University of Alabama in Huntsville LOUIS

Honors Capstone Projects and Theses

Honors College

11-29-2023

The Role of Nursing Education in Enhancing Stroke Identification and Improving Patient Outcomes: A Systemic Literature Review

Abrie Hearn

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation

Hearn, Abrie, "The Role of Nursing Education in Enhancing Stroke Identification and Improving Patient Outcomes: A Systemic Literature Review" (2023). *Honors Capstone Projects and Theses*. 854. https://louis.uah.edu/honors-capstones/854

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

The Role of Nursing Education in Enhancing Stroke Identification and Improving Patient Outcomes: A Systematic Literature Review

by

Abrie Hearn

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma

to

The Honors College

of

The University of Alabama in Huntsville

29 November 2023

Honors Capstone Director: Dr. Andrea King

Moren Hearen	11 28 2023
Student (signature)	Date
Phillea Kin	11.28.2023
Director (signature)	Date
anulia A Fun	11-29-7023
Department Chair (signature)	Date
0	

Honors College Dean (signature) Date

Property rights with the Honors College, University of Alabama in Huntsville, Huntsville, AL

Honors College Frank Franz Hall +1 (256) 824-6450 (voice) +1 (256) 824-7339 (fax) honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted as a bound part of the thesis.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate from The University of Alabama in Huntsville, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by my advisor or, in his/her absence, by the Chair of the Department, Director of the Program, or the Dean of the Honors College. It is also understood that due recognition shall be given to me and to The University of Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

Abrie Hearn Student Name (printed)

Student Signature

11/28/2023

Date

Table of Contents

Dedication
Abstract4
Introduction5
Review of Literature
Identification6
Interventions & Educational Methods8
Outcomes12
Theoretical Framework14
Methodology15
Results15
Discussion21
Implications to Nursing Practice
Conclusion
References
Figure 112
Table 1
Appendix A: Review of Evidence
Appendix B: Modified Rankin Score
Appendix C: Rapid Arterial Occlusion Evaluation (RACE) Scale
Appendix D: Modified NIHSS55

Dedication

I would like to dedicate this thesis to my family for the unwavering support they have given me over the years. To my parents, who have guided me along the way, constantly pushing me to do my very best in the pursuit of knowledge and happiness. Their belief in me, even during moments of self-doubt, has been my greatest support.

To my loving husband, who has been my rock and number one supporter throughout my academic journey. His encouragement and understanding have sustained me through long nights of studying and writing. This accomplishment is as much his as it is mine.

Lastly, I dedicate this thesis to the countless patients who have crossed my path, each one leaving a unique mark on my professional and academic growth. Their stories, challenges, and resilience have been the inspiration behind this work. It is my hope that this thesis contributes in some small way of improving the lives of those I have had the privilege to serve and those I will serve one day.

Thank you all for being my pillars of strength and motivation. This thesis stands as a testament to the love, support, and inspiration I have received from each of you.

Abstract

Background: Stroke is a global health concern, contributing significantly to disability and death. Timely diagnosis and treatment are pivotal for improved patient outcomes. The potential of nursing education to enhance stroke symptom recognition and patient outcomes warrants exploration.

Methods: A comprehensive literature search was conducted using electronic databases using specific keywords. Articles meeting these guidelines were used: peer-reviewed, published between 2010 and 2022, hospital-based, and nursing education-focused.

Results: The substantial impact on morbidity and mortality from strokes reinforces the urgency of early intervention. Despite established guidelines and protocols, suboptimal stroke recognition and treatment persist due to shortcomings in nurses' neurological assessments and a lack of stroke identification education. Additional studies emphasize the potential of stroke competency programs aligned with guideline adherence. Additionally, quality improvement initiatives prioritizing education and process streamlining demonstrated positive outcomes, augmenting inpatient stroke recognition and quality of care. Evidence-based nursing education interventions boost nurse confidence and practice, while hybrid simulation training effectively enhances nursing competence in managing acute stroke cases.

Discussion: The synthesized literature underlines the crucial role of nursing education in stroke identification and outcomes. Education programs and interventions demonstrate an enhancement in nurses' recognition of stroke symptoms, adherence to protocols, and overall patient care. These studies support the continuous enhancement of stroke care through effective educational strategies, in which future research should focus on implementing evidence-based education for optimal stroke care and patient outcomes.

4

The Role of Nursing Education in Enhancing Stroke Identification and Improving Patient Outcomes: A Systematic Literature Review

Stroke is a significant health problem affecting millions of people worldwide and is a leading cause of disability and death in many countries (Benjamin et al., 2019; Feigin et al., 2016). For patients to have better results and experience less long-term disability, it is essential to diagnose and treat strokes early (Jaunch et al., 2013). Although studies suggest that nurses may not always conduct prompt and accurate neurological assessments on hospitalized patients, they are crucial in diagnosing stroke symptoms and initiating appropriate care (Warren et al., 2021). Given the importance of prompt stroke recognition and treatment, it is essential to explore how nursing education can enhance nurses' ability to identify stroke symptoms to improve patient outcomes.

This literature review aims to determine how nursing education impacts stroke identification and patient outcomes. Specifically, this review will examine the existing literature on how nursing education programs can improve nurses' ability to recognize stroke symptoms and whether this enhanced knowledge translates into improved patient outcomes. Additionally, this review will point out gaps in the literature and recommend areas for further study. By investigating the role of nursing education in stroke identification and patient outcomes, this study aims to provide valuable insights for nursing educators, clinicians, and policymakers and contribute to the ongoing efforts to improve stroke care.

Review of Literature

Stroke is a leading cause of mortality and morbidity worldwide, with significant social, economic, and healthcare implications (Jaunch et al., 2013). Early identification and treatment of stroke are critical for improving patient outcomes and reducing disability. However, delayed or

missed identification of stroke in hospitalized patients can result in suboptimal treatment and poor clinical outcomes. Despite the availability of guidelines and protocols for stroke identification, there is evidence suggesting that neurological assessments by nurses in the hospital setting may be inadequate, leading to potential delays in stroke recognition and treatment initiation (Warren et al., 2021). Therefore, a comprehensive review of the literature on the current state of neurological assessments for hospitalized patients is warranted to identify the gaps and challenges in practice and to inform strategies for improving stroke identification and patient outcomes.

Identification

It is essential to evaluate the level of stroke knowledge among inpatient nurses since 10% of strokes occur in hospitalized patients, and nurses are usually the first to identify symptoms (Adelman et al., 2014). In a study conducted at a large academic medical center, nursing staff underwent a comprehensive online stroke survey, exploring outcome expectations, self-efficacy in recognizing stroke symptoms, and stroke knowledge. This study addresses the existing issue of unrecognized stroke symptoms in hospitalized patients, resulting in delayed care and poor outcomes. The importance of rapid stroke identification was highlighted by outcome expectations, and participants demonstrated their stroke knowledge by naming three stroke warning signs and symptoms. Stroke knowledge was deemed adequate if staff could name at least two stroke warning signs. Clinical experience, educational experience, nursing unit, and personal knowledge of stroke patients were not associated with stroke knowledge; instead, greater self-efficacy in identifying stroke symptoms and higher ratings for the importance of rapid identification were associated with stroke knowledge (Adelman et al., 2014).

