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Abstract 

 Team communication is incredibly important to team performance, and situational 

awareness is a large part of successful team communication. This study utilizes team 

communication data from multiple teams in a firefighting simulation and performs data analysis 

on it. The data from the simulation contains situational awareness ratings, which are used to split 

up the data into different categories of performance in the aspect of situational awareness. Then 

multiple types of feature extraction are done on the data, most of which involve some form of 

natural language processing. The features extracted also go through a process of dimensionality 

reduction before they are combined and used to train AI/Machine Learning classification 

algorithms. These algorithms attempt to place teams and individuals from the simulation into the 

correct category corresponding to their performance in the aspect of situational awareness 

ratings. This study dives into what the different features extracted from the communication data 

look like and how they contribute to our understanding of the data and the machine’s 

understanding of the data. The results of running the AI/Machine Learning algorithms are also 

analyzed to quantify how well the extracted features allow a machine to predict levels of 

situational awareness. 
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Introduction 

 In all situations, and especially high stress ones that involve teams, the communication 

abilities between team members are especially important. Generally, the quality of 

communication within a team has real effects on a team’s performance.[1] Now more than ever, 

there are more and more cases where machines are present within team situations. Therefore, 

there are many opportunities to make use of machines to improve the communication that goes 

on within teams. In order to do this, machines must understand the aspects of team 

communication.  

One very important aspect of communication is situational awareness. Situational 

awareness is especially important in higher stress scenarios such as combat or emergency 

situations where all team members need to properly communicate what is going on. Situational 

awareness refers to how much members of a team understand the environment they’re in and the 

changing state of the environment over time. The level of situational awareness conveyed 

through team communication does impact the success of a team in many situations.[2] It stands 

to reason that if a machine that can understand the concept of situational awareness, teams that 

involve human machine interaction can benefit from the machine’s understanding and improved 

communication.  

The first step of developing a machine’s understanding of situational awareness is seeing 

if it can identify it. That brings us to the scope of this study. If we gather communication data 

from teams in a simulated high stress environment, can a machine be trained on that data to 

identify how situationally aware the teams in the environment are? For the scope of this study the 

levels of situational awareness among different teams of people will have been already 

generated, and we will test how well a machine can process the communication data along with 

the already known situational awareness levels and determine in future communications how 

situationally aware a team is.  

This study specifically is based on a previous study “Using Big Data Analytics for 

Sentiment Analysis to Explore Team Communication Dynamics in Human Machine Interactions 

for Team Situational Awareness”.[2] The goal of this study is to improve upon that study by 

investigating more avenues of data analysis on team communication data, specifically ones 

related to natural language processing. This study evaluates how the newly investigated features 

of communication data can be utilized to improve the classification of situational awareness by a 

machine. This study also aims to go into as much detail as possible about the various ways it 

analyzes team communication data. 
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Methodology 

Simulation Details 

The dataset used is the same as in “Using Big Data Analytics for Sentiment Analysis to 

Explore Team Communication Dynamics in Human Machine Interactions for Team Situational 

Awareness”.[2] It comes from the same simulation where teams of four members carried out 

simulated fire-rescue operations. The goal of the teams was to put out forest and building fires. 

These fire-rescue operations were designed to test the team’s collaboration skills. The simulation 

is described sufficiently in the paper referenced.  

All team members were assigned independent workstations with a single computer. Each 

team members was given role and task-specific information prior to the start of the fire-

rescue exercise. The teams interacted with one training simulation (simulation 0.0). This 

was followed by two independent fire rescue operations: simulation 1.0 and simulation 

3.0, respectively, that lasted 15 minutes each. The primary task in each of the simulations 

was to protect the forest and housing artifacts in the environment from fire eruptions and 

control the fire eruption situations in the environment. All team members had full 

visibility of the simulation environment assets such as the terrain, housing, forest and 

water towers to refill the water tank systems. The simulation 2.0 was a team discussion 

session that was held in between the fire rescue simulations 1.0 and 3.0, 

respectively…Each team member was assigned their own fire response system, either a 

fire-engine or helicopter. Each fire-response system had a different capability such as 

speed or limited water holding capacity…Throughout the simulation all teams were able 

to send and receive information in text-based format using the chat window option [2] 

The data produced from this simulation that we will use is based upon what was recorded from 

the chat window during these simulations. This paper does not investigate any other data 

produced by the simulation. 

