
University of Alabama in Huntsville University of Alabama in Huntsville 

LOUIS LOUIS 

Honors Capstone Projects and Theses Honors College 

4-19-2023 

Patient Information Management System (PIMS) Patient Information Management System (PIMS) 

Patrick Burns 

Jackson Collete 

Follow this and additional works at: https://louis.uah.edu/honors-capstones 

Recommended Citation Recommended Citation 
Burns, Patrick and Collete, Jackson, "Patient Information Management System (PIMS)" (2023). Honors 
Capstone Projects and Theses. 783. 
https://louis.uah.edu/honors-capstones/783 

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for 
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS. 

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/783?utm_source=louis.uah.edu%2Fhonors-capstones%2F783&utm_medium=PDF&utm_campaign=PDFCoverPages


Patient Information Management System (PIMS)

by

Patrick Burns & Jackson Collette
(Additional non-honors teammates: Brian Kemle, Madison Smith, & Bryson White)

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma

to

The Honors College

of

The University of Alabama in Huntsville

4/19/2023

Honors Capstone Director: Dr. Adam Colwell

Part Time UAH Computer Science Professor

________________________________4/19/2023_____________

Student (signature) Date

________________________________4/19/2023_____________

Student (signature) Date

_____________________________________________________

Director (signature) Date

_____________________________________________________

Department Chair (signature) Date

_____________________________________________________

Honors College Dean (signature) Date

4/22/2023



Patient Information Management System

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted as a bound part of the thesis.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate
from The University of Alabama in Huntsville, I agree that the Library of this University shall make it
freely available for inspection. I further agree that permission for extensive copying for scholarly
purposes may be granted by my advisor or, in his/her absence, by the Chair of the Department,
Director of the Program, or the Dean of the Honors College. It is also understood that due
recognition shall be given to me and to The University of Alabama in Huntsville in any scholarly use
which may be made of any material in this thesis. 

Patrick Burns_________________
Student Name (printed)

Jackson Collette_______________
Student Name (printed)

____________________________
Student Signature

____________________________
Student Signature

4/19/2023____________________
Date

1



Patient Information Management System

Table of Contents

Abstract 3

Introduction 4

Project Requirements 5

Architectural Design 7

GUI Design 9

Team Roles and Project Approach 15

Conclusion 17

2



Patient Information Management System

Abstract

Hospitals, and other medical institutions, have a need to store and easily access their

patients’ information. The Patient Information Management System (PIMS) accomplishes this

goal. Due to the volume of patients, as well as the need to accurately and privately maintain

patients’ data, a system such as this is essential for any sort of medical institution. The Patient

Information Management System strives to create an easy to use, secure, and reliable system for

interfacing with patient data for any size medical facility. The code for this project can be found

at the following GitHub repository: https://github.com/patrickburns2557/PIMS-Project

3

https://github.com/patrickburns2557/PIMS-Project


Patient Information Management System

Introduction

The objective of this project was to design a system that will allow a hospital to maintain

current information on all patients, as well as those recently discharged. The system will allow

this information to be readily available to all hospital staff that require it, as well as those who

need to update any patient information as needed. To protect the privacy of patients, the users of

the system will only have access to the information that they are allowed to see, depending on

the type of hospital staff they are. The details of these user types, as well as the rest of the system

are detailed in the following project requirements section. This project was completed by a team

of five people across the course of a semester.

4



Patient Information Management System

Project Requirements

There were a number of features to be implemented in the patient management system

project. The following is a detailed list of all of the features required to be implemented:

1. Users of the system must have a valid username and password to log into the system.

2. There shall be four types of user accounts: Doctor, Nurse, Office Staff, and Volunteer.

3. Doctors and Nurses shall have access to all available information about a patient.

4. Office Staff shall only have access to information required to identify a patient and

information regarding insurance and billing.

5. Volunteers shall only have access to the name and location of a patient, the maximum

number of visitors the patient may have, and the list of approved visitors for each patient.

