
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

4-24-2023

Capture the Flag Robot Capture the Flag Robot

Joshua Wade Fry

Christa Hope Manges

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Fry, Joshua Wade and Manges, Christa Hope, "Capture the Flag Robot" (2023). Honors Capstone Projects
and Theses. 799.
https://louis.uah.edu/honors-capstones/799

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/799?utm_source=louis.uah.edu%2Fhonors-capstones%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages

Capture the Flag Robot

by

Joshua Wade Fry and Christa Hope Manges

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma

to

The Honors College

of

The University of Alabama in Huntsville

April 24, 2023

Honors Capstone Director: Mr. Adam Colwell

Part-Time Lecturer of Computer Science

____________________________________04/24/2023_________

Student Date

____________________________________04/24/2023_________

Student Date

Director Date

Department Chair Date

Honors College Dean Date

4/25/2023

Fry and Manges 2

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted as a bound part of the thesis.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate from

The University of Alabama in Huntsville, I agree that the Library of this University shall make it freely

available for inspection. I further agree that permission for extensive copying for scholarly purposes may

be granted by my advisor or, in his/her absence, by the Chair of the Department, Director of the Program,

or the Dean of the Honors College. It is also understood that due recognition shall be given to me and to

The University of Alabama in Huntsville in any scholarly use which may be made of any material in this

thesis.

Joshua Wade Fry_____________

Student Name (printed)

Student Signature

04/24/2023___

Date

Christa Hope Manges___________

Student Name (printed)

Student Signature

04/24/2023___

Date

Fry and Manges 3

Table of Contents

Abstract …………………………………………………………………………………………

4A

Introduction …………………………………………………………………………………….. 5

Process …………………………………………………………………………………………. 5

Conclusion …………………………………………………………………………………….. 10

Appendix A ……………………………………………………………………………………. 11

 A.1 …………………………………………………………………………………….. 11

 A.2 …………………………………………………………………………………….. 12

 A.3 …………………………………………………………………………………….. 12

 A.4 …………………………………………………………………………………….. 13

 A.5 …………………………………………………………………………………….. 13

 A.6 …………………………………………………………………………………….. 14

 A.7 …………………………………………………………………………………….. 14

Works Cited …………………………………………………………………………………… 15

Fry and Manges 4

Abstract

 Throughout the course of the Spring 2023 semester, Joshua Fry and Christa Manges

made progress in coding a robot to play Capture the Flag. The project is part of the INCLUDE

program, in which students from different academic majors work on a project together. The

coding for this semester focused on image processing and robot motion. For image processing, a

color image and depth image come from a Kinect sensor. Then objects are recognized in the

color image. Information about the objects recognized and their locations is synchronized with

the corresponding depth image. Then the information is combined into unified messages to be

sent on to other parts of the system. One of these messages is sent to a script controlling the

motion of the robot. The robot can then maneuver through the course to successfully play a game

of Capture the Flag.

Fry and Manges 5

Introduction

Go! Go! Get the flag! Capture the flag is a well-known game consisting of two teams

where each team tries to steal the other team’s flag and bring it back to base. But what if robots

could play capture the flag? This semester, Christa Manges and Joshua Fry joined the INCLUDE

program, in which team members from different academic majors come together to complete a

project. Our responsibility was to help code a Clearpath Husky robot (see A1) to play capture the

flag. In order for a robot to play capture the flag, it must be able to detect what objects are around

itself. The robot must also be able to move toward the flag, away from the enemy robot, and

around obstacles. Throughout this semester, we have implemented object detection and robot

motion.

Process

 At the beginning of the semester, we began implementing object recognition with

ImageAI. We wanted to make a test script to explore how image recognition works. ImageAI is a

Python library that recognizes and detects the location of objects in an image (Olafenwa). We

used it with an algorithm called YOLO. YOLO stands for You Only Look Once and is a

prominent lightweight object recognition algorithm (Keita). We first used ImageAI with a laptop

webcam and later used it with a Kinect sensor. However, we soon learned that ROS (Robot

Operating System) is middleware and not its own programming language. We then decided to

use ROS and therefore to use an object recognition tool that would more easily integrate into

ROS.