 

Data Details 

 The data consists of messages from each team’s chat during the simulations they 

participated in. The messages from each member were recorded along with some other 

identifying information. Since there were 4 members in each team, each message is paired with a 

number 1 through 4 identifying the individual who posted it. The message is also paired with the 

simulation number 0 through 3 and the time within that simulation that the message was sent. 

Finally, some messages have a situational awareness score or two paired with them which will be 

described shortly. Each of the 41 teams had all their messages along with this information 

recorded. Figure 1 shows how the data looks in excel format, which is the baseline from which 

this project is built. The figure shows columns “Turn Taking”, which designates the team 

member which sent the message, “Time”, which is the time that the message was sent, 

“Simulation”, which is the number simulation that the team was in when the message was sent, 

and “Team SA” which is the Situational Awareness Score/Scores for the message. 
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Figure 1: Spreadsheet View of the Simulation Data 

  

 The numbers in the right column are the Situational Awareness Scores, or SA scores for short. 

Two domain experts are responsible for generating these scores per message. The two experts came to a 

complete agreement on each score. The scores range from 3 to 6 and each represents a different level of 

situational awareness. A score of 3 corresponds with perception. A score of 4 corresponds with 

comprehension. A score of 5 corresponds with projection. Finally, a score of 6 corresponds with Action. 

Table 1, taken from the paper mentioned before that described these simulations, displays these 

situational awareness scores with their actual definition and an example.[2] 

 

Table 1: Situational Awareness Score Categories along with their Definition and Examples (Adapted from [2]) 

 

Data Cleaning 

 With this data the first necessary step to take was to clean it. The cleaning process 

involved a few simple steps. First the data was converted from its excel format to python Pandas 
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data frames. These data frames were used to contain only the columns that were meant to be 

there and with no empty rows. Once this was done, each team’s and each team member’s total 

number of messages were obtained and added onto the data frames. This was done so that we 

could have an accurate count of these values before the next step in the cleaning process. The 

next step involved finding every row that was given 2 SA scores and separating the two scores. 

From here the second score was added with its message and other data as a new row to its team’s 

data. Since the count of messages wouldn’t be the real count after this step those counts had to be 

recorded before it even though that isn’t normally part of the cleaning process. This completed 

the data cleaning process and then it was time to categorize the data. 

 

Categorization of Data 

 The next step to take with this data was to categorize it into different performance 

classes. Performance in this case means how situationally aware each team and each team 

member were. For the purposes of this project both the situational awareness of the team overall, 

and the situational awareness of each individual were considered. For categories, both the teams, 

and total individuals in the data set were split into 3 groups of equal size for low, mid, and high 

performance. In order to split up the teams and individuals a metric for the performance was 

needed. For this the mode situational awareness score and two averages were summed up. The 

first average was the average situational awareness among all the messages that were actually 

scored, and the second was the average situational awareness among all the messages, including 

the ones that were not given a score. With the sum of these values as a performance metric, the 

teams and individuals were split into their categories accordingly. There were 14 low 

performance teams, 14 mid performance teams, and 13 high performance teams, similarly, there 

were 56 low performance individuals, 56 mid performance individuals, and 52 high performance 

individuals. 

 

Data Preprocessing 

 In order for a number of the data features that were used in the data analysis for this 

project to be properly extracted, the raw text data from each message had to go through some 

preprocessing. Firstly, all the text in each message was made lowercase. This is to avoid upper 

and lowercase of the same word registering as 2 different words. Next the text data was 

tokenized using NLTK’s word tokenizer. This split the raw text into arrays of the individual 

words. After that the words were all lemmatized using NLTK’s wordnet lemmatizer. This step 

reduces most words to their base form. For example the words “liking” and “liked” would be 

turned into “like”. After this the set of English stop words from NLTK along with common 

punctuation was removed from the arrays of text. Stop words are super common words like “the” 

and “a” that don’t offer much meaning to a set of text. Because they tend not to offer much 

meaning they were removed. Finally, every individual word was only kept if it was found to be a 

real word in the NLTK words corpus. This was done to remove misspellings and words that 

aren’t real words. [3] All of these steps make of the data preprocessing for the text. This 

preprocessed text data is later used for both the TF_IDF features and the part of speech features, 

but it not used for the sentiment intensity features. 
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Feature Extraction and Natural Language Processing 

 The next thing to do was extract features from the data for the data analysis. Most of the 

features that were extracted from the data are related to natural language processing, though not 

all are.  

