off')

hold(handles.axes2,'off')

plot(handles.axes2,Data.Pos.Smooth.f(GUI.LPF:GUI.NFFT/2+1),

2*abs(Data.Pos.Smooth.Y(GUI.LPF:GUI.NFFT/2+1)))

hold(handles.axes2,'on')

plot(handles.axes2,Data.Pos.Smooth.maxFFTfreq,Data.Pos.Smoo

th.maxFFT,'xr')

text(floor(Data.Pos.Smooth.maxFFTfreq)+2,Data.Pos.Smooth.ma

xFFT, ...

num2str(Data.Pos.Smooth.maxFFTfreq),'Parent',handles.axes2)

xlabel(handles.axes2,'Frequency (Hz)')

ylabel(handles.axes2,'|Y(f)|')

set(handles.axes2,'ylim', [0 10])

set(handles.axes2,'xlim', [0 50])

grid(handles.axes2,'on')

hold(handles.axes2,'off')

hold(handles.axes3,'off')

92

plot(handles.axes3,

Data.Vel.frame(GUI.intv),Data.Vel.Headzdot(GUI.intv),...

 Data.Vel.frame(GUI.intv),Data.Vel.smooth)

xlabel(handles.axes3,'Frame')

ylabel(handles.axes3,'Vertical velocity (mm/s)')

set(handles.axes3,'xlim',[GUI.start GUI.finish])

grid(handles.axes3,'on')

legend(handles.axes3,'Data',['Span '

num2str(Data.Vel.Span)],'location','SouthEast')

hold(handles.axes3,'off')

hold(handles.axes4,'off')

plot(handles.axes4,Data.Pos.frame(GUI.intv),Data.Pos.Headz(

GUI.intv), ...

 Data.Pos.frame(GUI.intv),Data.Pos.smooth);

set(handles.axes4,'xlim',[GUI.start GUI.finish])

grid(handles.axes4,'on')

xlabel(handles.axes4,'Frame')

ylabel(handles.axes4,'Vertical displacement(mm)')

legend(handles.axes4,'Data',['Span '

num2str(Data.Pos.Span)],'location','SouthEast')

hold(handles.axes4,'off')

function [Max, Min] = PEAKtoPEAK(frame, data)

% set up a new variable

data1 = data;

% set the desired length of the vector data

data = ones(length(data)+20,1);

% put the data input into the vector of ones, leaving the

first 7 and last

% 6 values equal to 1

data(7:length(data1)+6) = data1;

j = 1;

k = 1;

for i = 7:length(frame)+6

 % approximating the sign of the derivative (time is

ALWAYS positive)

 der(i+1) = (data(i+1)-data(i));

 % check if derivative is positive or negative

 if isreal(sqrt(der(i+1))) ~= isreal(sqrt(der(i)))

 % determine if the derivative went from + to - or

vice versa

 switch isreal(sqrt(der(i)))

 case 1

 % if + to -, check if local maximum

 if data(i) == max(data(i-5:i+5))

 % save frame and value of maxima

93

 Max(k,:) = [frame(i-6) data(i)];

 k = k+1;

 end

 case 0

 % if - to +, check if local minima

 if data(i) == min(data(i-5:i+5)) ||

min(data(i:i+5)) == 1

 % save frame and value of minima

 Min(j,:) = [frame(i-6) data(i)];

 j = j+1;

 end

 end

 end

end

function [Data, GUI] = dimensionless(GUI, Data, handles)

%http://www.engineeringtoolbox.com/dry-air-properties-

d_973.html

% Calculating Reynolds Number

kinvisc = [1.343 1.568];

Temp = [275 300];

Data.dim.kinvisc = linterp(Temp,kinvisc,297.15)*10^-5; %

m^2 / s

Data.dim.Uref = sqrt(Data.Vel.Headxdot(GUI.intv).^2 + ...

 Data.Vel.Headydot(GUI.intv).^2 ...

 + Data.Vel.Headzdot(GUI.intv).^2)/1000; % m/s

Data.dim.Uref(isnan(Data.dim.Uref)==1)=[];

Data.dim.Lref =

str2double(get(handles.span,'string'))/1000; % m

Data.dim.Re = Data.dim.Uref .*Data.dim.Lref ./

Data.dim.kinvisc;

% Calculating Strouhal number

Data.dim.angle = pi/(2*180) *(mean(Data.Pos.Wing.Max(:,2))

- ...

 mean(Data.Pos.Wing.Min(:,2)));

Data.dim.freq = Data.Pos.maxFFTfreq;

Data.dim.ha = Data.dim.Lref*Data.dim.angle;

Data.dim.St = Data.dim.freq * Data.dim.ha ./ Data.dim.Uref;

% Calculating reduced frequency

Data.dim.k = pi*Data.dim.freq*Data.dim.Lref

./Data.dim.Uref;

% Calculating energy at each point of the flight

Data.dim.mass =

str2double(get(handles.mass,'string'))/1000;

Data.dim.KE = (1/2) * Data.dim.mass * Data.dim.Uref.^2;

94

Data.dim.PE = Data.dim.mass * Data.Pos.Headz(GUI.intv) *

9.81;

Data.dim.E = Data.dim.KE+Data.dim.PE;

% Plots

hold(handles.axes1,'off')

plot(handles.axes1,Data.dim.E,Data.dim.Re)

xlabel(handles.axes1,'Frame')

ylabel(handles.axes1,'Re')

xtext = get(handles.axes1,'xlim');

ytext = get(handles.axes1,'ylim');

onefourth = 0.25*(ytext(2)-ytext(1));

text(xtext(1),ytext(1)+onefourth,['Avg Re: '

num2str(mean(Data.dim.Re))]...

 ,'Parent',handles.axes1)

% xlim(handles.axes1,[GUI.start GUI.finish])

grid(handles.axes1,'on')

hold(handles.axes2,'off')

plot(handles.axes2,Data.dim.E,Data.dim.St)

xtext = get(handles.axes2,'xlim');

ytext = get(handles.axes2,'ylim');

onefourth = 0.25*(ytext(2)-ytext(1));

text(xtext(1),ytext(1)+onefourth,['Avg St: '

num2str(mean(Data.dim.St))]...

 ,'Parent',handles.axes2)

xlabel(handles.axes2,'Frame')

ylabel(handles.axes2,'St')

% xlim(handles.axes2,[GUI.start GUI.finish])

grid(handles.axes2,'on')

hold(handles.axes3,'off')

plot(handles.axes3,Data.dim.E,Data.dim.k)

xtext = get(handles.axes3,'xlim');

ytext = get(handles.axes3,'ylim');

onefourth = 0.25*(ytext(2)-ytext(1));

text(xtext(1),ytext(1)+onefourth,['Avg k: '

num2str(mean(Data.dim.k))] ...