6. A user may search for a patient by first name or last name. If the exact spelling of a name

is not known, the user may enter a partial spelling, and any patients whose names contain

the partial spelling will be displayed in a list. The user may then select the correct patient

from the list.

7. Users may log on to the system from any computer connected to the hospital intranet.

8. The entire system shall have an appropriate graphical user interface.

9. Information on each patient shall consist of the following: First name, middle name, last

name, mailing address, home phone number, mobile phone number, work phone number,

names and numbers of two emergency contacts, date and time of admittance, reason for

admission, name of family doctor, patient location (facility, floor, room number, and bed

number), date and time of discharge, doctor’s treatment notes, nurse’s treatment notes,

prescriptions administered while in the hospital (name, amount, and schedule), scheduled

procedures, insurance carrier, insurance policy information (account number and group

5



Patient Information Management System

number), billing information in the form of an itemized list of charges and amounts,

amount paid, amount owed, and amount paid by insurance.

10. Doctors shall be able to enter additional notes on treatment, prescriptions, and scheduled

procedures of each patient.

11. Nurses shall be able to view doctor’s notes and enter treatment notes for nurses

12. Office Staff shall be able to view and update any information on a patient not related to

medical treatment.

13. The system shall be capable of printing a variety of reports for a single patient or

summary reports on all patients.

14. Users of the system shall be able to create new patients to add to the database.

The program was also subject to the following constraints:

1. Users must be able to run the program on a PC running Windows.

2. The program must be robust and assume that most users are not computer

knowledgeable.

3. The system should be able to recover from errors, particularly input mistakes.

6



Patient Information Management System

Architectural Design

In order to begin the project, our team had to make several key decisions regarding the

architectural design we would use for the project. Decisions had to be reached by the team for

the primary programming language, how we would create the GUI, what type of database we

would use to store the patient data, how we would test the code, and how we would structure the

actual code. We decided to use Python for the primary language, MySQL for the database,

CustomTkinter for the GUI, Pytest to create unit tests for the program, and a simple file structure

that will be discussed later to organize the code. Additionally, the team used GitHub to store and

share the code.

The system is primarily coded using Python. Python is an easy to use, easy to learn, and

versatile programming language, which is why we picked it for this group assignment. Python

allowed our group to focus on developing the actual application, without getting bogged down

with syntactic and semantic issues when trying to use the language. Python also has support for a

large number of libraries. We used many such libraries in the project, including the following:

CustomTkinter, Pandas, Mysql-connector-python, and Pillow. CustomTkinter is used to create

the GUI (see the “GUI Design” section). Pandas is used for data processing. For this project, it is

specifically used to organize the data for all (or just one) of the patients in the system before

pushing that data to a summary text file. Mysql-connector-python is used to link the Python code

to the SQL database that stores all of the patients and each patient's information. Finally, Pillow

is used for loading images into the program and working with CustomTkinter to display them to

the GUI.

MySQL is used to handle the database aspect of the project. This is accomplished by

running a MySQL server on a local machine. Note that if this system were implemented in a real

7



Patient Information Management System

hospital, this server would be run on a remote machine. In order to connect to a remote machine,

only one line of code needs to be modified to specify the IP address of the machine running the

server. A SQL database containing the patient information is then loaded onto the MySQL

server, which can then be accessed using the mysql-connector-python library functions. This

database allows the program to interact with patient information that is not hard-coded/stored

into the program itself.

The testing framework used for the project is Pytest. Pytest allows for robust, easy to

make unit tests for the project. We built unit tests for the front-end and back-end of the project,

covering as much code as we could. These unit tests helped us catch errors and give us

confidence that the users of our project will not run into any unexpected problems when using

the software.

Our file structure is organized into three main divisions: data, GUI, and testing. As the

name suggests, the data section handles all of the data for the program, including patient data

loaded from the database, information about the current user, among other important information

for the program. This section also includes the functions used to process and parse the data

needed to display to the user. Similarly, the GUI section contains the files pertaining to the GUI.