First off are the features that aren’t based on the text of the messages. These features are 

all related to the number and frequency of messages sent. Specifically, for each team and for 

each individual, the number of total messages sent by that team/individual was a feature. The 

frequency of messages sent by a team/individual in a single simulation also made up 4 more 

features since there are 4 simulations for messages to take place in and have a frequency for. This 

made 5 total features based on the number and frequency of messages sent. 

The next set of features comes from part of speech tagging. Part of speech tagging 

involves classifying each word in a body of text as being a particular part of speech. For this task 

NLTK’s part of speech tagger was used to determine the part of speech for each word.[3] The 

tags generated by this were used to create a matrix of each part of speech with the average 

amount of times that part of speech showed up in a message for all the messages from a team, 

and a separate matrix with the same properties but with all the messages from an individual. This 

produced roughly 27 features each being the various parts of speech found in the body of text. 

The next text-based features come from TF_IDF being performed on all the text from 

each team and each individual. TF_IDF is similar to bag of words in that it generates a sparse 

matrix with values corresponding to whether each word out of the entire set of words in the data 

exists in a particular team/individual’s document, where document refers to the set of words 

generated by that person or team. However, where bag of words only counts the occurrences of 

the word in the document, TF_IDF does a bit more complex of a calculation. It takes into 

account how much the word appears in the document multiplies it by how little the word appears 

in other documents. Therefore TF_IDF scores are maximized when a word both occurs in a 

document and doesn’t occur in other documents. The actual formula for this score calculation is 

as follows.[4] 

𝑇𝐹 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

𝐼𝐷𝐹 = log (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚
) 

𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹 

TF_IDF was chosen since it should help further separate the different documents and make 

classifying them easier than it would be with only bag of words. Scikit-Learn’s TF_IDF 

vectorizer was used in this case to generate the sparse feature matrix, which in total contains a 

feature for each unique word in the complete set of all text from the simulation, which made up 

around 1700 features.[5]  

 The final set of features that were used in the data analysis were related to sentiment 

analysis of the text. Sentiment Analysis refers to determining how positive, negative, or neutral a 

body of text is. In order to accomplish this task, the valence aware dictionary for sentiment 

reasoning (VADER) model in NLTK was used. This model has a sentiment intensity analyzer 

which, given a body of text, can generate a positive sentiment rating, neutral sentiment rating, 

negative sentiment rating, and compound sentiment rating based on the previous 3 ratings.[6] In 
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this case the sentiment intensity analyzer was passed each message from a team or individual to 

generate these values for. Then the values for each of these ratings were averaged across all of 

the messages from a particular team or individual in order to generate the sentiment features for 

them. With this method, there were 4 features generated for each team and individual, being the 

average of each sentiment rating.  

 

Dimensionality Reduction 

 With the feature extraction being done we end up with 5 message count/frequency based 

features, 27 part of speech based features, ~1700 TF_IDF based features, and 4 sentiment 

analysis based features. In order to best use these features to train classifier models, some form 

of dimensionality reduction is necessary. For this project Linear Discriminant Analysis, or LDA 

was used. LDA can be used to reduce a set of features down to any amount of dimensions from 1 

to the total number of classes – 1 dimensions. This is because LDA is a supervised learning 

method and takes into account the actual classes of the data. Since there are 3 performance 

classes in our data the choice for number of dimensions to reduce to was either 1 or 2. For each 

set of features described previously, LDA was performed on it to reduce it down to 2 dimensions. 

What LDA is meant to do is, within the dimensions the data is reduced to, minimize the 

separation between data points of the same class, and simultaneously maximize the separation 

between data points of different classes. Using this method, ideally, the data becomes more easily 

separable for the classifiers to more accurately classify it. For this project scikit-learn’s Linear 

Discriminant Analysis module is used to perform LDA on each set of features, bringing the total 

features down to 8, 2 features for each of the 4 sets of features.[5] With this step the architecture 

of this projects data analysis becomes clear. The natural language processing-based AI/ML 

architecture is displayed below in figure 2. 

 

 
Figure 2: Architecture for Predicting Team Performance from Derived Features of the Data. 
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AI/ML Models 

 Now that we have 4 sets of 2 features dimensionally reduced, we can test if they can 

successfully train various classifiers. For this project 7 different classifiers were used. These 

classifiers were trained on both the data categorized by each team and the data categorized by 

each individual member. 