This retrospective analysis titled "Delays in the identification and assessment of inhospital stroke patients" looks into patients who experienced strokes while admitted to a tertiary care comprehensive stroke center, aiming to examine the timing and factors associated with delays, the utilization of stroke interventions, and the incidence of large vessel occlusion (LVO) on vascular imaging. The primary objectives were to identify factors associated with delays from the last known normal to symptom identification and to assess the use of stroke interventions. Despite these cerebrovascular attacks occurring in the hospital setting, previous studies have shown the presence of extended delays from the patient's last known normal to assessment and treatment. Because of this, the purpose was to better understand and address the delays in diagnosing and treating in-hospital stroke. The hospital stroke team's call log was used to identify those who had a stroke while hospitalized over a 26-month period, with data extending until October 2019 (Cummings et al., 2022).

A study titled "A successful quality improvement project for detection and management of acute stroke in hospitalized patients" was published in 2020 and aimed to ameliorate the recognition of and quality of care for inpatient strokes. This analysis took place at an urban comprehensive stroke center. The goals of this study were to prioritize staff education, simplify the in-hospital stroke (IHS) process, empower the staff to activate the code for a stroke, ensure sufficient support and teamwork, identify definite quality metrics, and provide feedback communication. To achieve these goals, a new stroke protocol was implemented, which consisted of alerting a specialized team and clearing the computed tomography (CT) scanner. There was also implementation of staff education, case review, and discussion of opportunities for process improvement. The new stroke protocol included a 1-tier activation process, helping to empower the nurses to activate the stroke response. Nurses were educated on using the Face, Arms, Speech, and Time (FAST) assessment to identify common stroke symptoms. Educational methods for nurses also included an online module with the following objectives: understanding the role of the bedside nurse in early stroke recognition, how to use the FAST assessment, and describing the stroke protocol activation for suspected stroke. This new protocol led to a marked increase in stroke cases identified, rapid evaluation, and a high utilization rate of acute stroke therapies (Drogemueller et al., 2020).

In a study published in July 2020, all consecutive inpatient acute ischemic strokes over a ten-year period were recorded (Kamal et al., 2020). This cross-sectional study aimed to provide data on care delivery and results for this specific client population by comparing the meantime from last known neurologically intact to symptom detection. Eligibility for acute treatment of patients based on their physical location in the hospital was also examined. First, the time between the patient being last known neurologically intact to the detection of symptoms was compared based on the patient's physical location within a hospital. It was then compared to the level of care received when they were established to be showing the signs and symptoms of a stroke. The areas of quicker stroke recognition include the ER and ICU, demonstrating how better nurse-to-patient ratios and increased stroke symptom knowledge among nursing staff may lead to quicker stroke recognition. These patients were also more likely to be eligible for acute treatment, leading to better outcomes. Overall, this study demonstrated that better nurse-to-patient ratios and increased knowledge about stroke symptoms for nurses can lead to quicker recognition of neurological deficits (Kamal et al., 2020).

Interventions & Educational Methods

In 2017, Christina Anne Case published a quality improvement project to design and apply an intervention for bedside nurses on how evidence-based guidelines are used for stroke care with the aim of supporting an evidence-based culture in the clinical setting. The purpose was to increase nurses' confidence in the use of standardized order sets at the point of care. This study occurred at a 286-bed hospital appropriated by the Joint Commission as a primary stroke center. A total of 89 bedside nurses from four different units were presented with a poster presentation that tied the American Heart Association's and American Stroke Association's current clinical guidelines to standardize stroke care. Participants were surveyed on their stroke care confidence before and after the presentation. Based on current clinical evidence, there was a significant rise in confidence in the capability of standardized stroke care. In addition, it was shown that they were more confident in implementing certain nursing interventions when they were taught how those interventions were evidence-based (Case, 2017).

In an additional study published in December 2016, the main focus was on applying a stroke competency program with adherence to stroke guidelines to improve the nurses' knowledge about strokes. This study aimed to examine if a tailored, multi-faceted stroke competency program would affect the awareness and adherence of nurses in the care of stroke patients. It was found that there were deficits in the knowledge of the NIHSS (Appendix C) and adherence to the completion of the guidelines. Nurses were also measured on patient and family stroke education, along with dysphagia screening. The program included bundled implementation strategies, including printed educational materials, educational outreach, and local opinion leaders. A pretest/posttest program design was used, with 88 experienced nurses participating. Documentation audits were used to measure nursing adherence, and an author-developed assessment measured their knowledge. By implementing this stroke competency program, there were notable improvements in adherence to stroke guidelines and significant improvements in nursing knowledge about these guidelines. It was also found that using multiple

education strategies, rather than just one, was more effective when translating the guidelines into practice (Reynolds et al., 2016).

A hybrid simulation pilot study published in 2017 aimed to increase nurses' confidence in caring for patients with acute stroke through education and training. With a purpose of improving nurses' understanding of patients with acute stroke and neurological deterioration, repetition and teamwork were key points. This study took place at the University of Missouri Health System with 37 participating neuroscience nurses, using a hybrid simulation that combined lecture and a simulation manikin. During the simulation, the patient presented with stroke-like symptoms, which were then identified as an intracranial hemorrhage. Later, the patient experienced a neurological change, and the group was required to recognize the need for a focused resuscitation. A five-point Likert questionnaire was administered to the nurses pre- and post-simulation, assessing nurses and their comfort regarding caring for patients with acute strokes. There was a reported improvement in understanding and handling patients with acute stroke and neurological deterioration after participating in the hybrid simulation (Newey, 2017).

A comprehensive stroke center hypothesized that a guided revision of a formalized stroke response protocol could improve diagnosis, provider communication, reduce stroke mimic cases, and decrease the time taken to treatment (Manners et al., 2019). To guide the new protocol, stroke response activations between 2013 and 2016 were retrospectively analyzed, including 136 cases in the pre-implementation group. Subsequently, from 2016 and 2017, there were 69 cases qualified for the post-implementation group. Aiming to improve the diagnosis and time to treatment, the plan was to replicate the response used for community-onset strokes presenting to the emergency department with rapid imaging, simultaneous data gathering, IV placement, and neurological examination (Manners et al., 2019). Dedicated stroke education to critical care

fellows was completed prior to the initiation of the new protocol. Formal training included stroke symptoms and treatment algorithms for both ischemic and hemorrhage strokes through a lecture series, including a review and demonstration of using the rapid arterial occlusion evaluation (RACE) scale (Appendix C). This scale was selected to heighten sensitivity to large vessel occlusion, given its ease of use. To improve communication, a dedicated telephone was carried by the stroke team. With an emphasis on rapid imaging, the transport of patients to the scanner was dictated by the rapid response team, allowing the neurology team to meet the patient directly in the radiology department to complete the examination and review of clinical information. Overall, there were reduced response calls for stroke mimics, recognition to imaging times, and treatment times (Manners et al., 2019). Shown below in Figure 1 are flow charts of both the pre-and post-implementation in-hospital stroke code protocols.

