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Abstract

Multi-dimensional arrays - or tensors - are used in many fields, such as “signal processing

and recommender systems” (Smith et al.). Being used in both commonplace and scientific

applications, a lot off effort is focused on optimizing tensor computations. In application,

tensors tend to be enormous and very sparse. If a tensor “is sparse, ... most of its entries

are zero and, therefore, need not be stored nor explicitly computed upon” (Li et al., 2019).

Thus, there are opportunities to improve time performance in tensor computations by better

utilizing the non-zeros patterns. In order to utilize non-zero patterns, we commonly reorder

tensors. Lately, there has been a lot of effort being focused on creating highly optimized tools

that exploit the sparsity of tensors in trying to improve performance.

The purpose of this research is to study some of these tools. Specifically, the efficiency

and effectiveness of different reordering schemes are examined. This was done by ordering

a sparse tensor with different reordering schemes, using the time to do so as a measurement

of efficiency. Then, we perform canonical polyadic decomposition (CPD), a common tensor

computation performed in many fields, on both the original tensor and on the reordered tensor.

The difference in time taken between the operation on the original tensor and the ordered

tensor was used as a measurement of effectiveness.

In this study, we will compare SPLATT and LEXI-order as orderings for sparse tensors. In

the paper that LEXI-order was introduced, Li et al., 2019 find “BFS-MCS and LEXI-Order

schemes both outperform graph and hypergraph partitionings” from SPLATT. This research

is the first work to compare different ordering schemes, other than the paper that introduced

LEXI-Order. Thus, this study serves to confirm their results and it will also be a guideline for

future research in the field. It was found that LEXI-Order is much more efficient, and that

LEXI-Order and 3-Partition SPLATT are similarly effective, since they see similar average

speedup.
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Introduction

Tensors are a generalization of scalars, vectors, and matrices to higher dimensions, mean-

ing they are just tensors that span 0, 1, and 2 dimensions, respectively. When a tensor spans

three or more dimensions, they are simply known as n-dimensional tensors, where n is the

number of dimensions that are spanned. Terms such as mode and rank are used to specify the

number of dimensions that are spanned by the tensor. In application, tensors can be repre-

sented as multi-dimensional arrays and operations are performed on them. They are used in

many fields in both mathematics and computer science – especially in the field of machine

learning. According to IEEE fellow Nicholas D. Sidiropoulos et al., “tensors have already

foundmany applications in signal processing (speech, audio, communications, radar, biomed-

ical), machine learning (clustering, dimensionality reduction, latent factor models, subspace

learning), and well beyond”. Being used in so many fields, there is a lot of effort being put

into developing robust and flexible tool kits that make tensor computations more efficient.

In this paper, we are specifically observing sparse tensors. This is actually a big branch in

the research into tensor computations, as tensors tend to be sparse in real world applications

and being sparse yields opportunities to produce speedups in certain operations. To under-

stand the term sparse, we first need to understand the term density. The density of a tensor

A (Density(A)) is defined as the proportion of non-zeros elements (nnz) relative to the total

number of elements in a tensor, A (|A|). Thus, mathematically:

Density(A) =
nnz

|A| .

The quantity of non-zero elements cannot be less than zero or greater than the size of the

tensor, i.e., 0 ≤ Density(A) ≤ 1. The term sparse is used when the density of a tensor

is close to 0, which would imply a tensor has very few non-zero elements compared to the

quantity of 0 elements. Similarly, a tensor is known as dense when the density is close to its

maximum, 1. There is not a defined cutoff on what makes a tensor sparse. However, in this
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Tensor # of Non-Zeros Dimensions Density

nell-1 143,599,552 2,902,330 x 2,143,368 x 25,495,389 9.054E-13

nell-2 76,879,419 12,092 x 9,184 x 28,818 2.402E-05

nips Publications 3,101,609 2,482 x 2,862 x 14,036 x 17 1.830E-06

crime 5,330,673 6,186 x 24 x 77 x 32 1.457E-02

enron 54,202,099 6,066 x 5,699 x 244,268 x 1,176 5.458E-09

flickr 112,890,310 319,686 x 28,153,045 x 1,607,191 x 731 1.068E-14

delicious 140,126,181 532,924 x 17,262,471 x 2,480,308 x 1,443 4.256E-15

Table 1: the tensor collection and their density statistics

research, the density of the tensors were all less than 0.05. Specifically, they ranged in value

from 4.256E-15 to 1.457E-02, the densities of delicious and crime, respectively. Observe