 3 of the 7 classifiers were various types of Support Vector Machines, or SVMs. Support 

Vector Machines are a classifier that attempts to find the decision boundary between classes of 

data that has the widest margin between the multiple classes. One type of SVM is linear SVM 

and involves the decision boundary being a straight line. However, the kernel in SVM can be 

changed so the decision boundary doesn’t have to be linear which can better classify certain data. 

Both the polynomial (Poly) kernel and the RBF kernel can be used with SVM to generate non-

linear decision boundaries.[7] For this project, all 3 of Linear SVM, Poly kernel SVM, and RBF 

kernel SVM were used, each with a C constant value of 3. Specifically, Scikit-Learn’s 

implementation of SVM in these 3 ways was used to implement it.[5] 

 Another classifier used is the Naïve Bayes classifier. Naïve Bayes uses Bayes Theory and 

attempts to choose the class that maximizes the posterior probability of the class being correct 

given the document. It uses the likelihood, the probability of a document given the class, along 

with the probability of the class to calculate the posterior probability. [2], [8] Since we did LDA 

on all of our sets of features, we have all continuous type data and therefore simple Guassian 

Naïve Bayes it the type we chose use for our classifier. For the implementation Scikit-Learn was 

once again used to perform the Naïve Bayes classification.[5] 

 The next classifier used is the Multilayer Perceptron, or MLP. MLP is an AI neural 

network algorithm that takes the features for classification at its input layer and generates the 

classification at its output layer by applying weights learned through training. It’s called 

multilayer because there can be any number of hidden layers in between the input and the output 

layer.[2] One benefit is adding hidden layers allows the model to adapt to non-linear behavior. 

[9]. For this project again, Scikit-Learn’s MLP Classifier was used with its default settings, 

which involve 100 hidden layers and using the adam solver.[5] 

 Another powerful classifier that was used are Decision Trees. Decision trees create a tree 

structure of feature-based decisions that all go into determining the class of a document which is 

done on the leaf nodes of the tree. Once a tree is trained the input features of a document will go 

along a path of the tree where each branch considers the value of a feature until it reaches a leaf 

node which will determine what class the document is classified as.[2], [10] For this project, 

Scikit-Learn’s Decision Tree Classifier was used to run this model and was done with the default 

settings.[5] 

 The final classifier used is one that is based on Decision Trees and is known as Random 

Forest. Random forest is essentially just an ensemble of Decision Trees performing together to 

get a more accurate classification. An ensemble is when a number of estimators are used together 

to provide a better result than the estimators by themselves could. In the case of Random Forest, 

an ensemble of Decision Trees is made using bagging, which means the Random Forest classifier 

chooses whatever class the most Decision Trees in the ensemble classify the object as.[2], [10] 

For this project, once again, Scikit-Learn’s Random Forest Classifier was used to run this model 
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and it was set to the default values which generate 100 different Decision Trees as estimators to 

use in the classification.[5] 

 

Training Models and Validation 

 We have the classification models and the features to input into them but its important to 

discuss how the models are trained and validated. First of all, the random seed that’s put into 

splitting a dataset into a training and testing set can affect what classification accuracy ultimately 

ends up getting outputted since a change in the makeup of training and testing sets will inevitably 

affect how the classifiers learn and classify the data. In order to counteract this, this project used 

a method of validation known as a Stratified Shuffle Split. The Shuffle Split part of that just 

means that the data is shuffled and split into training and testing data a specified number of times 

to counteract the variance of outcomes caused by a single random seed. Then the Stratified part 

of that means that the train and test sets have an equal proportion of all the classes split up 

among them. For this project Scikit-Learn’s Stratified Shuffle Split implementation was used 

with n = 5 meaning 5 shuffled test sets and train sets were created for application to the 

classification models.[5] The models were tested even further since different training set sizes 

were passed to the Stratified Shuffle Split. 30%, 40%, 50%, 60%, and 70% training data 

percentages were used with the Stratified Shuffle Split in order to truly validate how well each of 

the models were able to perform based on a range of training set sizes. 