Figure 1

Pre- and Post-Implementation In-hospital Stroke Code Protocols

Outcomes

The urgency of effective stroke education becomes abundantly clear when considering the time-sensitive nature of reperfusion therapies. This importance is highlighted in a retrospective cohort study published in 2014 looking at the time-dependent effectiveness of thrombolytic therapy for acute ischemic stroke. Intravenous administration of thrombolytic therapy can be used within 4.5 hours after the onset of stroke symptoms, and studies show that better treatment outcomes are strongly time-dependent. This study used the Modified Rankin scale (Appendix B), which measures the degree of neurologic disability and was used at discharge. It distinguishes between a "favorable outcome" (score of 0 or 1) and an "unfavorable outcome" (score of 2-6). The utilization of this scale reinforces the need for determining the severity of neurologic disability. The most favorable outcomes (score of 0 or 1) occurred when patients were treated within the first 1.5 hours of symptom onset. Patients treated with thrombolytic therapy beyond the recommended time of 4.5 hours had a higher mortality risk (Gumbinger et al., 2014). By being readily equipped with both the knowledge and skill set required for early stroke recognition, nurses become instrumental in bridging the gap between recognition and timely intervention. Nursing education helps enable prompt intervention and improves the chances of favorable treatment outcomes.

A comprehensive study aimed to assess the impact of the timing of mechanical thrombectomy procedures on the long-term functional outcomes of stroke patients was conducted at a comprehensive stroke center with patients divided into two groups: those treated during regular work hours (on-hours) and those treated after hours, weekends, and holidays (off-hours). These findings uncovered several important insights into the relationship between the timing of thrombectomy procedures and patient outcomes, further highlighting the importance of rapid stroke recognition and effective nursing education. The off-hours patients were shown to have longer "door-to-groin" times and were less likely to have favorable outcomes than patients who had the thrombectomy procedure performed on-hours (Almallouhi et al., 2019). This disparity emphasizes the need for nurses to be aware of the intricacies in stroke care, as this study has shown how patient outcomes are strongly tied to the timing of reperfusion therapy. By increasing awareness and skills through ongoing education, nurses play a critical role in reducing

delays to reperfusion therapy, ultimately leading to improved functional outcomes and overall enhanced quality of care for patients.

Theoretical Framework

In 1985, Icek Ajzen created the Theory of Planned Behavior and introduced a concept about the perceived behavioral control of individuals. This theory states that behavior is driven by intentions established on attitude towards behavior, subjective norms, and perceived behavioral control. Specifically, for nurses, this theory can help predict the nurse's actions during risk-conducive situations. For example, this would be the decision to call for a rapid response for prominent stroke symptoms. Four factors based on this theory influence individual control and decision-making: the belief that this behavior will result in benefits, having the approval of others, having appropriate skills, and having the necessary resources available (Grech & Grech, 2021).

The Theory of Planned Behavior can improve stroke education for inpatient nurses by improving decision-making in emergent situations. Based on this theory, the best way to educate nurses on neurological emergencies would be to explain the health benefits for patients resulting from changes in assessment and activation behaviors. These health benefits from this specific scenario could include an increased quality of life and reduced mortality risk. Having the approval of others, like the charge nurse or management, to call a rapid response for a suspected stroke will also increase the likelihood of that specific nurse performing that rapid response. If the nurse is well-educated on stroke assessment and recognition, they can be more confident in their ability to initiate a neuro rapid response. When necessary resources, like a stroke team or cleared CT scans, have known availability, the chances of the nurse calling a neuro rapid response will increase based on this theory (Grech & Grech, 2021).

Methodology

The aim of this literature review is to investigate the impact of nursing education on stroke identification and patient outcomes. A comprehensive search of relevant literature was conducted by searching The University of Alabama in Huntsville electronic catalog, including articles on PubMed, CINAHL, and Cochrane Library. The search was limited to articles published in English between 2010 and 2022. The following keywords were used: "stroke," "cerebrovascular accident," "nursing education," "nursing intervention," and "patient outcomes." The search was limited to studies conducted in hospitalized patients. Articles were included if they met the following criteria: (1) they were published in a peer-reviewed journal; (2) they were conducted in hospitalized patients; (3) they investigated the impact of nursing education or timing on stroke identification or patient outcomes; (4) they were published between 2010-2022. Data were extracted from each article using a standardized data extraction form. The following information was collected: study design, sample size, interventions, outcomes, and key findings. Data were synthesized using a thematic analysis result.

Results

This review included a study titled "Stroke Awareness Among Inpatient Nursing Staff at an Academic Medical Center" by Adelman et al. (2014), which assessed the level of stroke knowledge among inpatient nurses. The study surveyed 875 respondents, primarily nurses, to evaluate their ability to recognize stroke warning signs and symptoms. More than 85% of respondents could correctly report at least two stroke warning signs and symptoms. Surprisingly, clinical experience, educational background, nursing unit, and personal knowledge of stroke patients were not significantly associated with stroke knowledge. Instead, greater self-efficacy in identifying stroke symptoms and higher ratings for the importance of rapid identification were linked to better stroke knowledge.

An article titled "Strokes Occurring in the Hospital: Symptom Recognition and Eligibility for Treatment in the Intensive Care Units versus Hospital Wards" by Haris Kamal et al. (2020) investigated the timing of stroke recognition in patients who experienced in-hospital stroke. There were 53 patients identified who came to the hospital for other reasons but ended up suffering from an ischemic stroke. Only 4 patients had initial brain imaging done within 25 minutes from symptom recognition, which is the recommended time by the American Heart Association. Forty-two patients underwent brain imaging within 6 hours of acknowledgement, 11 received intravenous thrombolysis within the first 4.5 hours, and over a quarter of patients had a delay in symptom recognition or treatment due to initial misdiagnosis. Patients admitted to the ICU or ED were 44% more likely to have earlier stroke recognition than those admitted to regular floors. One contributing factor to this disparity is the lower nurse-to-patient ratio in these specialized units, enabling nurses to dedicate more focused attention to each patient. This enhanced observation and lower workload facilitate quicker identification of stroke symptoms, prompt initiation of reperfusion therapies, and greater outcomes for patients (Kamal et al., 2020).

A quality improvement project article, "Promoting Evidence-Based Practice at a Primary Stroke Center" by Christina Anne Case (2017), focuses on designing a targeted nursing education intervention on using current evidence-based guidelines for stroke care. Nurses from 4 units experienced the educational intervention. A pre- and post-intervention survey measured their self-perceived likelihood of performing an ordered intervention based on whether they were confident that the order was evidenced-based. Also measured was their self-perceived confidence in explaining how the standard order sets are created from current evidence. The nurses report a significant increase in perceived confidence in explaining how current order sets reflect current evidence-based practice. There was also an increase in the likelihood of performing the nursing interventions when they were confident that they were evidence-based compared with if they were unsure if the order was evidence-based.

A study titled "Implementation of a Stroke Competency Program to Improve Nurses' Knowledge of and Adherence to Stroke Guidelines" by Reynolds et al. (2016) aimed to determine if a stroke competency program would increase knowledge of and adherence to evidence-based stroke care. The majority of participating nurses (n=88) had around ten years of experience in nursing and were baccalaureate prepared. Prior to program implementation, adherence to the documentation of neurological assessments at the appropriate frequencies was 88.6%, and after the program, 90.5%. Dysphagia screening documentation increased from 71% to 75%. When measuring follow-up assessment scores and frequency knowledge, there was a correlation with those who scored higher tended to have more experience. In identifying potential barriers to consistent stroke care, 84% reported a lack of knowledge of the required activities as a barrier, which then decreased to 65% after the follow-up assessment. Lastly, difficulty in understanding the requirements was reported by 49% and decreased to 34% in the follow-up assessment (Reynolds et al., 2016).