 ,'Parent',handles.axes3)

xlabel(handles.axes3,'Frame')

ylabel(handles.axes3,'k')

% xlim(handles.axes3,[GUI.start GUI.finish])

grid(handles.axes3,'on')

function [maxFFTfreq, maxFFTindex , f, Y] = FFT(signal)

Tincrements = 100; % 100 Hz for data collected

Fs = Tincrements; % Sampling frequency

95

L = length(signal); % Length of signal

NFFT = 2^nextpow2(L); % Next power of 2 from length of

angleindegree

Y = fft(signal,NFFT)/L;

f = Fs/2*linspace(0,1,NFFT/2+1);

LPF = 3; % Low Pass Filter

Value

[~, maxFFTindex] = max(2*abs(Y(LPF:NFFT/2+1)));

maxFFTfreq = f(maxFFTindex+LPF-1);

Y = 2*abs(Y(1:NFFT/2+1));

function [SpanPos SpanVel] = AutoSpan(t,X,vt,V)

% initialize the use of other functions

fun = ButterflyGUIFuns;

% ensure that length of vectors are odd

if isinteger(length(t)/2) == 0

 len = length(t)-1;

else

 len = length(t);

end

it = 1;

% test span from 3 to 31 for position

for i = 3:2:31

 XX = smooth(X,i);

 % determine amplitude between original signal and

filtered

 [PosMax, PosMin] = fun.amplitude(t,X'-XX);

 % determine peak to peak amplitude and save to vector

 PosAVG(it,:) = [i mean(PosMax(:,2))-mean(PosMin(:,2))];

 it = it+1;

end

it = 1;

% test span from 3 to 31 for velocity

for i = 3:2:len

 VV = smooth(V,i);

 % determine amplitude of the signal calculated as the

difference

 % between original signal and filtered

 [VelMax, VelMin] = fun.amplitude(vt,VV);

 % determine peak to peak amplitude and save to vector

 VelAVG(it,:) = [i mean(VelMax(:,2))-mean(VelMin(:,2))];

 it = it+1;

end

96

% determine minimum peak to peak amplitude for velocity

[~, VelINDEX] = min(VelAVG(:,2));

% determine maximum peak to peak amplitude for position

[~, PosINDEX] = max(PosAVG(:,2));

% most appropriate span maximizes the peak to peak

amplitude of oscillatory

% signal

SpanPos = PosAVG(PosINDEX,1);

% most appropriat span for velocity minimizes peaks in data

SpanVel = VelAVG(VelINDEX,1);

%Table GUI

function [Data, GUI] = thesis_perflap(GUI, Data, handles)

% initialize the functions for further use

fun = ButterflyGUIFuns;

% specify new variables for convinience

f = Data.Pos.frame(GUI.intv);

t = f/100;

z = Data.Pos.Headz(GUI.intv);

zdot = Data.Vel.Headzdot(GUI.intv);

zsmooth = Data.Pos.smooth;

zdotsmooth = Data.Vel.smooth;

anglefilt = Data.Pos.anglefilt;

u = Data.Pos.Smooth.undulation;

% read mass from the text input box on GUI and convert to

kg

Data.perflap.mass =

str2double(get(handles.mass,'string'))/1000;

% read half wing span from text input box on GUI and

convert to m

Data.perflap.span =

str2double(get(handles.thesis_span,'string'))/1000;

% read popup menu to record gender of specimen

switch get(handles.gender,'Value')

 case 1

 Data.perflap.gender = 'M';

 case 2

 Data.perflap.gender = 'F';

end

97

% calculate location of every local extrema for flapping

and undulation

[Max_angle, Min_angle] = fun.amplitude(f, anglefilt);

[Max_u, Min_u] = fun.amplitude(f, u);

% locate index which relates to each local maxima for

flapping angle

[~,index] = ismember(Max_angle(:,1)/100,t);

Data.perflap.index = index;

% calculate parameters of interest for each flap, defined

as data between

% local maxima

for i = 2:length(index)-1

 Data.perflap.anglefilt{i} =

anglefilt(index(i):index(i+1));

 Data.perflap.frame{i} = f(index(i):index(i+1));

 Data.perflap.z{i} = z(index(i):index(i+1));

 Data.perflap.zsmooth{i} = zsmooth(index(i):index(i+1));

 Data.perflap.climb{i} = mean(Data.perflap.zsmooth{i});

 Data.perflap.u{i} = u(index(i):index(i+1));

 Data.perflap.t{i} = t(index(i):index(i+1));

 Data.perflap.zdot{i} = zdot(index(i):index(i+1));

 Data.perflap.zdotsmooth{i} =

zdotsmooth(index(i):index(i+1));

 Data.perflap.freq(i) = (Data.perflap.t{i}(end)-

Data.perflap.t{i}(1))^-1;

 Data.perflap.phase_min(i) = ((Min_angle(i,1) -

Min_u(i,1))* ...

 3.60*Data.perflap.freq(i));

 Data.perflap.phase_max(i) = ((Max_angle(i,1) -

Max_u(i,1))* ...

 3.60*Data.perflap.freq(i));

 Data.perflap.phase(i) = mean([Data.perflap.phase_min(i)

...

 Data.perflap.phase_max(i)]);

 Data.perflap.newTable(i,:) = {GUI.filename GUI.number i

...

 [num2str(Data.perflap.frame{i}(1)) '-' ...

 num2str(Data.perflap.frame{i}(end))]...

 Data.perflap.mass Data.perflap.span ...

 Data.perflap.gender Data.perflap.freq(i)

Max_angle(i,2) ...

 Min_angle(i,2) ...

 Data.Pos.Span Data.perflap.freq(i) Max_u(i,2)

Min_u(i,2) ...

 Data.perflap.phase(i) Data.perflap.climb{i}};

98

end

% check if data calculated every flap exists

if exist('ButterflyAnalysisDataThesis_Perflap.mat') == 2

 % if data exists: load data

 D = load('ButterflyAnalysisDataThesis_Perflap.mat');

 Data.perflap.table = D.data;

 % check size of data

 [Data.perflap.length Data.perflap.width] = size(...

 Data.perflap.table.data);

 Data.perflap.table.colheaders = {'Flight #' 'Butterfly

#' 'flap #' ...

 'Frame' 'Mass' 'Wing Span' 'Gender' 'Flap Freq'

'Max Amp' ...

 'Min Amp' 'Avg Span' 'Body Freq' 'Max Body' 'Min

Body' ...

 'Phase Diff' 'Climb Rate'};

 % add data calculated for current flight to previously

calculated data

 Data.perflap.table.data = [Data.perflap.table.data

 Data.perflap.newTable];

 % write full data to table along with column names

 set(handles.uitable1,'Data',Data.perflap.table.data)

set(handles.uitable1,'ColumnName',Data.perflap.table.colhea

ders)

 % save data

 data = Data.perflap.table;

 save 'ButterflyAnalysisDataThesis_Perflap.mat' data

else

 % if data does not exist

 % create column headers

 Data.perflap.table.colheaders = {'Flight #' 'Butterfly

#' 'flap #' ...

 'Frame' 'Mass' 'Wing Span' 'Gender' 'Flap Freq'

'Max Amp' ...

 'Min Amp' 'Avg Span' 'Body Freq' 'Max Body' 'Min

Body' ...

 'Phase Diff' 'Climb Rate'};

 % new data will be the only data set to table

 set(handles.uitable1,'Data',Data.perflap.newTable)

99

set(handles.uitable1,'ColumnName',Data.perflap.table.colhea

ders)

 % save data

 Data.perflap.table.data = Data.perflap.newTable;

 data = Data.perflap.table;

 save 'ButterflyAnalysisDataThesis_Perflap.mat' data

end

% save data to the corresponding butterfly

Data.perflap.Butterfly.(genvarname(['Butterfly'

num2str(GUI.number)])) ...