Table 1, which contains the number of non-zero elements, the size, and the density of each

tensor used in this study. All the tensors, and their statistics, used for this study can be found

at http://frostt.io/tensors/. These tensors were chosen as they are also by comparable works

(Li et al. 2019, Smith et al. 2015).
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Spatial and Temporal Locality

We are specifically interested in sparse tensors because there are opportunities to produce

speedups by improving either temporal locality or spatial locality (ideally both). These terms

simply represent the concept of making better memory management decisions. A computer’s

memory hierarchy and memory management is analogous to the challenge of physical file

storage, in that we have much greater capacity to store files in a filing cabinet or a storage

room (hard drive), compared to what can be carried on our person (memory close to the CPU).

Additionally, it takes more time to retrieve a file from a filing cabinet than it does retrieving a

file on your person, since the filing cabinet is more distant. The term spatial locality simply

refers to the concept of storing related files closely together when they are in the filing cabinet

so that they can be retrieved at the same time more easily. Over the course of a program, this

can yield speedups because time can be saved if the related date entries are stored close to

one another. Temporal locality refers to the concept of not having to retrieve the same file

multiple times from the filing cabinet over the course of a day. Because we can only have so

many files on our person, we may need to return a file to the filing cabinet prior to us being

done with it for the day. Ideally, we would like to minimize the number of trips retrieving

the same file over the course of the day. Over the course of a program, we could produce

speedups if we minimize the number of trips taken to retrieve the same file.

To summarize, spatial locality is a measure of the proximity of related data entries, phys-

ically, in memory. Spatial locality is good when data entries that are mutually relevant are

stored closely together physically so that they can be retrieved together. Spatial locality is

poor when mutually relevant data entries are stored distantly and take more than one trip to

retrieve. Additionally, temporal locality is a measure of how data is used throughout the life-

time of a program. Temporal locality is good when, for most data entries, we can minimizing

the number of trips taken to retrieve the same data from the hard drive. Temporal locality is

poor when the data entries must be retrieved multiple times, sporadically, throughout the life-

time of the program. Thus, if we can improve temporal locality or spatial locality, speedups
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should follow.

Methods of Improving Temporal and Spatial Locality

In general, there are two overall approaches when it comes to trying to improve spatial and

temporal locality. Somework is in favor of using storing the tensors in a different formats. The

“(COO) format, [which would be storing a tensor in a multi-dimensional array, is] arguably

the de facto standard for general sparse tensor storage” (Li et al., 2018). There are alternative

storage formats. The other approach is to order the indices of a tensor, using an ordering. In

this paper, we will be evaluating two different orderings, SPLATT and LEXI-Order, while

also varying the input parameters to SPLATT.

Reorderings

A reordering, or ordering, is the process of “permuting the indices within one or more

modes”(Smith et al.) of a tensor. This is equivalent to rearranging the rows and columns of a

matrix when doing row operations. A reorderings “can lead to significant performance gains

as it can potentially... [introduce speedups] by exploiting spatial and temporal locality”(Smith

et al.). Thus, the goal is to rearrange the indices of a tensor to arrive at an equivalent repre-

sentation of a tensor, but with optimal spatial and temporal locality. Figure 1 depicts a tensor

undergoing such an ordering. However, the problem of finding a perfect reordering schema is

NP-hard and thus does not have a solution. There are several heuristics that have been intro-

duced that attempt to find an approximate solution. Meaning, although they are not guaranteed

to to provide an optimal ordering, the should be able to provide an ordering with better spatial

and temporal locality. In this study, we will be comparing orderings SPLATT, introduced

in SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication by Smith et al., and