In "A New Strategy in Neurocritical Care Nurse Continuing Stroke Education: A Hybrid Simulation Pilot Study" by Christopher Ryan Newey et al. (2017), a combination of lecture and high-fidelity manikin is used to educate nurses. A total of 37 nurses participated, with the majority having 0-5 years of experience and 83.8% having prior critical care experience. There were six questions, with agreements pre-simulation ranging from 65.7-85.7%. Post-simulation, the agreements increased to 81.1-91.9%. For pre-simulation responses, 57.1-68.6% agreed with

the questions, and 2.9-17.1% strongly agreed. Post-simulation, the responses increased to 40.5%-

56.8% agreement and 24.3-40.5% strongly agreed (Newey, 2017). All responses are listed in

Table 1 below.

Table 1

Nursing Responses Pre- and Post-Simulation

А		Pre-simulat	ion		Post-Sim	P-value	
		Disagree (%	Disagree (%)		Disagree	Agree	-
					(%)	(%)	
1)	I am prepared to care for real patients with intracerebral hemorrhage.	0.0 85.7		5.4	81.1	0.06	
2)	I have an understanding of the pathophysiology of intracerebral hemorrhage.	5.7 68.6		5.4	83.8	0.55	
3)	I have an understanding of the medications used in treating intracerebral hemorrhage.	5.7 68.6		8.1	86.5	1.00	
4)	I am confident in my decision-making skills when treating intracerebral hemorrhages.	5.7	5.7 68.6		5.4	81.1	0.76
5)	I am confident in determining what to tell other healthcare providers when treating intracerebral hemorrhages.	5.7	5.7 65.7		2.7	81.1	0.31
6)	I am confident that I will be able to recognize and predict change in my real patient's condition.	2.9	85	5.7	5.4	91.9	0.72

В	Pre-simulation	Post-Simu	P-value		
	Agree (%)	Strongly	Agree	Strongly	
		Agree (%)	(%)		

					Agree	
					(%)	
1)	I am prepared to care for real patients with intracerebral hemorrhage.	68.6	17.1	40.5	40.5	0.0001
2)	I have an understanding of the pathophysiology of intracerebral hemorrhage.	62.9	5.7	56.8	27.0	0.0001
3)	I have an understanding of the medications used in treating intracerebral hemorrhage.	65.7	2.9	51.4	35.1	0.0001
4)	I am confident in my decision-making skills when treating intracerebral hemorrhages.	57.1	11.4	43.2	37.8	0.0001
5)	I am confident in determining what to tell other healthcare providers when treating intracerebral hemorrhages.	54.3	11.4	56.8	24.3	0.08
6)	I am confident that I will be able to recognize and predict change in my real patient's condition.	68.6	17.1	51.4	40.5	0.0004

In a retrospective analysis titled "An Interdisciplinary Approach to Inhospital Stroke Improves Stroke Detection and Treatment Time" by Jody Manners et al. (2019), it was hypothesized that a guided revision of a formal stroke response system could improve diagnosis and time to treatment. There were 205 total cases split between the pre-implementation phase (136) and the post-implementation phase (69). After protocol initiation, the number of stroke mimics was reduced from 52% to 33%. The average time between the stroke response being called to the stroke team assessment was reduced from 9.7 minutes to 5.1 minutes, and the average time to imaging decreased by 7.6 minutes, with average time to treatment also being reduced from 45.7 minutes to 19.8 minutes. Furthermore, the implementation of the new protocol not only demonstrated significant improvements in stroke detection and reperfusion times but also played a crucial role in enhancing stroke education within the healthcare system. The interdisciplinary approach used facilitated a more comprehensive understanding of stroke symptoms among nurses, reducing mimics and improved timing in recognition and to imaging (Manners et al., 2019).

A retrospective cohort study titled "Time to Treatment with Recombinant Tissue Plasminogen Activator and Outcome of Stroke in Clinical Practice: Retrospective Analysis of Hospital Quality Assurance Data with Comparison with Results from Randomized Clinical Trials" by Christoph Gumbinger et al. (2014) aimed to study the time-dependent effectiveness of thrombolytic therapy for acute stroke. Providing valuable insight into the impact of treatment timing on patient outcomes, this study shows just how important nursing education is in optimizing these critical timeframes. The study population consisted of 49% women with an average age of 73.5 years. Among these, 36% were over 80 years old, making the use of thrombolytic therapy potentially off-label. The average time to tPA treatment was 140 minutes. The primary endpoint, the modified Rankin score (Appendix B) at discharge, revealed a positive outcome with thrombolytic treatment. The odds ratios increased from 1.3 for treatment within 3.0-4.5 hours to 2.5 for treatment within 90 minutes. For patients treated after 4.5 hours, the odds ratio for a lower modified Rankin score was 1.25, which is still favorable but not as favorable as quicker therapies. In-hospital mortality increased in patients treated after 4.5 hours (Gumbinger et al., 2014). Nursing education becomes vital in this context, as it empowers nurses to recognize stroke symptoms and promptly initiate time-sensitive interventions. A thorough understanding of this study's findings can guide nursing practices toward more effective and timely assessments.

In a retrospective study, "Impact of Treatment Time on the Long-Term Outcome of Stroke Patients Treated with Mechanical Thrombectomy" by Eyad Allmallouhi et al. (2019), the long-term functional outcome of stroke patients treated with mechanical thrombectomy during work hours versus after-hours is assessed. This study sheds light on the critical relationship between treatment timing and patient outcomes. A significant proportion of patients were treated off-hours, constituting 116 patients (59% of the total sample). For on-hours, there were 80 patients (41%). The average age was 66.1 years old, but the off-hours average was 64.1 years and on-hours was 69.1 years. The statistical analysis demonstrated that the probability of achieving a favorable outcome at discharge was notably lower for off-hours patients since there was an increased amount of time from stroke recognition to receiving the reperfusion therapy, with a decrease of 12.6%. Similarly, 90 days post-discharge, patients treated off-hours had an 18.7% lower probability of achieving a favorable outcome. These results show that longer periods of time to reperfusion therapy lead to poorer outcomes, emphasizing the importance of early stroke recognition (Allmallouhi et al., 2019). By prioritizing nursing education for quick stroke recognition, patients will benefit from quicker identification and intervention, leading to improved outcomes, reduced disability, and increased chances of recovery.

Discussion

Stroke, a significant global health concern, demands immediate recognition and evaluation to mitigate its debilitating effects and to improve patient outcomes. Nursing education plays a pivotal role in facilitating early stroke recognition, therefore enhancing timely action and quality of care provided. This discussion section dives into the literature reviewed, highlighting the role of nursing education in stroke identification and its subsequent impact on patient outcomes.