 = Data.perflap.table.data;

DATA = Data.perflap.Butterfly;

save ButterflyPerflap.mat DATA

function [phase] = PhaseDiff(GUI, Data)

% define variables for convinience

angle = Data.Pos.anglefilt;

z = Data.Pos.Headzspline';

zz = Data.Pos.smooth;

% define variables for calculating fft

t = Data.Pos.frame(GUI.intv);

Fs = 100; % Sampling frequency

L = length(t); % Length of signal

NFFT = 2^nextpow2(L); % Next power of 2 from length of y

f(:,1) = Fs/2*linspace(0,1,NFFT/2+1);

% fft of flapping angle

Y(:,1) = fft(angle,NFFT)/L;

% find index of maximum frequency

[~, index(1)] = max(abs(Y(3:NFFT/2+1,1)));

% determine phase angle at the maximum flapping frequency

Phase(1) =

atan2(imag(Y(index(1)+2,1)),real(Y(index(1)+2,1)));

% fft of body undulations

Y(:,2) = fft(z-zz,NFFT)/L;

% find index of maximum frequency

[~, index(2)] = max(abs(Y(3:NFFT/2+1,2)));

% calculate phase angle at maximum undulation frequency

100

Phase(2) =

atan2(imag(Y(index(2)+2,2)),real(Y(index(2)+2,2)));

% calculate phase difference defined by undulations -

flapping

phase = abs(Phase(2)-Phase(1));

function [Data, GUI] = energy(GUI, Data, handles)

% initialize the functions for further use

fun = ButterflyGUIFuns;

% Finding the magnitude of the velocity vector at the

beginning of the data

% segment

Data.energy.totalspeedinitial =

norm([Data.Vel.Headxdot(GUI.intv(1)),Data.Vel.Headydot(GUI.

intv(1)),Data.Vel.Headzdot(GUI.intv(1))])/1000;

% Finding the magnitude of velocity vector at the end of

the data segment

Data.energy.totalspeedfinal =

norm([Data.Vel.Headxdot(GUI.intv(length(GUI.intv))),Data.Ve

l.Headydot(GUI.intv(length(GUI.intv))),Data.Vel.Headzdot(GU

I.intv(length(GUI.intv)))])/1000;

% For indicating change in velocity

Data.energy.deltaV = Data.energy.totalspeedfinal-

Data.energy.totalspeedinitial;

% Find the dominant frequency of the fft to find the time

average flapping

% frequency.

Data.energy.maxfreq =

Data.Pos.f(find(2*abs(Data.Pos.Y(GUI.LPF:GUI.NFFT/2+1)) ==

max(2*abs(Data.Pos.Y(GUI.LPF:GUI.NFFT/2+1))),1)+4);

[Data.energy.Max, Data.energy.Min] =

fun.amplitude(Data.Pos.frame_spl, Data.Pos.anglefilt);

% assignin('base','Max',Max)

% assignin('base','Min',Min)

Data.energy.maxamp = (mean(Data.energy.Max(:,2))-

mean(Data.energy.Min(:,2)));

% Change in altitude, for potential energy calculations

Data.energy.deltaH = (Data.Pos.Headz(GUI.finishindex)-

Data.Pos.Headz(GUI.startindex))/1000;

101

% Mass of butterfly, the input is grams, this converts to

kg

Data.energy.mass =

str2double(get(handles.mass,'string'))/1000;

% Kinetic Energy + Potential Energy. Use speed*abs(speed)

for cases of

% negative velocity.

Data.energy.TotalEnergy =

Data.energy.mass*(0.5*(Data.energy.totalspeedfinal* ...

 abs(Data.energy.totalspeedfinal)-

(Data.energy.totalspeedinitial* ...

abs(Data.energy.totalspeedfinal)))+9.81*Data.energy.deltaH)

;

Data.energy.Efficiency =

Data.energy.TotalEnergy/(Data.energy.maxfreq*((GUI.finish-

GUI.start)*GUI.dt));

Data.energy.span = get(handles.thesis_span,'string');

switch get(handles.gender,'Value')

 case 1

 Data.energy.gender = 'M';

 case 2

 Data.energy.gender = 'F';

end

switch get(handles.scales,'Value')

 case 1

 D = load('ButterflyAnalysisDataScales.mat');

 case 2

 D = load('ButterflyAnalysisDataNoScales.mat');

end

Data.energy.table = D.data;

[Data.energy.table.length Data.energy.table.width] =

size(Data.energy.table.data);

Data.energy.table.colheaders = {'Flight #' 'Butterfly #'

'Frame' 'Mass' 'Span' 'Gender' 'Delta V' 'Delta H' 'Delta

E' ...

 'Max Freq' 'Amplitude' 'Time' '# of Flaps'

'Efficiency'};

102

Data.energy.table.data(Data.energy.table.length+1,:) = {

GUI.filename ...

 GUI.number [num2str(GUI.start) '-' ...

 num2str(GUI.finish)] Data.energy.mass Data.energy.span

Data.energy.gender Data.energy.deltaV ...

 Data.energy.deltaH Data.energy.TotalEnergy

Data.energy.maxfreq Data.energy.maxamp ...

 (GUI.finish-GUI.start)*GUI.dt ...

 Data.energy.maxfreq*((GUI.finish-GUI.start)*GUI.dt)

Data.energy.Efficiency};

set(handles.uitable1,'Data',Data.energy.table.data)

set(handles.uitable1,'ColumnName',Data.energy.table.colhead

ers)

data = Data.energy.table;

switch get(handles.scales,'Value')

 case 1

 save ButterflyAnalysisDataScales.mat data

 case 2

 save ButterflyAnalysisDataNoScales.mat data

end

function[Data, DATA, GUI] = thesis(GUI, Data, handles)

% initialize the use of other functions

fun = ButterflyGUIFuns;

% read mass from the text input box on GUI and convert to

kg

Data.perflap.mass =

str2double(get(handles.mass,'string'))/1000;

% read half wing span from text input box on GUI and

convert to m

Data.perflap.span =

str2double(get(handles.thesis_span,'string'))/1000;

% calculate peak to peak amplitude of flapping angle

Data.thesis.flapamp = mean(Data.Pos.Wing.Max(:,2))- ...

 mean(Data.Pos.Wing.Min(:,2));

% calculate peak to peak amplitude of boddy undulations

Data.thesis.bodyamp = mean(Data.Pos.Smooth.Max(:,2))- ...

 mean(Data.Pos.Smooth.Min(:,2));

% average climb rate for segment determined using the mean

trend of the

% butterfly trajectory

103

Data.thesis.climbrate = mean(Data.Vel.smooth);

% calculate phase angle between flapping and body

undulations

[Data.thesis.phase] = fun.phase(GUI, Data);

% values for kinematic viscosity and temperature found at

link:

% http://www.engineeringtoolbox.com/dry-air-

properties-d_973.html

kinvisc = [1.343 1.568];

Temp = [275 300];

% interpolate kinematic viscosity

Data.thesis.kinvisc = linterp(Temp,kinvisc,297.15)*10^-5; %

m^2 / s

% reference velocity for butterfly is defined as total

velocity of the head

% marker including body oscillations

Data.thesis.Uref = sqrt(Data.Vel.Headxdot(GUI.intv).^2 +

...

 Data.Vel.Headydot(GUI.intv).^2 ...

 + Data.Vel.Headzdot(GUI.intv).^2)/1000; % m/s

% remove instances where head marker disappears

Data.thesis.Uref(isnan(Data.thesis.Uref)==1)=[];

% reference length defined as the half span of the

butterfly wing

Data.thesis.Lref = Data.thesis.span; % m

% calculate Reynolds number

Data.thesis.Re = mean(Data.thesis.Uref *Data.thesis.Lref ./

...

