
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

11-27-2023

Implementation and Analysis of Security Measures for a Banking Implementation and Analysis of Security Measures for a Banking

Web Application Web Application

Eric Mingeon Sung

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Sung, Eric Mingeon, "Implementation and Analysis of Security Measures for a Banking Web Application"
(2023). Honors Capstone Projects and Theses. 853.
https://louis.uah.edu/honors-capstones/853

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/853?utm_source=louis.uah.edu%2Fhonors-capstones%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages

Implementation and Analysis of Security Measures for a

Banking Web Application

by

Eric Mingeon Sung

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma

to

The Honors College

of

The University of Alabama in Huntsville

November 27, 2023

Honors Capstone Project Director: Dr. Jacob Hauenstein

Student (signature) Date

__

Project Director (signature) Date

Department Chair (signature) Date

Honors College Dean (signature) Date

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate from

The University of Alabama in Huntsville, I agree that the Library of this University shall make it freely

available for inspection. I further agree that permission for extensive copying for scholarly purposes may

be granted by my advisor or, in his/her absence, by the Chair of the Department, Director of the

Program, or the Dean of the Honors College. It is also understood that due recognition shall be given to

me and to The University of Alabama in Huntsville in any scholarly use which may be made of any

material in this thesis.

__________Eric Sung______________

Student Name (printed)

Student Signature

_____12/2/2023___________

Date

1

Table of Contents
Abstract .. 2

Introduction ... 3

Bank Management Utility .. 4

Overview .. 4

Design Architecture ... 5

Security Features... 6

Query Parameterization ... 6

User Authentication .. 8

Password Hashing ... 10

Conclusion ... 13

Appendix .. 14

Reference List .. 15

2

Abstract

In the dynamic online banking environment, the need for robust security measures is growing

rapidly. As financial institutions transition to web-based services, user data integrity and security of

financial transactions remain a major concern. This paper, extending an ongoing Bank Management

Utility project for CS499 Senior Project: Team Software Design for developing an online banking web

application, presents three security features and provides a comprehensive review of each feature. The

features are implemented and tested in the banking web application “Summit Financial Corporation”. The

specific security features discussed in the paper are query parameterization, session-based user

authentication, and password hashing, which enhances the protection of sensitive user data in the banking

web application.

3

Introduction

According to IBM’s 2023 Cost of a Data Breach Report, the global average cost of a data breach

in 2023 was $4.45 million, which is a 15% increase over 3 years. [1] The financial industry is the second

most affected industry with an average cost of $5.90 million per breach in 2023 after the healthcare

industry. Due to the nature of handling millions of customers’ financial assets and personal data, the stake

is significantly higher for the financial sector to provide robust security to protect the customers’ assets

and maintain their trust with their customers. With the fast transition from in-person to online transactions

in the recent decade, the reliability of banking services on digital devices has become a greater concern.

Users now have more access points to banking services and data than ever, which implies that there are

more areas with potential vulnerabilities for the data to be breached.

James Scott, a cofounder of the Institute for Critical Infrastructure Technology, stated, “There is

no silver bullet solution with cyber security, a layered defense is the only viable solution.” [2] Scott’s

insight underscores the fundamental importance of a multifaceted approach to security, adding multiple

layers of security measures to achieve robust protection. Modern banks apply a similar approach to their

security. Some of the common security features include multifactor authentication, encryption, privacy

policies fraud detection, and firewalls. This paper presents and analyzes the layers of security features

implemented in the banking web application developed for the CS499 Senior Project: Team Software

Design.

The accompanying project, Bank Management Utility, focuses on developing a web-based

banking service with account management, digital transactions, and administrator oversight.

Acknowledging the seriousness of security requirements in the movement of private assets and personal

data, the system takes a robust approach to safeguard sensitive financial data and protect users from

potential harm. This paper proposes the integration of data encryption, query parameterization, the user

authentication in the Bank Management Utility project to mitigate the risk of malicious attacks.

4

Bank Management Utility

Overview

The assignment for the CS499 Senior Project: Team Software Design was Bank Management

Utility. The goal of the project was to implement a fully functional banking service as a web application

that is accessible to both customers and tellers. The project was designed for a four-member team with

tasks ranging from the implementation of the client-server system to user-specific tasks to enable general

banking functionalities. The project defines three user types, five banking accounts, and lists of expected

utilities of these categories. It is important to note that role and user type are used synonymously in this

paper, and the use of the word account implies a banking account, such as a checking or savings account,

rather than a user login account. See the project requirements document [1] for detailed descriptions of

requirements.

The banking web application, which we named Summit Financial Corporation (SFC), consists of

three user roles: customer, teller, and administrator. The customer is the everyday user of the bank;

multiple customers can exist in the system, and they can review their account information, make deposits

and withdrawals, transfer funds between two accounts, and make bill payments. Multiple customers can

also make transactions and request data simultaneously. The teller is the manager of customers’

information and banking accounts. Multiple tellers can exist in the system, and the tellers are able to

review all customer account information, create, modify, and delete an account, make deposits,

withdrawals, and transactions on customer accounts, and generate a 1099-INT form for the customer. The

administrator is regarded as the system administrator. The administrator is responsible for adding new

tellers to the system, modifying, and deleting teller information, and reviewing customers’ information

and accounts.