The reviewed literature highlights the importance of nursing knowledge and preparation in recognizing stroke symptoms. Adelman et al. (2014) demonstrated that nursing staff's stroke knowledge was critical in prompt symptom recognition. However, it is notable that traditional markers such as clinical experience and educational background did not correlate with stroke knowledge. Instead, self-efficacy in identifying stroke symptoms and a heightened urgency for rapid identification were associated with better stroke knowledge. This suggests that beyond simple education, instilling a sense of importance and confidence in nursing staff can significantly contribute to improved stroke recognition. Likewise, the study by Cummings et al. (2022) emphasized the need for quick stroke recognition in the hospital setting, where timing is crucial. Extended delays in recognizing strokes in surgical patients were revealed and correlated with procedural factors such as anesthesia and intubation. It is recommended to use short-acting anesthetics to expedite post-surgical neurological assessments. It is also important for nurses to closely monitor these patients post-operatively for any neurological changes since they are at increased risk of experiencing stroke. A study by Kamal et al. (2020) suggests improved nurseto-patient ratios lead to quicker stroke recognition. This is evidenced by the fact that the ICU and ER recognized symptoms more promptly than other units due to fewer patients.

Recognizing the interventional need, several studies focused on educational programs and their impact on stroke care. Case (2017) produced a quality improvement project that involved presenting poster presentations and increasing nurses' confidence in evidence-based care. Utilizing this method showed an increase in confidence in capability in stroke care. Drogemueller et al. (2020) implemented a stroke protocol, including educating nurses on using the FAST assessment to identify stroke symptoms. The outcome included a marked increase in the identification of stroke cases, rapid evaluation, and high utilization of acute stroke therapy. Similarly, Reynolds et al. (2016) introduced a multi-faceted stroke competency program that significantly improved adherence to stroke guidelines and enhanced nursing knowledge. Utilizing several educational strategies proved more effective in translating guidelines into practice. In another study on education methods by Newey et al. (2020), a hybrid simulation program was implemented to increase nurses' confidence in caring for acute stroke patients. This approach, combining lecture and simulation, was effective in improving nurses' understanding of stroke and their ability to manage stroke patients, therefore contributing to improved patient outcomes.

Along with educational methods, Drogemueller et al. (2020) also simplified the current stroke protocol. A one-tier activation was implemented, and upon activation, a specialized team was alerted, and a CT scanner was cleared. Likewise, Manners et al. (2019) also made revisions to the stroke response protocol, focusing on rapid imaging, communication, and neurological exams using the rapid arterial occlusion evaluation (RACE) scale (Appendix C). This plan reduced calls for stroke mimics, improved recognition to imaging times, and allowed for faster reperfusion times. These approaches for both studies highlight the significance of streamlining protocols and processes in achieving better stroke outcomes.

The reviewed literature also accentuates the critical importance of time in stroke care. Gumbinger et al. (2014) emphasized the time-dependent effectiveness of thrombolytic therapy and demonstrated that quicker treatment led to more favorable outcomes. Similarly, Almallouhi et al. (2019) discussed the impact timing for thrombectomy procedures, revealing that off-hours procedures led to longer "door-to-groin" times and less favorable outcomes. These findings underscore the need for rapid response and efficient protocols to optimize patient outcomes that can be achieved through effective nursing education.

Implications to Nursing Practice

The findings from this literature review show how crucial timely stroke identification is to improving patient outcomes. Nurses are at the frontline when it comes to stroke recognition, often the first to encounter patients experiencing symptoms. Because of this, their level of knowledge, self-efficacy, and adherence to evidence-based guidelines significantly influence the quality of care provided. By focusing on timing, recognition, ongoing education, training, and interdisciplinary communication, nursing practice can be enhanced to improve the early identification of stroke symptoms, reduce delays in care, and increase the utilization of appropriate interventions.

A key to enhancing patient outcomes is prompt recognition of stroke symptoms. It is important to analyze the level of stroke knowledge among inpatient nurses, as they are typically the first to identify symptoms in the hospital setting (Adelman et al., 2014). This suggests that nurses' self-efficacy and the recognition of the importance of timely stroke identification play a vital role in improving stroke knowledge. Additionally, in-hospital strokes are often associated with surgical patients, so it is recommended to use short-acting anesthetics to ensure accurate post-surgical neurological assessments (Cummings et al., 2022). Furthermore, it is important to stress the significance of staff education and standardized processes. Implementing a one-tier activation system using the FAST assessment can enhance the recognition and quality of care for inpatient strokes (Drogemueller et al., 2020). Also, nurse-to-patient ratios and increased stroke symptom knowledge among nurses are essential in facilitating timely stroke recognition. This shows the need for improved nurse education to reduce delays in recognizing inpatient strokes (Kamal et al., 2020). These studies collectively emphasize the urgency of prompt stroke identification to enhance patient outcomes.

To continually enhance evidence-driven patient care, it is vital to provide registered nurses with education on evidence-based practice guidelines. This approach can significantly boost nurses' confidence using these guidelines to improve stroke care. The findings show the need for healthcare institutions to prioritize ongoing education for their nurses, equipping them with the latest guidelines and promoting a culture of continuous patient care improvement (Case, 2017). Additionally, tailored, multi-faceted stroke competency programs can improve nurses' adherence to guidelines and stroke knowledge. The findings show that using several educational methods can significantly improve guideline adherence and stroke knowledge, highlighting the importance of bridging gaps in nursing knowledge and practice to improve patient outcomes (Reynolds et al., 2016). Incorporating simulation and training into ongoing nursing education can enhance nurses' confidence in managing acute stroke cases. Combining hands-on experience through simulations along with classroom lectures was shown to be effective in improving understanding of and ability to manage acute stroke situations (Newey et al., 2017). Guided revisions of formalized stroke response protocols, in combination with education and training for healthcare professionals, can lead to improvements in stroke diagnosis, communication, and a reduction in stroke mimic cases, ultimately reducing the time taken to initiate treatment (Manners et al., 2019). These approaches include continuous education, comprehensive training, and efficient protocols, all aimed at empowering nurses to recognize and respond to stroke cases swiftly.

These implications discussed above are critical in improving outcomes for those who suffer from in-hospital strokes. Studies mentioned previously highlight the critical need for quick identification and effective nursing education. Gumbinger et al.'s study (2014) demonstrates that the timely administration of thrombolytic therapy is strongly time-dependent, with the most favorable outcomes occurring when treatment is initiated within the first 1.5 hours of symptom onset. This emphasizes the urgency for nurses to recognize stroke symptoms swiftly and to initiate the need for treatment. Additionally, Almallouhi et al.'s study (2019) shows how significant the impact of timing is on thrombectomy procedures and patient outcomes. The quicker the patients can get to reperfusion therapies, the better the results. These findings collectively emphasize that prompt recognition and immediate intervention are crucial in improving patient outcomes, providing strong evidence on why nursing education is needed.

Conclusion

Stroke is a significant global health concern that requires quick recognition and evaluation to mitigate its debilitating effects and improve patient outcomes. Nursing education plays a significant role in facilitating early stroke recognition, enhancing timely action, and delivering quality stroke care to patients. The reviewed literature shows the importance of nursing knowledge, education, and protocols in improving stroke identification and care in hospital settings.

The studies demonstrate that nursing staff's stroke knowledge is instrumental in prompt stroke recognition. Traditional markers such as clinical experience and educational background were not correlated with stroke knowledge. Instead, self-efficacy in identifying stroke symptoms and recognizing the importance of timely identification were key factors associated with stronger stroke knowledge (Adelman et al., 2014). Beyond education, instilling confidence and a sense of urgency among nurses can significantly contribute to improved stroke recognition.