 Data.thesis.kinvisc);

% convert flapping angle to radians

Data.thesis.angle = pi/(2*180)

*(mean(Data.Pos.Wing.Max(:,2)) - ...

 mean(Data.Pos.Wing.Min(:,2)));

% flapping frequency

Data.thesis.freq = Data.Pos.maxFFTfreq;

% length of the path of the wingtip

Data.thesis.ha = Data.thesis.Lref.*Data.thesis.angle;

104

% calculate Strouhl number

Data.thesis.St = mean(Data.thesis.freq .* Data.thesis.ha ./

Data.thesis.Uref);

% Calculating reduced frequency

Data.thesis.k = mean(pi*Data.thesis.freq.*Data.thesis.Lref

./Data.thesis.Uref);

% Calculating energy at each point of the flight

Data.thesis.KE = (1/2) * Data.thesis.mass *

Data.thesis.Uref.^2;

Data.thesis.PE = Data.thesis.mass *

Data.Pos.Headz(GUI.intv) * 9.81;

% read popup menu to record gender of specimen

switch get(handles.gender,'Value')

 case 1

 Data.thesis.gender = 'M';

 case 2

 Data.thesis.gender = 'F';

end

% Perflap

fun = ButterflyGUIFuns;

f = Data.Pos.frame(GUI.intv);

t = f/100;

z = Data.Pos.Headz(GUI.intv);

zdot = Data.Vel.Headzdot(GUI.intv);

zsmooth = Data.Pos.smooth;

zdotsmooth = Data.Vel.smooth;

anglefilt = Data.Pos.anglefilt;

u = Data.Pos.Smooth.undulation;

Data.perflap.mass =

str2double(get(handles.mass,'string'))/1000;

Data.perflap.span =

str2double(get(handles.thesis_span,'string'))/1000;

switch get(handles.gender,'Value')

 case 1

 Data.perflap.gender = 'M';

 case 2

 Data.perflap.gender = 'F';

end

[Max_angle, Min_angle] = fun.amplitude(f, anglefilt);

105

[Max_u, Min_u] = fun.amplitude(f, u);

[~,index] = ismember(Max_angle(:,1)/100,t);

Data.perflap.index = index;

for i = 2:length(index)-1

 Data.perflap.anglefilt{i} =

anglefilt(index(i):index(i+1));

 Data.perflap.frame{i} = f(index(i):index(i+1));

 Data.perflap.z{i} = z(index(i):index(i+1));

 Data.perflap.zsmooth{i} = zsmooth(index(i):index(i+1));

 Data.perflap.climb{i} =

mean(Data.Vel.Smooth(index(i):index(i+1)));

 Data.perflap.u{i} = u(index(i):index(i+1));

 Data.perflap.t{i} = t(index(i):index(i+1));

 Data.perflap.zdot{i} = zdot(index(i):index(i+1));

 Data.perflap.zdotsmooth{i} =

zdotsmooth(index(i):index(i+1));

 Data.perflap.freq(i) = (Data.perflap.t{i}(end)-

Data.perflap.t{i}(1))^-1;

 Data.perflap.phase_min(i) = ((Min_angle(i,1) -

Min_u(i,1))*3.60*Data.perflap.freq(i));

 Data.perflap.phase_max(i) = ((Max_angle(i,1) -

Max_u(i,1))*3.60*Data.perflap.freq(i));

 Data.perflap.phase(i) = mean([Data.perflap.phase_min(i)

Data.perflap.phase_max(i)]);

 Data.perflap.newTable(i-1,:) = {GUI.filename GUI.number

i ...

 [num2str(GUI.start) '-' num2str(GUI.finish)] ...

 [num2str(Data.perflap.frame{i}(1)) '-'

num2str(Data.perflap.frame{i}(end))]...

 Data.perflap.mass Data.perflap.span ...

 Data.perflap.gender Data.perflap.freq(i)

Max_angle(i,2) Min_angle(i,2) ...

 Data.Pos.Span Data.perflap.freq(i) Max_u(i,2)

Min_u(i,2) ...

 Data.perflap.phase(i) Data.perflap.climb{i}};

end

% Saving Data

if exist('ButterflyAnalysisDataThesis.mat','file') == 2

 D = load('ButterflyAnalysisDataThesis.mat');

 Data.thesis.table = D.data;

 [Data.thesis.table.length Data.thesis.table.width] =

size(Data.thesis.table.data);

106

 Data.thesis.table.colheaders = {'Flight #' 'Butterfly

#' 'Frame' 'Mass' 'Wing Span' 'Gender' ...

 'Flap Freq' 'Flap Amp' 'Avg Span' 'Body Freq' 'Body

Amp' 'Phase Diff' 'Climb Rate' 'Re' 'St' 'k'};

 Data.thesis.table.data(Data.thesis.table.length+1,:) =

{ GUI.filename ...

 GUI.number [num2str(GUI.start) '-'

num2str(GUI.finish)] ...

 Data.thesis.mass Data.thesis.span

Data.thesis.gender ...

 Data.Pos.maxFFTfreq Data.thesis.flapamp

Data.Pos.Span Data.Pos.Smooth.maxFFTfreq ...

 Data.thesis.bodyamp Data.thesis.phase

Data.thesis.climbrate Data.thesis.Re Data.thesis.St ...

 Data.thesis.k};

 set(handles.uitable1,'Data',Data.thesis.table.data)

set(handles.uitable1,'ColumnName',Data.thesis.table.colhead

ers)

 data = Data.thesis.table;

 save ButterflyAnalysisDataThesis.mat data

else

 Data.thesis.table.colheaders = {'Flight #' 'Butterfly

#' 'Frame' 'Mass' 'Wing Span' 'Gender' ...

 'Flap Freq' 'Flap Amp' 'Avg Span' 'Body Freq' 'Body

Amp' 'Phase Diff' 'Climb Rate' 'Re' 'St' 'k'};

 Data.thesis.table.data(1,:) = { GUI.filename ...

 GUI.number [num2str(GUI.start) '-'

num2str(GUI.finish)] ...

 Data.thesis.mass Data.thesis.span

Data.thesis.gender ...

 Data.Pos.maxFFTfreq Data.thesis.flapamp

Data.Pos.Span Data.Pos.Smooth.maxFFTfreq ...

 Data.thesis.bodyamp Data.thesis.phase

Data.thesis.climbrate Data.thesis.Re Data.thesis.St ...

 Data.thesis.k};

 set(handles.uitable1,'Data',Data.thesis.table.data)

set(handles.uitable1,'ColumnName',Data.thesis.table.colhead

ers)

 data = Data.thesis.table;

 save ButterflyAnalysisDataThesis.mat data

107

end

if exist('ButterflyPerflap.mat','file') == 2

 load('ButterflyPerflap.mat');

 if isfield(DATA,['Butterfly' num2str(GUI.number)]) == 1

 DATA.(genvarname(['Butterfly'

num2str(GUI.number)])) = ...

 [DATA.(genvarname(['Butterfly'

num2str(GUI.number)]));Data.perflap.newTable];

 else

 DATA.(genvarname(['Butterfly'

num2str(GUI.number)])) =...

 Data.perflap.newTable;

 end

else

 DATA.(genvarname(['Butterfly' num2str(GUI.number)]))

=...

 Data.perflap.newTable;

end

save ButterflyPerflap.mat DATA

% Batch

function [Data, GUI] = importBatch(batch)

% read data from the list of files generated using

GUI.data = xlsread(batch.FILE);

% use while loop to separate data into usable variables

% while loop is conditioned so that it breaks when there is

not a number

% in the frame column. This only occurs at the end of a

data collection

% segmant

i = 5;

j = 1;

while isnan(GUI.data(i,1)) == 0

 Data.Pos.frame(j,1) = GUI.data(i,1);

 Data.Pos.Headx(j,1) = GUI.data(i,3);

 Data.Pos.Heady(j,1) = GUI.data(i,4);

 Data.Pos.Headz(j,1) = GUI.data(i,5);

 Data.Pos.LeftWingx(j,1) = GUI.data(i,6);

 Data.Pos.LeftWingy(j,1) = GUI.data(i,7);

 Data.Pos.LeftWingz(j,1) = GUI.data(i,8);

108

 Data.Pos.RightWingx(j,1) = GUI.data(i,9);

 Data.Pos.RightWingy(j,1) = GUI.data(i,10);

 Data.Pos.RightWingz(j,1) = GUI.data(i,11);

 Data.Pos.LowerWingx(j,1) = GUI.data(i,12);

 Data.Pos.LowerWingy(j,1) = GUI.data(i,13);

 Data.Pos.LowerWingz(j,1) = GUI.data(i,14);

 i = i+1;

 j = j+1;

end

clear i j

% remove velocity headers from import and only extract head

information

i = length(Data.Pos.frame)+12;

j = 1;

for k = i:length(GUI.data)

 Data.Vel.frame(j,1) = GUI.data(k,1);