5

Design Architecture

The web application for SFC was developed entirely in JavaScript programming language

powered by Node.js, a cross-platform open-source server environment that is commonly used in web

development. The application is divided into two separate microservices, the frontend, and the backend to

provide a division of functions, an extra layer of access for security, as well as ease of distributed

development in the group. For the frontend, the React.js framework was chosen due to its sheer popularity

in frontend development, which implies an abundance of community supports, and numerous utility

features, such as .jsx scripting that combines JavaScript and HTML in a single file and the use of

components and states to modularize complex structures into a manageable scale. The backend was

developed on the Express.js framework similarly because of its popularity in backend development and

compatibility with other JavaScript frameworks, such as Bcrypt and Crypto, which are used extensively

for this study.

Figure 1. Summit Financial Corporation web architectural diagram

In order to build and deploy the microservices efficiently and consistently in the local host, we

dockerized the microservices by creating docker containers for each microservice and executed the

containers simultaneously using Docker-compose, a Docker tool used for running multiple containers at

once with predefined configurations. The local host ports were assigned to the frontend and backend to

enable communication between the two microservices.

6

The choice of database management system for SFC was Supabase, an open-source PostgreSQL

relational database management system. Supabase was ideal for our banking web application for several

security enhancement reasons. Supabase provides row-level security with easy-to-serve policies,

parameterized query functions for JavaScript API, and a cloud-hosted database all under a free plan. The

details of the specific effects of these security features will be discussed in the following section. Using

the supabase-js library, the backend server could query data from the Supabase database, and this added

layer between the server and database serves another security enhancement purpose.

Security Features

The three main security features that are discussed in this section are password hashing, query

parameterization, and session-based user authentication. Query parameterization provides primary

protection from a data breach in a database that exploits SQL queries. User authentication provides

protection against unauthorized API accesses that attempt to extract data by making direct API requests,

which users should not have access to. Lastly, password hashing provides protection to the user

credentials in case of a database breach or unauthorized API access that successfully extracts the user

passwords. These security features in combination ensure the protection of user data through the layer of

defense approach.

Query Parameterization

SQL injection is the greatest threat to relational databases that utilize SQL to query data. With

poor application and database designs, users may query any data from the database without proper access

privileges. For example, as shown in Figure 2, a simple query parameter “password” could shortcircuit

the query condition by including the “a OR 1 = 1” phrase in the conditional statement and query the entire

Login table without actual credentials. Consequently, an attacker may exploit this vulnerability to log in

as an admin and extract high-profile data or implant malware, leading to a secondary data breach.

7

Figure 2. Query without Parameterization

Query parameterization is one of the solutions to SQL injection. It is the process of passing user input as

designated parameters rather than a portion of the query string. The database management system

recognizes the parameters as singular values and thus rejects any query strings like “a OR 1 = 1”,

preventing SQL injections. Figure 3 shows a parameterized query as an alternative to the query shown in

Figure 2.

Figure 3. Query with Parameterization

The SFC web application operates a Supabase database using the JavaScript library supabase-javascript.

The query function of Supabase client is modularized by the operations as shown in Figure 9. Rather than

executing a complete PostgreSQL query string, individual methods are called with user inputs and

executed in the Supabase backend. The modularization of queries reduces the complexity of queries for

general users, and it also provides query parameterization to prevent SQL injections. The example below

(Figure 4) is the Supabase query for finding a user with the corresponding UserID and Password.

8

Figure 4. Example query from SFC web application

User Authentication

 Upon the initial login, the user’s credentials must persist in the system until the user logs out of

his or her account. Two common methods of preserving user credentials in web applications exist, which

are session and token. A session is a set duration of time that the server preserves the user credential in the

form of a cookie, and the token is a data package that the client service provides in every request made by

the client. Both methods provide secure authentication, but the SFC web application utilizes the

Express.js library’s session to maintain user credentials and provide authentication because session-based

authentication is advantageous for easy access to state contents and configuring timeout time for dropping

credentials.

Figure 5. SFC session creation

9

 Figure 5 shows the process of creating a new session for a user. The system first defines the

session middleware to establish the session configuration. The “secret” option assigns the session key that

the middleware uses to verify the authenticity of clients’ cookies. If the secret key does not match, the

client session is invalidated. The “resave” option forces sessions to save modified session data after each

request is completed. The “saveUninitialized” option creates a new session regardless of whether the user

properly logged in or not to establish cookies available. “cookie” option sets the timeout time of the

session to prevent the user from staying logged in indefinitely. Each session contains the UserID, Role,

and Email to maintain the context of the user credential in the server.

Figure 6. SFC teller search request for Administrator

 Every role-specific request, such as the Administrator’s request to search for tellers by their

names (Figure 6), checks the session data to verify whether the UserID is not null, and the Role matches

the request access. Failure to pass this check indicates that the request was made by a user who has not

properly logged in with the correct access privilege. This method prevents regular customers from

accessing other customers’ information and making transactions on their behalf. Session-based

authentication ensures that log requests are made by the proper users.