LEXI-Order, which was introduced in Efficient and Effective Sparse Tensor Reordering by Li

et al., 2019.
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0 3 0 3 0 0 0 0 2 0 0 2
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 3 0 3 0 0 0 0 2 0 0 2

→

3 3 0 0 0 0 0 0 0 0 0 0
3 3 0 0 0 2 2 0 0 0 0 0
0 0 0 0 0 2 2 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1

Figure 1: example of a 3-dimensional tensor reordered to show greater spatial locality

Previous Work

There is plenty of research into the optimization of tensor algorithms; however, many

of these papers do not work with orderings. Smith et al. in SPLATT: Efficient and Par-

allel Sparse Tensor-Matrix Multiplication introduce two ordering schemes that are mode-

independent and mode-dependent orderings; these are known, respectively, as the graph or-

dering and hypergraph ordering. According to Smith et al., “Mode-dependent reorderings

offer further opportunities for optimization at the cost of additional work during the reorder-

ing stage”. Additionally, Efficient and Effective Sparse Tensor Reordering (Li et al., 2019)

introduces both BFS-MCS and LEXI-Order. In their findings, “LEXI-Order improves perfor-

mance more than BFS-MCS in most cases” (Li et al., 2019). Because LEXI-order performs

better than BFS-MCS and ismode independent, wewant to compare LEXI-order to SPLATT’s

mode independent ordering.

Methodology

In this study, we observe SPLATT’s mode-independent ordering with both 3-way and 6-

way partitionings and LEXI-order. We first test the efficiency of the orderings by measuring

the time it takes to reorder the tensor. Since both of these orderings are parallel, this was done

with 1, 8, and 32 cores. To test the effectiveness, we perform canonical polyadic decom-

position (CPD), on both the ordered and the reordered tensor to measure time performance.

Tensor decompositions is an important kernel that is necessary for most tensor computations.

Although there are many decompositions, CPD is the one most commonly used in literature.

A reordering is considered more effective if it improves time performance compared to the

original. For statistical significance, each of these processes are repeated a total of four times
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Figure 2: depiction of cpd breaking a tensor into rank-one tensors

and then averaged.

Canonical Polyadic Decomposition

Several decompositions could have been chosen for this study. However, Canonical Polyadic

Decomposition (CPD) is a very popular computation utilized in many fields. Additionally,

CPD is commonly used as a benchmark in the study of both sparse and non-sparse tensor

computations. Thus, we have chosen to use CPD to be our benchmark. For the purposes

of this study, we only need to know that, according to Evert et al., “The canonical polyadic

decomposition (CPD) is a fundamental tensor decomposition which expresses a tensor as a

sum of rank one tensors. In stark contrast to the matrix case, with light assumptions, the CPD

of a low rank tensor is (essentially) unique”(Evert et al.). Unique means that there is only

one such decomposition for a given tensor. Figure 2 depicts a tensor X being decomposed

into a summation of rank-one tensors. It should be noted that the literature sometimes refer

to CPD as “CANDECOMP/PARAFAC Decomposition”, if the reader would like to continue

researching CPD.

Results

The purpose of this paper was to study the efficiency and effectiveness of SPLATT 3-way

partition ordering, SPLATT 6-way partition ordering, and LEXI-Order. Figure 3 showcases

the amount of time taken to order the tensors using LEXI-Order for 1, 8, and 32 cores. From

this graph, we can easily see that LEXI-order is highly parallelizable, as the time to complete

11



Figure 3: the time it takes for lexi-order to complete

LEXI-Order is decreasing dramatically, seemingly exponentially. Now, observe Figure 4 that

displays the amount of time utilized to permute the tensors using SPLATT’s 3-way and 6-

way partition ordering for 1, 8, and 32-cores. The first thing to note is that SPLATT’s 3-way

partition ordering is consistently faster than its 6-way partition ordering. Excluding nips,

which was ordered 22x faster via a 3-way partition than a 6-way partition, a 3-way partition

averages to be over 3% faster than a 6-way partition ordering.