 Data.Vel.Headxdot(j,1) = GUI.data(k,3);

 Data.Vel.Headydot(j,1) = GUI.data(k,4);

 Data.Vel.Headzdot(j,1) = GUI.data(k,5);

 j = j+1;

end

clear i j k

%forming 3-D vectors for position and velocity

% distance from left wing to head

Data.Pos.v1x = Data.Pos.LeftWingx - Data.Pos.Headx;

Data.Pos.v1y = Data.Pos.LeftWingy - Data.Pos.Heady;

Data.Pos.v1z = Data.Pos.LeftWingz - Data.Pos.Headz;

Data.Pos.v1 = [Data.Pos.v1x Data.Pos.v1y Data.Pos.v1z]';

% distance from right wing to head

Data.Pos.v2x = Data.Pos.RightWingx - Data.Pos.Headx;

Data.Pos.v2y = Data.Pos.RightWingy - Data.Pos.Heady;

Data.Pos.v2z = Data.Pos.RightWingz - Data.Pos.Headz;

Data.Pos.v2 = [Data.Pos.v2x Data.Pos.v2y Data.Pos.v2z]';

% distance from lower left wing to head

Data.Pos.v3x = Data.Pos.LowerWingx - Data.Pos.Headx;

Data.Pos.v3y = Data.Pos.LowerWingy - Data.Pos.Heady;

Data.Pos.v3z = Data.Pos.LowerWingz - Data.Pos.Headz;

109

Data.Pos.v3 = [Data.Pos.v3x Data.Pos.v3y Data.Pos.v3z]';

GUI.dt = 1/GUI.data(1,1);

for i = 1:length(Data.Pos.frame)

 % flapping angle

 % calculate angle between two vectors

 Data.Pos.angle(i) =

atan2(norm(cross(Data.Pos.v1(:,i),Data.Pos.v2(:,i))),dot(Da

ta.Pos.v1(:,i),Data.Pos.v2(:,i)));

 % establish sign

 Data.Pos.crossproduct(i) =

dot(cross(Data.Pos.v1(:,i),Data.Pos.v2(:,i)),Data.Pos.v3(:,

i));

 if Data.Pos.crossproduct(i) > 0

 Data.Pos.angleindegree(i) = 360-

Data.Pos.angle(i)*180/pi;

 elseif Data.Pos.crossproduct(i) == 0

 Data.Pos.angleindegree(i) =

Data.Pos.angle(i)*180/pi;

 elseif Data.Pos.crossproduct(i) < 0

 Data.Pos.angleindegree(i) =

Data.Pos.angle(i)*180/pi;

 elseif isnan(Data.Pos.crossproduct(i))==1

 Data.Pos.angleindegree(i) = 0;

 end

 % establish time vector

 if i == 1

 Data.Pos.t(i) = 0;

 else

 Data.Pos.t(i) = Data.Pos.t(i-1)+ GUI.dt;

 end

end

for j = 1:length(Data.Vel.frame)

 % calculate horizontal velocity

 Data.Vel.horizontalvel(:,j) =

[Data.Vel.Headxdot(j);Data.Vel.Headydot(j)];

 Data.Vel.horizontalspeed(j) =

norm(Data.Vel.horizontalvel(:,j),2);

 % calculate flight direction

 Data.Vel.direction(j) =

atan2(Data.Vel.Headxdot(j),Data.Vel.Headydot(j));

110

 % establish time vector

 if j == 1

 Data.Vel.t(j) = 0;

 else

 Data.Vel.t(j) = Data.Vel.t(j-1)+ GUI.dt;

 end

end

function [Data, GUI] = ManualSmoothBatch(GUI, Data,

batch)

% initialize the functions for further use

fun = ButterflyGUIFuns;

for i = 1:length(batch.frames)

 a(i) = str2double(batch.frames(i));

end

index = find(isnan(a)==1);

GUI.start = str2double(batch.frames(1:index-1));

GUI.finish = str2double(batch.frames(index+1:end));

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

Data.Pos.Span = batch.span;

f = Data.Vel.frame(GUI.intv);

fP = Data.Pos.frame(GUI.intv);

zdotspl = Data.Vel.Headzdot(GUI.intv);

zspl = Data.Pos.Headz(GUI.intv);

f(isnan(zdotspl)==1)=[];

zdotspl(isnan(zdotspl)==1)=[];

fP(isnan(zspl) == 1)=[];

zspl(isnan(zspl)==1)=[];

Data.Vel.Headzdotspline =

spline(f,zdotspl,GUI.start:GUI.finish);

Data.Pos.Headzspline =

spline(fP,zspl,GUI.start:GUI.finish);

Data.Pos.smooth = smooth(Data.Pos.Headzspline,

Data.Pos.Span);

% Data.Vel.smooth = smooth(Data.Vel.Headzdot(GUI.intv),

Data.Vel.Span);

Data.Vel.smooth = diff(Data.Pos.smooth)/0.01;

Data.Vel.smooth = [Data.Vel.smooth; Data.Vel.smooth(end)];

111

Data.Pos.Smooth.undulation = Data.Pos.Headzspline'-

Data.Pos.smooth;

[Data.Pos.Smooth.Max Data.Pos.Smooth.Min] =

fun.amplitude(Data.Pos.frame(GUI.intv), ...

 Data.Pos.Smooth.undulation);

%FFT

% Taking fft

GUI.sysvector = Data.Pos.Smooth.undulation;

GUI.Tincrements = 100;

% flapping frequency

GUI.Fs = GUI.Tincrements; % Sampling

frequency

GUI.Ts = 1/GUI.Fs; % Sample time

GUI.L = length(Data.Pos.Smooth.undulation); % Length of

signal

GUI.NFFT = 2^nextpow2(GUI.L); % Next power of 2 from length

of angleindegree

Data.Pos.Smooth.Y = fft(GUI.sysvector,GUI.NFFT)/GUI.L;

Data.Pos.Smooth.f = GUI.Fs/2*linspace(0,1,GUI.NFFT/2+1);

GUI.LPF = 3; % Low Pass

Filter Value

[Data.Pos.Smooth.maxFFT, Data.Pos.Smooth.maxFFTindex] =

max(2*abs(Data.Pos.Smooth.Y(GUI.LPF:GUI.NFFT/2+1)));

Data.Pos.Smooth.maxFFTfreq =

Data.Pos.Smooth.f(Data.Pos.Smooth.maxFFTindex+GUI.LPF-1);

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

Data.Pos.Span = batch.span;

f = Data.Vel.frame(GUI.intv);

fP = Data.Pos.frame(GUI.intv);

zdotspl = Data.Vel.Headzdot(GUI.intv);

zspl = Data.Pos.Headz(GUI.intv);

f(isnan(zdotspl)==1)=[];

zdotspl(isnan(zdotspl)==1)=[];

fP(isnan(zspl) == 1)=[];

zspl(isnan(zspl)==1)=[];

112

Data.Vel.Headzdotspline =

spline(f,zdotspl,GUI.start:GUI.finish);

Data.Pos.Headzspline =

spline(fP,zspl,GUI.start:GUI.finish);

Data.Pos.smooth = smooth(Data.Pos.Headzspline,

Data.Pos.Span);

% Data.Vel.smooth = smooth(Data.Vel.Headzdot(GUI.intv),

Data.Vel.Span);

Data.Vel.smooth = diff(Data.Pos.smooth)/0.01;

Data.Vel.smooth = [Data.Vel.smooth; Data.Vel.smooth(end)];

Data.Pos.Smooth.undulation = Data.Pos.Headzspline'-

Data.Pos.smooth;

[Data.Pos.Smooth.Max Data.Pos.Smooth.Min] =

fun.amplitude(Data.Pos.frame(GUI.intv), ...