10

Password Hashing

Hashing is the process of using a hash algorithm that converts a string of characters into another

string. In cryptography, hashing is a method of encoding data similar to encryption. Sensitive data like

user passwords can be hashed and stored in the database to prevent secondary data breaches in case of a

database breach. If an attacker gains access to the user login table, the attacker cannot immediately log in

as the administrator or users to extract data without performing a form of a brute force method like

collision attack and rainbow table attack.

According to LastPass’s report on password security, The Password Exposé, 81% of password

breaches are due to weak, reused, or stolen passwords, and 41 billion passwords were breached in 2016

alone. [3] This absurd number is possible in part because password protection from hashing heavily relies

on the complexity of the input string. Password cracking involves making numerous login attempts with

random input values to create a rainbow table or a list of hashed values to trace the desired hashed value.

Short and simple or commonly used passwords can be cracked easily using the pre-generated rainbow

table, which is the main reason for the advocates of strong passwords.

Figure 7. Example salt adding process

11

Salt and pepper are methods that provide enhanced password protection to hashing without users’

involvement like intentionally creating a long and complicated password. Salt and pepper are random

strings that are attached to the hashing value to increase the volume and complexity of the value when

hashing. Salt is added before hashing, and it is uniquely generated for each new password. Pepper is

added after hashing, and it is stored statically in the application and treated as a secret key. Figures 7 and

8 show the simplified process of adding salt and pepper during hashing.

Figure 8. Example pepper adding process

For the SFC web application, the JavaScript library Bcrypt is used to generate salt values and

hash salted passwords. The built-in saltGen(saltRound) function produces a salt for the given amount of

saltRound, which defines the duration of the function to generate a more complex salt. Then, the

hash(value, salt) function hashes the password with the unique salt for the password. For the pepper,

another JavaScript library Crypto is used to generate a random hexadecimal value with a length of 65

characters; the value is stored as a hidden environment variable in the system. The pepper is added to the

hashed password, and the peppered password is stored in the database to complete the password hashing.

As a result of hashing, a plaintext password is converted to a 125-character text as shown in Figure 9.

PasswordOriginal represents the actual password entered by the users and Password represents the hashed

password that is accessed by the web application. The resulting passwords are considerably more difficult

to crack than the user passwords.

12

Figure 9. Comparison of hashed password and original password

13

Conclusion

The migration of consumer services to online space has achieved a great enhancement to the

utility and accessibility of those services to the masses. However, with better utility and accessibility

came the threats of malicious entities searching for vulnerabilities to commit digital robbery. Data

breaches are a great concern to many online services such as banking as millions of dollars’ worth of

damage may occur for each data breach.

This paper discusses three security features, query parameterization, user authentication, and

password hashing, which provide layers of protection from attempts of data breaches. These features were

implemented and tested for the Summit Financial Corporation web application. More security features

that were not mentioned in this paper were integrated into the SFC web applications, including the

microservice architecture, protected routing, and cross-origin resource sharing (CORS), but for the

purpose of narrow analysis, these features were not discussed. Finally, the Bank Management Utility

project of CS499 Senior Project benefited from the cybersecurity perspective this paper provided as it led

to the architectural decisions that ensured the implementation of reliable and secure system design for the

Summit Financial Corporation website.

14

Appendix

The Summit Financial Corporation project repository can be found in this link.

(https://github.com/aem0424/banking499)

Appendix A. Database Diagram

https://github.com/aem0424/banking499
https://github.com/aem0424/banking499

15

Reference List

[1] “Cost of a Data Breach 2023.” IBM, www.ibm.com/reports/data-

breach?utm_medium=OSocial&utm_source=Blog&utm_content=RSRWW&utm_id=SI

-Blog-CTA-Button&_ga=2.60426413.1423812216.1700810097-

2068772737.1700810097&_gl=1%2Adm720a%2A_ga%2AMjA2ODc3MjczNy4xNzA

wODEwMDk3%2A_ga_FYECCCS21D%2AMTcwMDgxMDA5OS4xLjAuMTcwMDg

xMDA5OS4wLjAuMA.. Accessed 27 Nov. 2023.

[2] Technologies, America One. “Information Security: What Is the Silver Bullet? - Braintree,

Boston, Cape Cod.” America One Technologies, Inc., 15 Nov. 2022,

www.americatech.com/2022/10/information-security-what-is-the-silver-bullet/.

[3] The Password Exposé - Lp-Cdn.Lastpass.Com, lp-cdn.lastpass.com/lporcamedia/document-

library/lastpass/pdf/en/LastPass-Enterprise-The-Password-Expose-Ebook-v2.pdf.

Accessed 27 Nov. 2023.

	Implementation and Analysis of Security Measures for a Banking Web Application
	Recommended Citation

	tmp.1706551563.pdf.0VA6U

		2023-12-06T10:43:30-0600
	Sean M Lane

		2023-12-05T10:51:17-0600
	Letha Etzkorn