Comparing the efficiency of the two, we observe that SPLATT, both 3-way and 6-way

partitioning, is faster sequentially on nell-2, crime, and enron while LEXI-Order is faster

sequentially on nell-1, nips, flickr, and delicious. Thus, the performance on one core is de-

pendent on the tensor. However, when parallelism is introduced, LEXI-Order appears to scale

really well while SPLATT does not. LEXI-Order is consistently faster with the higher core

counts. Thus, with both 8 and 32 cores, LEXI-Order is much more efficient than either of

SPLATT’s orderings. Overall, we observe that LEXI-Order is more efficient.
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Figure 4: the time it takes to partition a graph 3-way and 6-way
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We used time performance as a measure of effectiveness. Because CPD requires more time

on larger tensors, we must define how to compare the performance improvements between

tensors of different sizes. We will define speedup as follows:

Speedup = (timewithnoordering)/timewithordering.

If an ordering improves time performance of CPD on a tensor, CPD would take less time.

Thus, in this case, speedup > 1. If CPD takes more time to complete on the ordered tensor

than on the original, speedup < 1. Speedup can be used to compare the effectiveness of

orderings on different tensors because it measures differences in time performance relative to

the time it took on the original tensor, relative being the keyword.

Figure 5, Figure 6, and Figure 7 all display the speedup acquired by an ordering on each

tensor, performing CPD with 1, 8, and 32 cores, respectively. In each figure, points above the

blue line have values greater than one, and therefore indicate an improvement in performance

produced by the ordering. Points below the blue line indicate a decrease in performance. It is

interesting to see that so many points lie below the blue line in each figure, meaning that the

orderings produced slowdowns (speedups < 1).

In sequential CPD, seen in Figure 5, both nips and nell-1 experience performance improve-

ments for all three orderings. Then, in crime, performance is improved with LEXI-order and

SPLATT’s 3-way partition ordering. Every other tensor experience a slowdown under sequen-

tial. When CPD was computed with 8 and 32 cores, all tensors except for nips, experienced

a slowdown for at least one of the orderings, and no ordering produced a significant perfor-

mance improvement. nips did see a speedup of around 1.9 on a SPLATT 3-way partition

ordering.
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Figure 5: the speedups produced by the orderings when performing cpd with 1 core

Figure 6: the speedups produced by the orderings when performing cpd with 8 cores
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Figure 7: the speedups produced by the orderings when performing cpd with 32 cores
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Conclusion

This study wants to compare LEXI-Order with SPLATT’s 3-way and 6-way partition or-

dering in terms of efficiency and effectiveness. Efficiency is defined as the time to perform

the ordering on the graph, while effectiveness is compared by using measurements of im-

provements in time performance.

The data dictates that LEXI-Order is more efficient than SPLATT’s partitioning, both 3-

way and 6-way. This is because, in a multi-core environment, the LEXI-Order ordering trans-

mutes the tenor quicker than SPLATT’s 3-way and 6-way partition ordering. Additionally,

sequential LEXI-Order is generally faster, although it is dependent on the tensor. Thus, LEXI-

order is more efficient than SPLATT, since it takes less time to perform the ordering in most

cases.

Although LEXI-Order is more efficient, the compute power utilized to perform the order-

ing may not be justified. All orderings fail at producing significant speedups in the tensor

suite as a whole. Thus, it is difficult to dictate which ordering is more effective. From our

results, most tensors do not experience a significant speedup with either ordering, in general.

Only the nips tensor experienced a significant speedup in the multi-core environment. In the

sequential environment, only nips and nell-1 experience speedups. Outside of these tensors,

most tensors experience a slowdown. This means that performing an ordering on the tensor

is likely to decrease the performance of CPD.

It is interesting that, inEfficient and Effective Sparse Tensor Reordering, Li et al., 2019 find

better performance improvements for LEXI-Order for the same tensors. Instead of using the

raw tensor, they used a randomized ordering as their base case for the CPD computations. This

raises a question whether there is some pattern that is formed in the data collection process that

yields non-zero patterns that is beneficial for computations such as CPD. This is a potential

area for future study.
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