 Data.Pos.Smooth.undulation);

%FFT

% Taking fft

GUI.sysvector = Data.Pos.Smooth.undulation;

GUI.Tincrements = 100;

% flapping frequency

GUI.Fs = GUI.Tincrements; % Sampling

frequency

GUI.Ts = 1/GUI.Fs; % Sample time

GUI.L = length(Data.Pos.Smooth.undulation); % Length of

signal

GUI.NFFT = 2^nextpow2(GUI.L); % Next power of 2 from length

of angleindegree

Data.Pos.Smooth.Y = fft(GUI.sysvector,GUI.NFFT)/GUI.L;

Data.Pos.Smooth.f = GUI.Fs/2*linspace(0,1,GUI.NFFT/2+1);

GUI.LPF = 3; % Low Pass

Filter Value

[Data.Pos.Smooth.maxFFT, Data.Pos.Smooth.maxFFTindex] =

max(2*abs(Data.Pos.Smooth.Y(GUI.LPF:GUI.NFFT/2+1)));

Data.Pos.Smooth.maxFFTfreq =

Data.Pos.Smooth.f(Data.Pos.Smooth.maxFFTindex+GUI.LPF-1);

function [Data, GUI] = filterBatch(GUI, Data, batch)

% initialize the functions for further use

fun = ButterflyGUIFuns;

for i = 1:length(batch.frames)

 a(i) = str2double(batch.frames(i));

end

113

index = find(isnan(a)==1);

GUI.start = str2double(batch.frames(1:index-1));

GUI.finish = str2double(batch.frames(index+1:end));

GUI.startindex = find(Data.Pos.frame == GUI.start,1);

GUI.finishindex = find(Data.Pos.frame == GUI.finish,1);

GUI.intv = GUI.startindex:GUI.finishindex;

% define new variables for wing angle (x) and frame (t)

x = Data.Pos.angleindegree(GUI.intv);

t = Data.Pos.frame(GUI.intv);

% remove all frames where wing angle is equal to 0

t(x == 0) = [];

x(x ==0) = [];

% create a time increment for the spline interpolation

tinc = GUI.data(1,1)/100;

Data.Pos.frame_spl = GUI.start:tinc:GUI.finish;

% calculate interpolation

Data.Pos.anglefilt = spline(t,x,Data.Pos.frame_spl);

% amplitude of wing angle using PEAKtoPEAK

[Data.Pos.Wing.Max, Data.Pos.Wing.Min] =

fun.amplitude(Data.Pos.frame_spl, Data.Pos.anglefilt);

% remove 180 deg jumps in data

Data.Vel.direction = unwrap(Data.Vel.direction);

Data.Vel.directionindegree = Data.Vel.direction*180/pi;

% calculate fast fourier transform using function FFT

[Data, GUI] = fun.fft(GUI ,Data);

% average velocity

% define new variables

Data.Vel.Headzdotavg = Data.Vel.Headzdot;

Data.Vel.horizontalspeedavg = Data.Vel.horizontalspeed;

% remove data where head marker is not present

Data.Vel.horizontalspeedavg(isnan(Data.Vel.horizontalspeeda

vg)==1) = [];

Data.Vel.Headzdotavg(isnan(Data.Vel.Headzdotavg)==1) = [];

GUI.intvavg = GUI.startindex:GUI.finishindex;

% calculate averages

Data.Vel.AVGhorizontal =

mean(Data.Vel.horizontalspeedavg(GUI.intvavg));

114

Data.Vel.AVGvertical =

mean(Data.Vel.Headzdotavg(GUI.intvavg));

function [Data, GUI] = thesisperflapbatch(GUI, Data,

batch)

% initialize the functions for further use

fun = ButterflyGUIFuns;

% Mass of butterfly, the input is grams, this converts to

kg

Data.thesis.mass = batch.mass;

Data.thesis.span = batch.WingSpan;

Data.thesis.maxamp = mean(Data.Pos.Smooth.Max(:,2))- ...

 mean(Data.Pos.Smooth.Min(:,2));

Data.thesis.flapamp = mean(Data.Pos.Wing.Max(:,2))- ...

 mean(Data.Pos.Wing.Min(:,2));

Data.thesis.bodyamp = mean(Data.Pos.Smooth.Max(:,2))- ...

 mean(Data.Pos.Smooth.Min(:,2));

Data.thesis.climbrate = mean(Data.Vel.smooth);

[Data.thesis.phase] = fun.phase(GUI, Data)*180/pi;

Data.thesis.phase(Data.thesis.phase>180) = 360- ...

 Data.thesis.phase(Data.thesis.phase>pi);

kinvisc = [1.343 1.568];

%http://www.engineeringtoolbox.com/dry-air-properties-

d_973.html

Temp = [275 300];

Data.thesis.kinvisc = linterp(Temp,kinvisc,297.15)*10^-5; %

m^2 / s

Data.thesis.Uref = sqrt(Data.Vel.Headxdot(GUI.intv).^2 +

Data.Vel.Headydot(GUI.intv).^2 ...

 + Data.Vel.Headzdot(GUI.intv).^2)/1000; % m/s

Data.thesis.Uref(isnan(Data.thesis.Uref)==1)=[];

Data.thesis.Lref = Data.thesis.span; % m

Data.thesis.Re = mean(Data.thesis.Uref *Data.thesis.Lref ./

Data.thesis.kinvisc);

% Calculating Strouhal number

Data.thesis.angle = pi/(2*180)

*(mean(Data.Pos.Wing.Max(:,2)) - ...

115

 mean(Data.Pos.Wing.Min(:,2)));

Data.thesis.freq = Data.Pos.maxFFTfreq;

Data.thesis.ha = Data.thesis.Lref.*Data.thesis.angle;

Data.thesis.St = mean(Data.thesis.freq .* Data.thesis.ha ./

Data.thesis.Uref);

% Calculating reduced frequency

Data.thesis.k = mean(pi*Data.thesis.freq.*Data.thesis.Lref

./Data.thesis.Uref);

% Calculating energy at each point of the flight

Data.thesis.KE = (1/2) * Data.thesis.mass *

Data.thesis.Uref.^2;

Data.thesis.PE = Data.thesis.mass *

Data.Pos.Headz(GUI.intv) * 9.81;

% Data.thesis.E = Data.thesis.KE+Data.thesis.PE;

Data.thesis.gender = batch.gender;

% Perflap

fun = ButterflyGUIFuns;

f = Data.Pos.frame(GUI.intv);

t = f/100;

z = Data.Pos.Headz(GUI.intv);

zdot = Data.Vel.Headzdot(GUI.intv);

zsmooth = Data.Pos.smooth;

zdotsmooth = Data.Vel.smooth;

anglefilt = Data.Pos.anglefilt;

u = Data.Pos.Smooth.undulation;

Data.perflap.mass = batch.mass;

Data.perflap.span = batch.WingSpan;

Data.perflap.gender = batch.gender;

[Max_angle, Min_angle] = fun.amplitude(f, anglefilt);

[Max_u, Min_u] = fun.amplitude(f, u);

[~,index] = ismember(Max_angle(:,1)/100,t);

Data.perflap.index = index;

for i = 2:length(index)-1

 Data.perflap.anglefilt{i} =

anglefilt(index(i):index(i+1));

116

 Data.perflap.frame{i} = f(index(i):index(i+1));

 Data.perflap.z{i} = z(index(i):index(i+1));

 Data.perflap.zsmooth{i} = zsmooth(index(i):index(i+1));

 Data.perflap.climb{i} =

mean(Data.Vel.smooth(index(i):index(i+1)));

 Data.perflap.u{i} = u(index(i):index(i+1));

 Data.perflap.t{i} = t(index(i):index(i+1));

 Data.perflap.zdot{i} = zdot(index(i):index(i+1));

 Data.perflap.zdotsmooth{i} =

zdotsmooth(index(i):index(i+1));

 Data.perflap.freq(i) = (Data.perflap.t{i}(end)-

Data.perflap.t{i}(1))^-1;

 Data.perflap.phase_min(i) = ((Min_angle(i,1) -

Min_u(i,1))*3.60*Data.perflap.freq(i));

 Data.perflap.phase_max(i) = ((Max_angle(i,1) -

Max_u(i,1))*3.60*Data.perflap.freq(i));

 Data.perflap.phase(i) =

abs(mean([Data.perflap.phase_min(i)

Data.perflap.phase_max(i)]));

 if Data.perflap.phase(i) > 180

 Data.perflap.phase(i) = 360-Data.perflap.phase(i);

 end

 Data.perflap.newTable(i-1,:) = {batch.filename

batch.number i ...