 

Results and Analysis 

 
Data Categorization 

 After the data had been cleaned, it could be categorized into its performance classes. First 

for the categorization of teams, 14 teams were categorized as low performance, 14 were 

categorized as mid performance, and 13 teams were categorized as high performance. Figure 3 

shows the total SA score makeup of the low performance class and the high performance class of 

the teams.  

 

 
Figure 3: SA Score Makeup of Low and High Performance Teams 
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The biggest noticeable difference between the low performance teams and the high performance 

teams is the amount of SA scores of 6. The high performance teams actually had less scores of 3 

and 5 but there were over 3 times as many scores of 6. This does make sense given that the mode 

is a factor in the performance calculation. Another observation is that in the high performance 

graph, most of the SA scores come from simulation 2, the team discussion portion. So even 

though the team members weren’t fighting fires in that moment, the utilization of the team 

discussion is what made a large difference in their scores. 

 The individual team members were also categorized into low, mid, and high performance 

classes, with there being 56 team members in the low performance class, 56 team members in the 

mid performance class, and 52 team members in the high performance class. Similar to Figure 3, 

Figure 4 shows the total SA scores for the low performance and high performance classes of 

individuals. 

 

 
Figure 4: SA Score Makeup of Low and High Performance Individuals 

The makeup of these classes of individuals closely mirrors the makeup of the classes of teams, 

with the largest difference between low and high performance being the amount of SA scores of 

6, and simulation 2 almost always making up the majority of the SA scores.  

 

Turn Taking Based Features 

 As stated in our methodology, 5 features were extracted from the data that were based on 

message total and frequency. These features were the total messages sent, the frequency of 

messages sent in simulation 0, the frequency of messages sent in simulation 1, the frequency of 

messages sent in simulation 2, and the frequency of messages sent in simulation 3. These 

features were extracted from both individuals and teams. Figure 5 shows the average amount of 

messages sent between the 3 classes of teams and 3 classes of individuals. 
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Figure 5: Average Total Messages for Different Performance Classes of Teams and Individuals 

The clear trend here is that the teams with higher scores for SA generally sent less messages. The 

same trend is exhibited in the individual performance classes. This is partly due to how the 

performance was scored using averages but also could be the result of team members taking 

more time to write out situationally aware messages and not just sending lots of messages that 

have no importance.  

 Once we had this message total feature along with the 4 other message frequency 

features, all were normalized with Scikit-Learn’s Standard Scaler and then LDA was applied to 

them to reduce them down to 2 components.[5] Figure 6 shows scatter plots with the LDA 

components as axis and the color as the actual class of the data for both the team and individual 

classes respectively (team on the left, individual on the right). 

 
Figure 6: LDA Components of Turn Taking Features for Teams (left) and Individuals (right) 

The LDA components of neither the team nor the individual classes are particularly separable. 

The team LDA components do show some slight differences in the outliers between the different 

classes. The individual LDA components, however, do not show much of a pattern at all, besides 

high performance teams tending to be higher on the x axis. These LDA components are 2 of the 

features that go into the classifiers later. 
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Part of Speech Features 

 The next set of features to be extracted were the ones from part of speech tagging. In this 

case, NLTK’s part of speech tagger tagged each word of the preprocessed text data as 1 of 

roughly 27 parts of speech.[3] This produced 27 features for both the team performance and 

individual performance classes, with each feature being the average amount of times that part of 

speech appeared in a message sent by the team or individual. No visualization was done on this 

feature data until after LDA was applied. The features were again normalized with Scikit-Learns 

Standard Scaler.[5] Then, LDA was applied to the part of speech features for both the team and 

individual data. Figure 7 shows the scatter plots of the LDA components for team and individual 

classes respectively (team on left, individual on right) 

 
Figure 7: LDA Components of Part of Speech Features for Teams (left) and Individuals (right) 

From the team plot of the LDA components, the classes are very clearly separable. It’s pretty 

close to perfectly separating them, making the part of speech features very important for the team 

performance classification. On the other hand, the individual plot of LDA components does not 

separate the classes nearly as well, although it’s still clear that the 3 classes have different areas 

in the plot. This means while the part of speech features are still important for the individual 

performance classification, they don’t hold as much importance as for the team performance 

classification. 