Coming into this project at the beginning of the semester, we were fully unaware of what

ROS was and how it worked. We were told by other members of the team that it was a

Fry and Manges 6

proprietary language that the robot utilized to process any inputs faster than other languages.

Knowing that the robot could also run Python and C++ scripts, we decided initially to work

solely in Python for the sake of ease. After speaking with Dr. Howard Chen, we learned more

about ROS and realized our idea of it was entirely incorrect. ROS stands for Robotic Operating

System, and it is a framework that runs on Linux. The languages of choice for ROS are C++ and

Python, and any scripts that run on ROS can interact with each other regardless of language.

Knowing this, we realized very quickly that ROS, along with nodes that would be supported by

both C++ and Python, was what we wanted to use for this project.

One element of ROS that is imperative to learn and understand before any progress can

be made on a project is how nodes will interact with each other. To do this, we created a diagram

representing the different nodes that will run on the robot and the inputs and outputs flowing

between them (see A2). Though not all nodes have been created, those that have been and those

that will be in the future are both included. The first node to provide input to others is

iai_kinect2_opencv4, whose outputs are taken as input by both darknet_ros and

image_processor. The output from darknet_ros is read by image_processor and the yet to be

created tablet_control. Three nodes read different outputs from image_processor:

launcher_processor, arm_processor, and movement_processor. Out of these three nodes,

movement_processor is the only one which has been created for this semester. The output from

movement_processor is read by the built-in husky node, which allows the robot to move. The

output from launcher_processor is read by both launcher_control and tablet_control, the latter of

which can also output back to launcher_processor. The output from arm_processor is read by

arm_control to manipulate the robotic arm on the robot. Finally, output from tablet_control is

Fry and Manges 7

also read by the husky node. Thanks to ROS, the interaction between all of these nodes is

handled on an individual basis, and each node can be developed independently.

 Once we decided we were using ROS, we needed to find a way to integrate the Kinect

sensor into ROS and perform object recognition with the resulting image. In order to connect the

Kinect sensor into ROS, we used a pre-built ROS node called iai_kinect2_opencv4. The node

takes input from a connected Kinect sensor and outputs both camera images and lidar depth

images (Paul). Specifically, we use information from the /kinect2/hd/image_color_rect topic for

the color image (see A3 for an example of output) and information from the

/kinect2/hd/image_depth_rect topic for the depth (distance) image (see A4 for an example of

output). Christa calibrated the Kinect sensor by taking pictures of a checkerboard image so that

the image_depth_rect topic would output more precise values (see A5 for the setup). The color

image then goes to another prebuilt node, darknet_ros, for object detection. darknet_ros uses

YOLO to identify objects in the image and determines their locations within the image. This

information is output on the /darknet_ros/bounding_boxes topic (Bjelonic). Christa made two

modifications to this prebuilt node. First, she modified the code to make the timestamp on the

message on /darknet_ros/bounding_boxes to be the same as the timestamp on the corresponding

image message on the /kinect2/hd/image_color_rect. If the timestamp does not change while it

passes through the darknet_ros node, it enables easier synchronization later on between the

output of the darknet_ros node and the corresponding depth image. The second modification was

made because initially a message would only be published on the /darknet_ros/bounding_boxes

topic if objects were detected in the image. We needed the message to be published even if no

objects were detected in order to enable easier synchronization later on between the

bounding_boxes output and the corresponding depth image. A6 provides an example of output

Fry and Manges 8

from /darknet_ros/bounding_boxes with the code modifications described above being applied.

The output from darknet_ros onto the bounding_boxes topic can then be processed by the

image_processor node.

The image_processor node synchronizes and combines information about the detected

objects and information about image depths into a cohesive message. It is written in C++.

Messages on the topics /darknet_ros/bounding_boxes and /kinect/hd/image_depth_rect are inputs

for the node. The bounding_boxes messages provide information about the objects detected and

their locations. The image_depth_rect messages provide information about depth values

throughout the image. The messages are synchronized by matching or near matching timestamps.