 [num2str(GUI.start) '-' num2str(GUI.finish)] ...

 [num2str(Data.perflap.frame{i}(1)) '-'

num2str(Data.perflap.frame{i}(end))]...

 Data.perflap.mass Data.perflap.span ...

 Data.perflap.gender Data.perflap.freq(i)

Max_angle(i,2) Min_angle(i,2) ...

 Data.Pos.Span Data.perflap.freq(i) Max_u(i,2)

Min_u(i,2) ...

 abs(Data.perflap.phase(i)) Data.perflap.climb{i}};

end

% Saving Data

if exist('ButterflyAnalysisDataThesisBatch.mat','file') ==

2

 D = load('ButterflyAnalysisDataThesisBatch.mat');

 Data.thesis.table = D.data;

 [Data.thesis.table.length Data.thesis.table.width] =

size(Data.thesis.table.data);

 Data.thesis.table.colheaders = {'Flight #' 'Butterfly

#' 'Frame' 'Mass' 'Wing Span' 'Gender' ...

117

 'Flap Freq' 'Flap Amp' 'Avg Span' 'Body Freq' 'Body

Amp' 'Phase Diff' 'Climb Rate' 'Re' 'St' 'k'};

 Data.thesis.table.data(Data.thesis.table.length+1,:) =

{ batch.filename ...

 batch.number [num2str(GUI.start) '-'

num2str(GUI.finish)] ...

 Data.thesis.mass Data.thesis.span

Data.thesis.gender ...

 Data.Pos.maxFFTfreq Data.thesis.flapamp

Data.Pos.Span Data.Pos.Smooth.maxFFTfreq ...

 Data.thesis.bodyamp Data.thesis.phase

Data.thesis.climbrate Data.thesis.Re Data.thesis.St ...

 Data.thesis.k};

 % set(handles.uitable1,'Data',Data.thesis.table.data)

 %

set(handles.uitable1,'ColumnName',Data.thesis.table.colhead

ers)

 data = Data.thesis.table;

 save ButterflyAnalysisDataThesisBatch.mat data

else

 Data.thesis.table.colheaders = {'Flight #' 'Butterfly

#' 'Frame' 'Mass' 'Wing Span' 'Gender' ...

 'Flap Freq' 'Flap Amp' 'Avg Span' 'Body Freq' 'Body

Amp' 'Phase Diff' 'Climb Rate' 'Re' 'St' 'k'};

 Data.thesis.table.data(1,:) = { batch.filename ...

 batch.number [num2str(GUI.start) '-'

num2str(GUI.finish)] ...

 Data.thesis.mass Data.thesis.span

Data.thesis.gender ...

 Data.Pos.maxFFTfreq Data.thesis.flapamp

Data.Pos.Span Data.Pos.Smooth.maxFFTfreq ...

 Data.thesis.bodyamp Data.thesis.phase

Data.thesis.climbrate Data.thesis.Re Data.thesis.St ...

 Data.thesis.k};

 %

set(handles.uitable1,'Data',Data.thesis.table.data)

 %

set(handles.uitable1,'ColumnName',Data.thesis.table.colhead

ers)

 data = Data.thesis.table;

 save ButterflyAnalysisDataThesisBatch.mat data

118

end

if exist('ButterflyPerflapBatch.mat','file') == 2

 load('ButterflyPerflapBatch.mat');

 if isfield(DATA,['Butterfly' num2str(batch.number)]) ==

1

 DATA.(genvarname(['Butterfly'

num2str(batch.number)])) = ...

 [DATA.(genvarname(['Butterfly'

num2str(batch.number)]));Data.perflap.newTable];

 else

 DATA.(genvarname(['Butterfly'

num2str(batch.number)])) =...

 Data.perflap.newTable;

 end

else

 DATA.(genvarname(['Butterfly' num2str(batch.number)]))

=...

 Data.perflap.newTable;

end

save ButterflyPerflapBatch.mat DATA

function [Data, GUI] = Batch(batch)

% initialize the functions for further use

fun = ButterflyGUIFuns;

[Data, GUI] = fun.importbatch(batch);

[Data, GUI] = fun.filterbatch(GUI, Data, batch);

[Data, GUI] = fun.mansmoothbatch(GUI, Data, batch);

[Data, GUI] = fun.perflapbatch(GUI, Data, batch);

7

119

8 References

1. Petricca L., Ohlckers P., Grinde C., Micro- and nano-air vehicles: State of the art.

International Journal of Aerospace Engineering. 2011;2011.

2. Pines D., Bohorquez F., Challenges Facing Future Micro-Air-Vehicle Development.

Journal of Aircraft. 2006;43(2):290–305.

3. Shyy W., Aono H., Chimakurthi S.K., Trizila P., Kang C.K., Cesnik C.E.S., et al., Recent

progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace
Sciences [Internet]. Elsevier; 2010;46(7):284–327. Available from:

http://dx.doi.org/10.1016/j.paerosci.2010.01.001.

4. Wu H., Sun D., Zhou Z., Micro air vehicle: Configuration, analysis, fabrication, and test.

IEEE/ASME Transactions on Mechatronics. 2004;9(1):108–17.

5. Ifju P.G., Jenkins D.A., Waszak M.R., Ettinger S., Lian Y., Shyy W., Flexible-Wing-

Based Micro Air Vehicles. AIAA. 2002;1–13.

6. Keenon M., Klingebiel K., Won H., Andriukov A., Development of the Nano

Hummingbird: A Tailless Flapping Wing Micro Air Vehicle. AIAA Aerospace Science

Meeting. 2012. p. 1–24.

7. De Croon G.C.H.E., Groen M. a, De Wagter C., Remes A., Ruijsink R., van Oudheusden

B.W., Design, aerodynamics and autonomy of the DelFly. Bioinspiration & Biomimetics.

2012;7(2):025003.

8. Teoh Z.E., Fuller S.B., Chirarattananon P., Prez-Arancibia N.O., Greenberg J.D., Wood

R.J., A hovering flapping-wing microrobot with altitude control and passive upright

stability. IEEE International Conference on Intelligent Robots and Systems. 2012;3209–

16.

9. http://www.hindawi.com/journals/ijae/2011/214549/fig26/.

10. http://www.avinc.com/nano.

11. http://www.delfly.nl/history.html.

12. http://spectrum.ieee.org/automaton/robotics/robotics-hardware/harvard-robobees-learn-to-

steer-mostly.

13. http://www.proxdynamics.com/products/pd-100-black-hornet-prs.

14. Shyy W., Aono H., Kang C.-K., Liu H., An Introduction to Flapping Wing Aerodynamics.

New York; 2013.

15. Sun M., Insect flight dynamics: Stability and control. Reviews of Modern Physics

[Internet]. 2014 May 16 [cited 2014 Nov 20];86(2):615–46. Available from:

http://link.aps.org/doi/10.1103/RevModPhys.86.615.

120

16. Wang Z.J., Dissecting Insect Flight. Annual Review of Fluid Mechanics. 2005;37:183–

210.

17. Sane S.P., The aerodynamics of insect flight. The Journal of experimental biology.

2003;206:4191–208.