Time is of the essence when it comes to strokes. Delays in recognizing strokes in surgical patients were identified, and procedural factors such as anesthesia and intubation play a role in

these delays (Cummings et al., 2022). Improving nurse-to-patient ratios and maintaining vigilant monitoring for neurological changes can ensure prompt stroke recognition (Kamal et al., 2020).

Furthermore, educational programs and quality improvement initiatives have shown promising results. Simplifying stroke protocols, offering ongoing education, and implementing interdisciplinary communication to enhance stroke recognition and care quality (Drogemueller et al., 2020). Utilizing simulation programs for training can boost nurses' confidence in managing acute stroke cases (Newey et al., 2017). Multi-faceted stroke programs, combining several educational methods, have effectively improved adherence to guidelines and stroke knowledge (Reynolds et al., 2016).

The implications for nursing practice are evident. To enhance patient outcomes, healthcare institutions must prioritize ongoing education for nurses and equip them with the latest evidence. Specialized training, interdisciplinary collaboration, and efficient protocols are crucial in empowering nurses to recognize and respond to stroke cases quickly. These changes can provide more timely recognition of in-hospital strokes and get patients to reperfusion therapy quicker, which has been shown to lead to improved patient outcomes and decreased rates of mortality (Almallouhi et al., 2019; Gumbinger et al., 2014).

While this review has demonstrated the positive impact of educational programs, future research should look into the long-term efficacy of these interventions. Comparative studies analyzing different educational methods' effects on nursing knowledge and stroke recognition skills will be beneficial. Also emphasized in this review is the importance of stroke recognition, but there remains a need to investigate the enduring impact on patient outcomes. Future studies should focus on the long-term consequences of timely recognition, including patient recovery and quality of life. As mentioned previously, optimal nurse-to-patient ratios in different hospital

units are essential to enhance stroke recognition (Kamal et al., 2020). Future research can provide evidence-based recommendations for the ideal nurse staffing levels required to facilitate early detection and intervention. Additionally, in this current era of technology, the potential use of telemedicine to support nurses in stroke recognition is favorable for exploration. Future research can investigate the integration of smartphone apps and remote consultations in aiding early stroke detection and assessment. By addressing these future research areas, we can continue toward advancing stroke care, alleviating the burden of stroke-related disabilities, and elevating the standard of care.

In conclusion, this literature review emphasizes the urgency of prompt stroke identification and immediate intervention to improve patient outcomes. Nursing education, ongoing training, and streamlined protocols are vital components in enhancing stroke recognition and care in hospital settings. By focusing on these aspects, healthcare institutions can contribute to the early identification and effective management of strokes, ultimately leading to better patient outcomes and a reduction in the debilitating effects of this important health concern.

References

Adelman, E. E., Meurer, W. J., Nance, D. K., Kocan, M. J., Maddox, K. E., Morgenstern, L. B.,
& Skolarus, L. E. (2014). Stroke awareness among inpatient nursing staff at an academic medical center. *Stroke*, 45(1), 271–273.

https://doi.org/10.1161/STROKEAHA.113.002905

Almallouhi, E., Kasab, S.A., Harvey, J.B., Reardon, C., Alawieh, A., Girotra, T., Aysse, P., Turner IV, R.D., & Holmstedt, C.A. (2019). Impact of treatment time on the long-term outcome of stroke patients treated with mechanical thrombectomy. *Journal of Stroke and Cerebrovascular Diseases*, 28(1), 185-190.

https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.033

- American Heart Association. (2019). *Rapid Arterial Occlusion Evaluation Scale*. Mission: Lifeline Stroke. https://www.heart.org/-/media/files/affiliates/mwa/nebraska-mlstroke/hospital-toolkit/race.pdf
- Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., Chiuve, S. E., Cushman, M., Delling, F. N., Deo, R., de Ferranti, S. D., Ferguson, J. F., Fornage, M., Gillespie, C., Isasi, C. R., Jimenez, M. C., Jordan, L. C., Judd, S. E., ... Muntner, P. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. *Circulation*, *139*(10), e56-e528. https://doi.org/10.1161/CIR.000000000000659
- Case, C. A. (2017). Promoting evidence-based practice at a primary stroke center: A nurse education strategy. *Dimensions of Critical Care Nursing*, 36(4), 244-252. https://doi.org/10.1097/DCC.00000000000251

- Cummings, Kasner, S. E., Mullen, M., Olsen, A., McGarvey, M., Weimer, J., Jackson, B., Desai, N., Acker, M., & Messé, S. R. (2022). Delays in the identification and assessment of inhospital stroke patients. *Journal of Stroke and Cerebrovascular Diseases*, *31*(4), 106327– 106327. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106327
- Drogemueller, C. J., Kashyap, B., Huna Wagner, R. L., Shebeshi, H., Clayton, M. W., Fennig,
 M. W., & Hussein, H. M. (2020). A successful quality improvement project for detection
 and management of acute stroke in hospitalized patients. *Journal of Neuroscience Nursing*,
 52(4), 186-191. https://doi.org/10.1097/JNN.00000000000517
- Feigin, V. L., Abajobir, A. A., Abate, K. H., Abd-Allah, F., Abdulle, A. M., Abera, S. F., Abyu,
 G. Y., Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Akinyemi, R. O.,
 Al Lami, F. H., Alabed, S., Al-Raddadi, R., Alvis-Guzman, N., Amare, A. T., Amoako,
 Y. A., ... Murray, C. J. L. (2017). Global, regional, and national burden of neurological
 disorders during 1990-2015: A systematic analysis for the Global Burden of Disease
 Study 2015. *Lancet Neurology*, *16*(11), 877-897. https://doi.org/10.1016/S14744422(17)30299-5
- Grech, P. & Grech, R. (2021). The role of health promotion theories in stroke awareness and education. *Applied Nursing Research*, 58, 151415.

https://doi.org/10.1016/j.apnr.2021.151415

Gumbinger, Reuter, B., Stock, C., Sauer, T., Wiethölter, H., Bruder, I., Rode, S., Kern, R., Ringleb, P., Hennerici, M. G., & Hacke, W. (2014). Time to treatment with recombinant tissue plasminogen activator and outcome of stroke in clinical practice: retrospective analysis of hospital quality assurance data with comparison with results from randomised clinical trials. *British Medical Journal, 348.* https://doi.org/10.1136/bmj.g3429

- Jaunch, E. C., Saver, J. L., Adams, H. P., Jr., Bruno, A., Connors, J. J., Demaerschalk, B. M., Khatri, P., McMullan, P. W., Jr., Qureshi, A. I., Rosenfield, K., Scott, P. A., Summers, D. R., Wang, D. Z., Wintermark, M., Yonas, H. (2013). Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*, *44*(3), 870-947. https://doi.org/10.1161/STR.0b013e318284056a
- Kamal, H., Ahmed, M.K., Zha, A., Navdeep, S., Shirani, P., Sawyer, R.N., & Mowla, A. (2020).
 Strokes occurring in the hospital: Symptom recognition and eligibility for treatment in the intensive care units versus hospital wards. *Brain Circulation*, 6(3), 196–199.
 https://doi.org/10.4103/bc.bc 24 20
- Manners, J., Khandker, N., Barron, A., Aziz, Y., Desai, S.M., Morrow, B., Delfyett, W.T., Martin-Gill, C., Shutter, L., Jovin, T.G., & Jadhav, A.P. (2019). An interdisciplinary approach to inhospital stroke improves stroke detection and treatment time. *Journal of Neurointerventional Surgery*, 11, 1080-1084. https://doi.org/10.1136/neurintsurg-2019-014890
- Meyer, B.C., Hemmen, T.M., Jackson, C.M., & Lyden, P.D. (2002). Modified National Institutes of Health Stroke Scale for use in stroke clinical trials. *Stroke*, 33, 1261-1266. https://doi.org/10.1161/01.STR.0000015625.87603.A7