 

TF_IDF Features 

 As described in the methodology, TF_IDF was used on both the total text from each team 

and the total text from each individual to generate large feature matrices where the features were 

the TF_IDF scores for each word out of the whole set of text. This produced roughly 1700 

features for both the team and individual classes of data. The first thing we did with this was find 

the 20 feature words with the highest TF_IDF score across the low and high performance classes 

for both teams and individuals. Figures 8 and 9 show the total of the 20 highest TF_IDF scores 

among low performance and high performance teams respectively. 
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Figure 8: 20 Highest totals of TF_IDF Scores for Low Performance Teams 

 
Figure 9: 20 Highest totals of TF_IDF Scores for High Performance Teams 

For both of these we see a similar distribution of words although there are some key differences. 

First of all, “Fire” is just a super common word in this simulation regardless of the situational 

awareness of teams. There are a few words high up on the feature list for high performance that 

aren’t in the top 20 features for low performance teams. “Take”, and “Help” are the two main 
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examples of this, and it makes sense why as these are words that really show action, which has 

an SA score of 6.  

We also generated graphs of the 20 most important TF_IDF features for the low 

performance and high performance individuals. These are shown in Figures 10 and 11 

respectively. 

 
Figure 10: 20 Highest totals of TF_IDF Scores for Low Performance Individuals 

 
Figure 11: 20 Highest totals of TF_IDF Scores for High Performance Individuals 

These graphs are not exactly the same as the ones for the team performance, however they show 

very similar trends and the word makeup between the two are similar. One thing to note is for the 

high performance individuals “Take” was so important of a word that it overtook “Fire”. 
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 Once this data was visualized, it was time to perform LDA on the roughly 1700 features 

generated by TF_IDF to bring the total features down to 2. This again was done on both the team 

data and individual data. Figure 12 shows the 2 LDA components and their classes in scatter 

plots for both the Team and Individual performance classes respectively (team on the left, 

individual on the right) 

 
Figure 12: LDA Components of TF_IDF Features for Teams (left) and Individuals (right) 

The team LDA component plot shows that the 2 components do not do a good job of separating 

the classes. However, the different classes do have slightly different shapes. On the other hand, 

the LDA component plot for the individual classes shows that the LDA components for those 

classes successfully separate most of the data points within each performance class. It’s far from 

perfect but it looks like something a classifier could learn. What this means is that the 

components of TF_IDF for the individual performance classes are very important to the overall 

performance classifier while the TF_IDF components for the team performance classes are not 

very important to that overall performance classifier. 

 

Sentiment Features 

 The final set of features extracted came from sentiment intensity scores generated by the 

Valence Aware Dictionary for Sentiment Reasoning (VADER) model in NLTK. There were 4 

features generated. These were the averages of positive, negative, neutral, and compound 

sentiment polarity scores generated by VADER. These were averages since each individual 

message was passed in without preprocessing to get a score for all four categories. We didn’t do 

any data visualization of these average sentiment scores until after LDA was performed. LDA 

was used to bring the 4 features down to 2 and attempt to make the classes more separable 

through the 2 LDA components. Figure 13 shows scatter plots of the 2 LDA components and 

their corresponding performance classes for both the team data and individual data respectively 

(team on left, individual on right) 
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Figure 13: LDA Components of Sentiment Based Features for Teams (left) and Individuals (right) 

These LDA scatter plots show that for both the Individual Performance classes and Team 

performance classes sentiment intensity paired with LDA does the worst out of all the features at 

separating classes. For the team performance classes the only clue given as to which class is 

which is the component variance of the class, since low performance takes up much less area on 

the plot. As for the individual performance classes there really aren’t any clear observations that 

can be made about the differences between the classes. The result of this is the sentiment 

intensity features in our model will likely not be very helpful to the overall classifier for both 

team performance and individual performance. 

 

Running the Models 

 Every step up until this point has been setting up for this stage of the analysis. Here we 

ran each AI/ML model described before on our set of features produced through LDA of 

different feature types, and observed how well we could classify both team and individual 

performance of data. A Stratified Shuffle Split was used to generate 5 random training and 

testing sets and each of these was ran through all 7 models to get classification accuracy scores. 

This was repeated with a train size of 30%, 40%, 50%, 60%, and 70%. Figure 14 shows a graph 

and table of the classification accuracy for each model for each training size for team 

performance. 
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Figure 14: Team Performance Classification Accuracies by AI/ML Model and Training Size  

It turns out the team classifiers performed quite well here, with accuracies ranging from 71% 

accuracy at the lowest to an incredible 98% accuracy at the highest. It’s also a good sign that for 

every classifier besides linear support vector machines, the accuracy trended upward with an 

increased training size, meaning the more data it had to train from, the better it fit the data. 