18. Kovac M., Vogt D., Ithier D., Smith M., Wood R., Aerodynamic evaluation of four

butterfly species for the design of flapping-gliding robotic insects. 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems [Internet]. Ieee; 2012

Oct;1102–9. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6385453.

19. Lin T., Zheng L., Hedrick T., Mittal R., The Significance of Moment-of-Inertia Variation

in Flight Manoeuvres of Butterflies. Bioinspiration & biomimetics [Internet]. 2012

Dec;7(4):044002. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23092976.

20. Jantzen B., Eisner T., Hindwings are unnecessary for flight but essential for execution of
normal evasive flight in Lepidoptera. Proceedings of the National Academy of Sciences of

the United States of America. 2008;105(43):16636–40.

21. Rayner J.M. V., Viscardi P.W., Ward S., Speakman J.R., Aerodynamics and Energetics of

Intermittent Flight in Birds1. American Zoologist. 2001;41(2):188–204.

22. Dudley R., The Biomechanics of Insect Flight: Form, Function, Evolution. 2000.

23. Brower L., Monarch butterfly orientation: missing pieces of a magnificent puzzle. The

Journal of experimental biology [Internet]. 1996;199:93–103. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/9317405.

24. Daccordi M., Triberti P., Zanetti A., imon & chuster’s Guide to Butterflies & Moths.

New York; 1988.

25. Scoble M.J., The Lepidoptera: form, function, and diversity. New York: Oxford

University Press; 1992.

26. Steppan S., Flexural stiffness patterns of butterfly wings (Papilionoidea). Journal of

Research on the Lepidoptera [Internet]. 1996;1996(May 1998):61–77. Available from:

http://bio.fsu.edu/steppan/butterfly.pdf.

27. Nachtigal W., Wing movements and generation of aerodynamic forces by some medium

sized insects. Insect Flight Symposia of the Royal Entomological Society of London.

1976;7:31–47.

28. Kim E.J., Wolf M., Ortega-Jimenez V.M., Cheng S.H., Dudley R., Hovering Performance

of Anna’s Hummingbirds (Calypte anna) in Ground Effect. Journal of The Royal Society
Interface [Internet]. 2014 Jul 2;11(98). Available from:

http://rsif.royalsocietypublishing.org/content/11/98/20140505.abstract.

121

29. Urquhart F.A., Urquhart N.R., The overwintering site of the eastern population of the

Monarch butterlfy (Kanaus P. Plexippus; Danaidae) in southern Mexico. Journal Of The

Lepidopterists’ ociety. 1976;30(3):153–8.

30. Howard E., Davis A.K., The fall migration flyways of monarch butterflies in eastern

North America revealed by citizen scientists. Journal of Insect Conservation.

2009;13(3):279–86.

31. Alonso-Mejía A., Rendon-Salinas E., Montesinos-Patiño E., Brower L.P., Use of Lipid

Reserves by Monarch Butterflies Overwintering in Mexico: Implications for

Conservation. Ecological Applications. 1997;7(3):934–47.

32. Masters a. R., Malcolm S.B., Brower L.P., Monarch butterfly (Danaus plexippus)

Thermoregulatory Behavior and Adaptations for Overwintering in Mexico. Ecology.

1988;69(2):458–67.

33. Ellington C.P., The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady

Analysis. Philosophical Transactions of the Royal Society. 1984;305:1–15.

34. Weis-Fogh T., Quick Estimates of Flight Fitness in Hovering Animals, Including Novel
Mechanisms for Lift Production. Journal of Experimental Biology [Internet].

1973;59:169–230. Available from: http://jeb.biologists.org/content/59/1/169.short.

35. Brackenbury J., Wing movements in the bush-cricket Tettigonia viridissima and the

mantis Ameles spallanziana during natural leaping. Journal of Zoology [Internet].

1990;220:593–602. Available from: <Go to ISI>://WOS:A1990DC94400007.

36. Srygley R.B., Thomas A.L.R., Unconventional Lift-generating Mechanisms in Free-

Flying Butterflies. 2002;420(December):487–9.

37. Ellington C.P., van den Berg C., Willmott A.P., Thomas A.L.R., Leading-edge vortices in

insect flight. Nature. 1996;384:356–8.

38. Dickinson M.H., Lehmann F.O., Sane S.P., Wing rotation and the aerodynamic basis of

insect flight. Science (New York, NY). 1999;284(5422):1954–60.

39. Altshuler D.L., Dickson W.B., Vance J.T., Roberts S.P., Dickinson M.H., Short-amplitude
high-frequency wing strokes determine the aerodynamics of honeybee flight. Proceedings

of the National Academy of Sciences of the United States of America.

2005;102(50):18213–8.

40. Hao L., Kawachi K., A numerical study of insect flight. Journal of Computational Physics.

1998;146(1):124–56.

41. Ramamurti R., Sandberg W.C., A three-dimensional computational study of the
aerodynamic mechanisms of insect flight. The Journal of Experimental Biology.

2002;205(Pt 10):1507–18.

42. Willmott A.P., Ellington C.P., The Mechanics of Flight in the Hawkmoth Manduca Sexta.

Journal of Experimental Biology. 1997;2722:2705–22.

122

43. Dudley R., Ellington C.P., Mechanics of Forward Flight in Bumblebees: I. Kinematics and

Morphology. Journal of Experimental Biology [Internet]. 1990;148:19–52. Available

from: http://jeb.biologists.org/content/148/1/19.

44. Tanaka H., Shimoyama I., Forward Flight of Swallowtail Butterfly with Simple Flapping

Motion. Bioinspiration & biomimetics [Internet]. 2010 Jun [cited 2014 Dec

11];5(2):026003. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20484782.

45. Walker S.M., Thomas A.L.R., Taylor G.K., Photogrammetric reconstruction of high-

resolution surface topographies and deformable wing kinematics of tethered locusts and

free-flying hoverflies. Journal of the Royal Society. 2009;6(33):351–66.

46. Zheng L., Hedrick T.L., Mittal R., Time-Varying Wing-Twist Improves Aerodynamic

Efficiency of Forward Flight in Butterflies. PLoS ONE. 2013;8(1):1–10.

47. Ristroph L., Berman G.J., Bergou A.J., Wang Z.J., Cohen I., Automated hull

reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying

insects. The Journal of Experimental Biology. 2009;212(Pt 9):1324–35.

48. Walker S.M., Thomas A.L.R., Taylor G.K., Deformable wing kinematics in free-flying
hoverflies. Journal of the Royal Society, Interface / the Royal Society. 2010;7(May

2009):131–42.

49. Hedrick T.L., Usherwood J.R., Biewener A., Low speed maneuvering flight of the rose-

breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation. The

Journal of experimental biology. 2007;210(Pt 11):1912–24.

50. Hedrick T.L., Usherwood J.R., Biewener A., Wing inertia and whole-body acceleration:

an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus

hollandicus) flying across a range of speeds. The Journal of Experimental Biology.

2004;207(Pt 10):1689–702.

51. Vicon Nexus 1.8.5. Vicon motion systems Ltd.; 2013.

52. Cranford J., Kang C.K., Landrum D.B., Slegers N., Experimental Characterization of
Butterfly in Climbing Flight. AIAA Aviation Conference - AIAA-2015-2328. Dallas;

2015.

53. www.swallowtailfarms.com.

54. Orlowski C.T., Girard A.R., Modeling and Simulation of Nonlinear Dynamics of Flapping

Wing Micro Air Vehicles. AIAA Journal [Internet]. 2011 May [cited 2014 Dec

10];49(5):969–81. Available from: http://arc.aiaa.org/doi/abs/10.2514/1.J050649.

	Novel experimental method for studying trajectories and wing kinematics of freely flying butterflies
	Recommended Citation

	Cranford, Jacob_thesis signature pages.pdf