- Newey, C. R., Bell, R., Burks, M., & Nattanmai, P. (2017). A new strategy in neurocritical care nurse continuing stroke education: A hybrid simulation pilot study. *Electronic Physician*, 9(5), 4255-4260. https://doi.org/10.19082/4255
- Powers, W.J., Rabinstein, A.A., Ackerson, T., Adevoe, O.M., Bambakidis, N.C., & Becker, K. (2018). 2018 Guidelines for the early management of patients with acute ischemic stroke:
 A guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Journal of Vascular Surgery*, 67(6), 1934–1934.
 https://doi.org/10.1016/j.jvs.2018.04.007
- Reynolds, S. S., Murray, L. L., McLennon, S. M., & Bakas, T. (2016). Implementation of a stroke competency program to improve nurses' knowledge of and adherence to stroke guidelines. *Journal of Neuroscience Nursing*, 48(6), 328-335. https://doi.org/10.1097/JNN.00000000000237
- The Joint Commission. (n.d.). *Modified Rankin Score*. The Joint Commission Manual. https://manual.jointcommission.org/releases/TJC2018A/DataElem0569.html
- Warren, T., Moore, L. C., Roberts, S., & Darby, L. (2021). Impact of a modified early warning score on nurses' recognition and response to clinical deterioration. *Journal of Nursing Management*, 29(5), 1141–1148. https://doi.org/10.1111/jonm.13252

Appendix A: Review of Evidence

Study	Objectives/Aim	Research	Interventio	Instrument	Study	Strengths	Limitations	Implication
Author/ye	/Purpose	design/Sampl	ns	& Data	findings/resu			s and
ar/title		e/Setting	(competen	collection	lts			recommen
			cies &	methods				dations
			methods)					
Author:	Objectives:	Research	Interventio	Instrument	Study	This study	This study	The study
Adelman,	assess the level	Design: cross-	n: not	s: 1-10 point	Findings:	had a high	was	suggests
Е.Е.,	of knowledge of	sectional	applicable	Likert Scale	The study	response	conducted at	that
Meurer,	stroke	survey		survey	found that the	rate	a single	educational
W.J.,	signs/symptoms				majority of	(83.8%)	academic	efforts for
Nance,	among nursing	Sample:		Data	nursing staff	and a large	medical	nursing
D.K.,	staff and	nursing staff		Collection	in the	sample	center,	staff should
Kocan,	identify factors	working in		Methods:	academic	size	which may	go beyond
M.J.,	that predict	inpatient and		Data was	medical	(n=875).	limit the	providing
Maddox,	adequate stroke	emergency		collected	center had	An	generalizabil	knowledge
K.E.,	knowledge	department		through	adequate	important	ity of the	of stroke
Morgenster		settings		online	knowledge of	and	findings to	signs and
n, L.B.,	Aim:	(n=875)		surveys as	stroke signs	clinically	other	symptoms.
Skolarus,	understand			part of a	and	relevant	healthcare	In addition,
L.E.	stroke	Setting: large		mandatory	symptoms.	issue was	settings. The	self-
	knowledge	academic		annual	However,	addressed	cross-	efficacy
Title:	among nurses	medical center		education	self-efficacy	with	sectional	should be
Stroke	and improve			module.	and outcomes	established	design	emphasized
awareness	stroke education				expectations	survey	captures data	in
among					were	instrument	at a single	recognizing
inpatient	Purpose:				significant	s. Various	point in	stroke
nursing	enhance timely				predictors of	factors	time,	symptoms

staff at an	recognition and		better stroke	were	making it	and the
academic	response to		knowledge,	comprehen	difficult to	importance
medical	stroke		while other	sively	establish	of rapid
center	symptoms to		factors like	explored,	causality or	identificatio
	help improve		clinical	providing	track	n.
Year: 2013	outcomes for		experience	a more	changes in	
	patients		and nursing	holistic	knowledge/a	
			unit did not	understand	ttitudes over	
			appear to	ing of the	time. The	
			influence	issue.	study does	
			stroke		not include	
			knowledge.		detailed	
			_		information	
			Results:		about the	
			Eighty-seven		content of	
			percent of		the survey	
			respondents		used.	
			correctly			
			reported 2 or			
			more stroke			
			signs while			
			31%			
			identified 3			
			warning			
			signs.			
			Numbness or			
			weakness was			
			the most			
			frequently			
			reported			
			symptom.			
			Greater self-			
			efficacy in			

					identifying			
					stroke			
					symptoms			
					and a higher			
					outcome			
					expectations			
					rating were			
					associated			
					with stroke			
					knowledge.			
Author:	Objectives: To	Research	Interventio	Instrument	Study	This study	The study	The study
Almallouhi	assess the long-	Design:	n:	s: modified	Findings:	utilized	was	highlights
, E., Kasab	term functional	retrospective	mechanical	Rankin scale	The results	propensity	conducted at	the
S.A.,	outcome of	observational	thrombecto	scores,	indicated that	scores and	a single	importance
Harvey,	stroke patients		my	admission	the timing of	inverse	comprehensi	of timing
J.B.,	treated with	Sample:	procedure	National	mechanical	probability	ve stroke	for stroke
Reardon,	thrombectomy	stroke patients		Institute of	thrombectom	of	center in the	patients and
С.,	during work	who received		Health	y for stroke	treatment	Southeastern	how
Alawieh,	hours versus	mechanical		Stroke Scale	patients	weights to	United	hospitals
A., Girotra,	after-hours	thrombectomy		(NIHSS)	significantly	address	States,	should
T., Aysse,		(n=196)		scores	affected their	potential	which means	focus on
P., Turner	Aim: provide				long-term	confoundi	findings may	strategies to
IV, R.D.,	insight into the	Setting:		Data	functional	ng factors,	not be	reduce
Holmstedt,	potential impact	comprehensive		Collection	outcomes.	improving	representativ	delays in
C.A.	of timing on	stroke center		Methods:	Patients	the rigor	e of stroke	initiating
	patient recovery	between		Data	treated during	of the	centers in	stroke
Title:	and to identify	December		collection	off-hours	analysis	other regions	treatment.
	strategies for	2014 and		was	were less	and	or settings,	Hospitals
Year:	improving the	December		primarily	likely to	minimizin	limiting the	should
	functional	2016		through	achieve	g biases	generalizabil	consider
	outcomes of			retrospective	favorable	associated	ity of the	staffing
	stroke patients			review of	functional	with the	results. The	strategies to
				medical	outcomes,	timing of	study	ensure that