Overall, it seems Naïve Bayes performed the best, being the model that gave us the highest 

classification accuracy we saw. 

 After running the models on the features from the team data, it was time to run them on 

the individual data and see how accurately individual performance could be classified. The same 

method used on the team performance was used for individual performance. Figure 15 shows a 

graph and table of the classification accuracy for each model for each training size for individual 

performance. 

 
Figure 15: Individual Performance Classification Accuracies by AI/ML Model and Training Size  
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The classifiers for individual performance also did well although generally not as well as the 

teams did. However, there was also much less variance among the classification accuracies for 

individual performance. The accuracies ranged from 79% at the lowest to 89% at the highest. So, 

while the highest accuracies weren’t quite as good as they were for team performance, the lowest 

accuracies were a lot better than they were for team performance. Here you see each model for 

the most part trend upwards with a larger training set, although support vector machines with a 

Poly kernel did dip in accuracy quite a bit going from 60% training data to 70% training data. 

The best performing classifier this time was not Naïve Bayes but actually Random Forest which 

performed the best at every single training size. 

 For both team and individual performance these classifiers performed even better than 

expected. The data for both was split into 3 equal groups meaning randomly selecting a class for 

each data point should result in around 33% classification accuracy. All of the models performed 

more than twice as well as this in every situation. The feature selection process in this project 

was much more involved than previous ones using this dataset and due to that it was good to see 

that the classification accuracies had also largely surpassed those of the previous models created 

on this dataset. 
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Conclusion 

 
 In this study, we presented an analysis of team communication data and the measure of 

situation awareness within this communication data. The analysis was largely based on natural 

language processing with the goal of finding the best way to have a machine predict the level of 

situational awareness for a team or an individual. The large focus of this study was deriving the 

features of the data for the machine to use to make its predictions. Another goal with feature 

derivation was to investigate more features than the previous study on this dataset that this study 

is based on, “Using Big Data Analytics for Sentiment Analysis to Explore Team Communication 

Dynamics in Human Machine Interactions for Team Situational Awareness”.[2] That’s why this 

study looked into multiple types of features including part of speech tagging and TF_IDF. Also 

dimensionality reduction was a concept this study investigated with the use of LDA. LDA’s 

purpose in this paper was primarily to make each set of features uniform so they could be equally 

combined, however there was also a hope that this dimensionality reduction method would 

improve classification accuracy. This study did use mostly the same AI/ML models as the 

previous study on this data, just with the addition of a validation method Stratified Shuffle Split. 

The classification accuracies displayed by this study improved on the accuracies in the 

previous study on this data and showed these high prediction accuracies could extend to 

evaluating individual and not just team performance. Overall, this study showed that a deeper 

dive into natural language processing for communication data can improve a machines ability to 

determine aspects of communication such as situational awareness. For future study in this area, 

there needs to be more investigation done into data transformation and dimensionality reduction 

methods such as LDA to see exactly how they improve or worsen classification capabilities, and 

when the best time to use them is. Furthermore, a machines ability to score messages for aspects 

such as their situational awareness needs to be investigated. How well can a machine generate its 

own scores? These are the type of questions that still need answers. 
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Appendix 

 
Code is located at: https://github.com/kfletc/TeamCommunicationLanguageProcessing 

Code will also be zipped and submitted along with this paper. 

A video presentation and demo will also be in the zip file with this paper 

 

Python Files: 

Main.py - main for doing classification of performance by individuals and teams based on text 

features, message counts and frequencies, part of speech tagging, and sentiment features 

 

GetFeatures.py - file for doing tf_idf or bag of words for categorized data and also for extracting 

features from categorized data 

 

RunModels.py - file to run classification algorithms given the features and categories. Performs 

Stratified Shuffle Split on the data before running it through the classifiers. 

 

CategorizeData.py - for creating cvs and pickle files with teams and individuals classified into 

performance categories based on mode and average of SA scores. Also preprocesses text and 

other derived features such as message frequency, part of speech tagging, and sentiment analysis. 

Groups all text data with all of these features 

 

CleanDataset.py - for removing metadata, naming columns, and splitting up multiple SA scores 

https://github.com/kfletc/TeamCommunicationLanguageProcessing
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