This part of the program handles displaying to the screen data from the users and providing users

an easy to use interface with the program. The testing section contains the unit tests used to test

the program; these tests are not needed for the program to be functional. The tests are run

independently by the developer. The program also contains a driver file which just initialized the

data section and the GUI section.

8



Patient Information Management System

GUI Design

As previously mentioned, for the GUI of our project, we decided to use the

CustomTkinter library. However, this wasn’t the first pick. We were originally going to use

TkInter for our frontend, but we found out early on that there were some shortcomings of it, such

as the lack of an easy way to create an object that used a scrollbar and other various issues that

seemed inherent to the library. CustomTkinter is a library built off of the original library that not

only gives it a more modern look, but provides easy access to more complex GUI objects

without the hassle of implementing them ourselves like would need to be done in regular TkInter.

In our frontend, we created several classes that extended the existing CTkFrame class in

CustomTkinter that corresponded to the various views that the user will see while using the

system. This allowed us to place these views anywhere we needed in our program and have them

resize and populate their respective areas as needed.

Figure 1: LoginView

9



Patient Information Management System

The first view that the user sees when running the program is the LoginView and the

TopBar. The TopBar is shown at all times while the program is open, and it shows the type of

user currently logged in, as well as has a button to allow the user to log out. It also allows the

user to change options such as enabling dark mode and increasing the scaling to make all objects

and text larger. The LoginView is what shows the text boxes for the user to enter their username

and password. Once the user has typed their username and password, they can either click the

login button, or simply press “Enter” on their keyboard to submit. If the user enters valid

credentials, then the system will load the appropriate patient information from the MySQL

database and the user will then be taken to the ListView screen.

Figure 2: ListView

The ListView is what shows the list of all patients in the system to the user and allows

them to select the patient they wish to access. Along with this, once signed in, a “Print” button is

added to the TopBar. This allows the user to print a variety of reports depending on the view the

user is currently looking at. For ListView, clicking the button will create and save a summary

report to an external file on all patients that includes all information that the current user has

10



Patient Information Management System

access to. At the top of the view, there’s a search bar that allows the user to find a specific

patient. Patients with first, middle, or last names that match the search term will be shown. If the

user doesn’t know how to spell their full name, they can enter a partial name, such as “mat”, and

then it will filter the list to show only patients whose names contain “mat” in them. To show all

patients again, the user simply needs to clear the search bar and click “Search” again. If the user

is logged in as a doctor, nurse, or office staff, a“Create New Patient” button will appear to the left

of the search bar, otherwise it will be hidden. Clicking it will bring up the NewPatientView,

which is discussed below. When the user clicks on the name of any of the patients in the list, they

will then be taken to the PatientDetailedView for the corresponding patient.

Figure 3: PatientDetailedView tabs

The PatientDetailedView is the screen where a user is able to see all of the information

related to a patient in the database. If the user clicks the “Print” button in the TopBar from this

11



Patient Information Management System

view, it will save and open an external file containing information only about the currently

viewed patient. The PatientDetailedView is divided into 3 separate tabs: the Personal tab, the

Medical tab, and the Billing tab. The user is able to click the corresponding button for each tab to

reveal each tab’s information. This view changes significantly depending on the type of user

logged into the system. Doctors and Nurses will be able to view all information on a patient, so

all three tabs will be available. Office Staff only have access to personal and billing information

about a patient, so the Medical tab will be hidden for them. Office Staff will also see an

additional button to the right of the Billing tab button that allows them to edit the current patient.

Clicking this button will take the Office Staff to the EditPatientView. Volunteers will only be

able to view the Personal tab, and the address and phone numbers on the personal tab will also be

hidden to the volunteer. Lastly, there is a back button that can be clicked to bring the user back to

the ListView discussed previously.

12



Patient Information Management System

Figure 4: EditPatientView tabs

The EditPatientView allows Office Staff to update the information on an existing patient.