Then information from the synchronized messages is combined and output onto three topics. The

three output topics for the node are /image_processor/all_objects, /image_processor/flag, and

/image_processor/enemy_person. Messages that are published on the all_objects topic each

object’s probability, the boundaries of each object, the center point of each object, the each

object’s depth, and information about each object’s identity. These messages also include the

dimensions of the image, the full depth image (to be able to navigate around obstacles that are

not explicitly identified by object recognition), and the image sequence numbers for both the

colored image used for object recognition and the depth image. Messages on the all_objects topic

are intended to be sent to the movement_processor node so that the information can be used in

controlling robot motion (see A7 for sample /image_processor/all_objects output). Messages sent

on the /image_processor/flag topic contain information about the probability, location

boundaries, center point, depth, and identity of each flag object recognized by the

image_processor. This information can enable the arm attached to the robot to be able to pick up

the flag. The information is sent to the arm_processor node, which will be made by different

Fry and Manges 9

students in a future semester. Messages sent on the /image_processor/enemy_person topic

include information about the probability, location boundaries, center point, depth, and identity

of each person and enemy robot recognized by the image_processor. This information enables

the tennis ball launcher that will be attached to the robot to target the enemy robot, ensure no

humans are near the robot, and then fire a tennis ball at the enemy robot. The information is

intended for the launcher_control node that will be built by different students in a future

semester. No sample output is provided from the image_processor and enemy_person outputs

because we do not currently have access to the flag and the enemy robot, so we were not able to

perform custom object recognition training with these objects. However, the all_objects output is

currently being used by the motion node.

To allow the robot to move around the play area using a path based on its surroundings,

we have created a ROS node that controls its motion. This node takes as input all_objects_info

messages from the image_processor node. Using these messages, the robot either moves forward

if the flag is in view and no obstacles are in the way or spins until both scenarios are true. To do

this, the node subscribes to the all_objects topic and publishes motion commands to the

/husky_velocity_controller/cmd_vel topic, to which the robot subscribes. If the flag is in view

but not directly in front of the robot, the robot will pivot until the flag is straight ahead. If at any

point an obstacle appears, the robot will turn, reevaluate for any other obstacles using the

Kinect’s lidar capabilities, and proceed if there are none. Due to hardware limitations at this

point, the node cannot be accurately tested due to the latency between image capture and sending

messages, so a demo has been created to test the motion commands for the robot. This works

accurately, so we assume that with a more powerful GPU, the motion node will be able to run

properly.

Fry and Manges 10

Conclusion

As two students wanting to enter the software field, we both understandably had little to

no recent experience with robotics. Because this project hinged almost entirely on hardware, we

had to work with both software and hardware components. As we worked further with the main

components on our end of the project (the Kinect sensor and the Husky robot itself), we realized

this was not going to be a simple task. With the help of our advisors and other team members,

however, we were able to accomplish a large chunk of the project, leaving less work to be done

for future semesters. As we pass this project off to the next team of students, they can build on

what we have started and eventually create a fully functional capture the flag robot.

Fry and Manges 11

Appendix A

A1. Clearpath husky robot without top plate

Fry and Manges 12

A2. Inputs/Outputs Diagram

A3. Sample output from the /kinect2/hd/image_color_rect topic

Fry and Manges 13

A4. Sample output from the /kinect2/hd/image_depth_rect topic

A5. Depth calibration setup

Fry and Manges 14

A6. Sample output from the /darknet_ros/bounding_boxes topic

A7. Sample output from the /image_processor/all_objects topic

Fry and Manges 15

Works Cited

Bjelonic, Marko. “leggedrobotics/darknet_ros.” Github, 30 Jun. 2021,

https://github.com/leggedrobotics/darknet_ros.

Keita, Zoumana. “Yolo Object Detection Explained.” DataCamp, DataCamp, Inc, 28 Sept. 2022,

https://www.datacamp.com/blog/yolo-object-detection-explained.

Olafenwa, Moses. “Official English Documentation for ImageAI!” ImageAI, 2022,

https://imageai.readthedocs.io/en/latest/.

Paul, Shuvo. “iai_kinect2_opencv4/kinect2_bridge/.” Github, 28 Oct. 2020,

https://github.com/paul-shuvo/iai_kinect2_opencv4/tree/master/kinect2_bridge.

	Capture the Flag Robot
	Recommended Citation

	tmp.1688061962.pdf.4wtR_

		2023-05-01T12:18:02-0500
	William Wilkerson

		2023-04-29T07:26:55-0500
	Letha Etzkorn