Similar to the DetailedPatientView for Office Staff, this view is also broken into Personal and

Billing tabs that can be switched between. All of the existing information on the patient is shown

in text boxes that can be edited by the user. Once the user has made the desired changes, clicking

the “Save Patient” button will update all of the patient’s records accordingly and take the user

back to the DetailedPatientView for that patient, with all of the edited values shown accordingly.

If the user decides they wish to discard any changes made while in EditPatientView, they can

simply click the “Back” button to be taken back to the DetailedPatientView without saving any

changes.

As previously mentioned, Doctors, Nurses, and Office Staff will be able to see a “Create

New Patient'' button from the ListView. Clicking this button will bring the user to the

NewPatientView. This view looks identical to the EditPatientView discussed previously, with the

only difference being that none of the text boxes will already be filled out. As before, once the

user has filled out all the information for the patient, they can click the “Save Patient” button.

13



Patient Information Management System

This will add the patient to the database, and then take the user back to the ListView, where they

will be able to see the new patient in the list.

14



Patient Information Management System

Team Roles and Project Approach

Each member of the team was assigned a role for the project. Patrick Burns and Jackson

Collette, the authors of this report, alternated weeks as either the Team Lead or the Scrum Master

since this was a requirement for the Honors Capstone project. For example, if Jackson was the

Team Lead one week, then Patrick would be the Scrum Master for that week, and the next week

those roles would flip. Patrick also handled the majority of the GUI development. The Team

Lead for the project led meetings and made the key decisions for the overall project. The Scrum

Master created and assigned individual tasks to the team members. Brian Kemle was the

Technical Writer. The Technical Writer handled all the documentation and helped with the

software development plan. Bryson White was the Quality Lead. The Quality Lead was

responsible for ensuring the quality of the code as well as the quality of the overall project.

Madison Smith was the Test Lead. The Test Lead was responsible for creating tests for the

program. Note that as the project continued, Madison entered a development role, creating

everything for the database and integrating it with the project, while Jackson handled some of the

testing. Note that all team members were involved to varying degrees in developing the

application in addition to their assigned roles.

The team met regularly three times a week: after class on Tuesday and Thursday, and on

the weekends on either Saturday or Sunday night. The meetings after class typically lasted about

45 minutes, and the meetings on the weekends typically lasted about an hour. During the

meetings, the team discussed updates on their progress as well as any issues they were having.

Other team members were then able to help resolve those issues. Tasks were also assigned during

the meetings, in addition to planning for the project.

15



Patient Information Management System

The Scrum Master allocated tasks to individual members of the team. The group tried to

break down everything that needed to be done for the project into tasks before we even started

programming. Over the course of the project, as we discovered new tasks that needed to be

completed, the Scrum Master would create new tasks on the project board throughout the

semester as necessary. The Scrum Master assigned relevant tasks to each group member on a

weekly basis, typically during the team’s weekend meeting. The group used a GitHub project

board to keep track of the tasks. A portion of the project board can be seen below. Tasks were

organized under epics and user stories. Additionally, each task could be set as “Backlog,” “In

Progress,” or “Done,” as well as a designation for which team member was assigned the task.

Figure 5: GitHub Project Board

16



Patient Information Management System

Conclusion

The Patient Information Management System set out to allow a hospital to view and

manage data for each of their patients. The system is able to load all patient information from a

MySQL database, whether it’s on the local machine running the PIMS software, or on a remote

machine on the same local network. Users are able to login to their accounts and view the

appropriate information available to them. The system allows for the easy creation of new

patients, as well as editing of existing patients. Lastly, the program allows users to print a variety

of different reports to an external file concerning either a single patient, or all patients currently

in the system. Overall, the system accomplishes all of the goals it set out to complete.

17


	Patient Information Management System (PIMS)
	Recommended Citation

	CS 499 Honors Capstone Report.docx

		2023-04-26T08:53:23-0500
	William Wilkerson


		2023-04-25T08:26:41-0500
	Letha Etzkorn