Purpose:	records,	and this was	thrombect	acknowledg	the
investigate	collection of	partly	omy	es the	necessary
whether the	modified	attributed to	treatment.	presence of	medical
timing of	Rankin scale	prolonged	While	potential	personnel
thrombectomy	scores, and	door-to-groin	retrospecti	selection	are
for stroke	patient	times during	ve, the	bias, and	available
patients affects	interviews.	off-hours.	study	while	during off-
long-term			design	propensity	hours to
functional		Results:	allowed	scores and	perform
outcomes		Patients who	for the	IPTW were	procedures
		underwent	examinatio	used to	promptly.
		mechanical	n of real-	address this	Ongoing
		thrombectom	word data	issue, it is	training and
		y during off-	for a	challenging	education
		hours had	clinically	to fully	for
		worse	relevant	eliminate all	healthcare
		functional	issue,	sources of	professional
		outcomes	enhancing	bias in	s should be
		compared to	the	retrospective	provided to
		those treated	external	studies. The	ensure they
		during	validity of	study did not	are
		regular work	the	specify the	equipped to
		hours. The	findings.	use of	deliver
		probability of	This study	particular	timely care
		achieving a	included a	instruments	regardless
		favorable	relatively	or	of the time
		functional	large	standardized	of day.
		outcome	sample	assessment	
		(Rankin <2)	size for a	tools for	
		at discharge	single-	collecting	
		was 12.6%	center	data, which	
		lower for off-	study.	could	
		hours		introduce	

					patients. At		variability in	
					90 days post-		data	
					discharge,		collection	
					patients		methods.	
					treated off-			
					hours had an			
					estimated			
					18.7% lower			
					probability of			
					achieving a			
					favorable			
					functional			
					outcome. Off-			
					hours patients			
					experienced			
					longer door-			
					to-groin time			
					compared to			
					on-hours			
					patients.			
Author:	Objectives:	Research	Interventio	Instrument	Study	The	There was a	It is
Case, C.A.	design/impleme	Design:	n: included	s:	Findings:	application	small sample	important to
	nt a nursing	Quality	four steps:	preinterventi	Registered	of the L-	size which	constantly
Title:	education	Improvement		on and	nurses	EBP	may limit	adapt to
Promoting	strategy	educational	1. Creating	postinterven	reported a	model to	the	improve
evidence-	demonstrating to	implementatio	of a poster	tion surveys	significant	evaluate	conclusions	evidence-
based	bedside nurses	n	using	created	increase in	this	that can be	driven
practice at	how current		quotes	specifically	perceived	interventio	drawn from	patient care.
a primary	evidence-based	Sample:	from the	for this	confidence in	n suggests	this data.	By
stroke	guidelines are	bedside	current	quality	ability to	that	The	providing
center: A	used when	registered	AHA/ASA	improvemen	explain how	enriching	measuremen	education
nurse	creating	nurse staff	Guidelines	t project	standardized	the	t tool was	of
	standardized		for the		stroke order	evidence-	not tested	evidence-

education	stroke order sets	from four units	Early	Data	sets reflect	based	for validity	based
strategy	at a primary	(n=89)	Manageme	Collection	current	culture of	or reliability.	practice
	stroke center		nt of	Methods:	evidence after	the health	There was	guidelines
Year: 2017		Setting: 286-	Patients	The	the	care	no direct	to
	Aim: to support	bed	with Acute	preinterventi	intervention.	facility is a	measuremen	registered
	an evidence-	community	Ischemic	on survey		theoretical	t for	nurses,
	based practice	hospital	Stroke,	included an	Results:	benefit	knowledge	confidence
	culture within	certified by the	standardize	attitude	There was a	that could	of the	may
	the health care	Joint	d orders,	assessment	reported	potentially	concept.	increase for
	facility	Commission as	and bedside	measuring	higher self-	be	Individual	them to
		a primary	interventio	the	perceived	measured.	ratings of	utilize these
	Purpose:	stroke center	ns.	likelihood of	likelihood of	There	confidence	evidence-
	increase nurses'			RNs. To	performing	were	were not	based
	confidence in		2.	perform an	an ordered	multiple	matched for	guidelines.
	the use of		compilation	ordered	nursing	steps	the pre- and	
	standardized		of a	nursing	intervention	included	postintervent	
	order sets at the		supplement	intervention	when there	in this	ion mean	
	point of care		al binder	when they	was also	interventio	scores.	
			containing	were	confidence	n based on		
			the	confident	that it was	AHA/ASA		
			complete	that the	evidenced	guidelines		
			AHA/ASA	order was	based ($n = 88$,	provided		
			Guidelines	evidence	p < .001).	to improve		
			for the	based		nursing		
			Early	compared		education.		
			Manageme	with when		Also, this		
			nt of	they were		study		
			Patients	unsure that		brought to		
			with Acute	the order		attention		
			Ischemic	was		that		
			Stroke with	evidence		increasing		
			highlighted	based. The		the		
			quotes	postinterven		confidence		

	from the	tion survey	of nurses	
	poster and	asked about	can lead to	
	numbered	the	an	
	tabs to	educational	increase in	
	correspond	intervention	evidence-	
	matching	and their	based	
	standard	confidence	practice	
	orders and	in their	praetiee.	
	interventio	ability to		
		aunity to		
	118	the standard		
	2 00	and an act for		
	5.90-	order set for		
	second	suoke		
	verbal	patients		
	poster	reflects		
	presentatio	current		
	n to RNs	evidence.		
	during			
	preshift			
	huddle			
	4.			
	availability			
	of the			
	poster and			
	binder in			
	the staff			
	breakroom			
	for 1 week			
	after			
	presentatio			
	n			

Author:	Objectives:	Research	Interventio	Instrument	Study	The study	The study	Hospitals
Cummings,	identify factors	Design:	n: not	s: none	Findings:	included	was	should
S., Kasner,	associated with	observational	applicable	specified	There were	comprehen	conducted at	focus on
S.E.,	delays from last	retrospective			significant	sive data	a single	implementi
Mullen,	known normal	cohort study		Data	delays in the	collection	tertiary care	ng and
M., Olsen,	to symptom			Collection	identification	from	comprehensi	reinforcing
А.,	identification in	Sample:		Methods:	of in-hospital	multiple	ve stroke	in-house
McGarvey,	patients with in-	patients who		Researches	stroke	sources,	center, so	stroke alert
М.,	hospital stroke	experienced		reviewed the	patients.	including	generalizabil	protocols to
Weimer, J.,	(IHS); assess the	IHS (n=97)		medical	Delays also	medical	ity is	expedite
Jackson B.,	use of stroke			records of	occurred	records,	limited. The	stroke
Desai, N.,	interventions	Setting:		patients who	from	databases,	study's	assessment
Acker, M.,		tertiary care		experienced	symptom	and patient	sample size	and
Messé,	Aim:	comprehensive		HIS and	identification	assessment	might be	treatment.
S.R.	characterize the	stroke center		used	to alerting the	s. The	relatively	Anesthesia
	timing and			hospital	stroke team.	study used	small for	protocols
Title:	factors			databases to	Delays were	multivaria	detecting	for patients
Delays in	associated with			see who	associated	ble	potentially	undergoing
the	delays in			qualified.	with being on	analysis to	important	procedures
identificati	identifying in-			Data on	a surgical	identify	associations.	should
on and	hospital stroke,			vascular	service, being	independe	А	include
assessment	the use of stroke			imaging was	in an ICU,	nt factors	comparison	measures
of in-	interventions,			also	being	associated	group of	for rapid
hospital	and the			collected,	intubated, and	with	out-of-	offset,
stroke	incidence of			along with	a higher	delays,	hospital	enabling
patients	large vessel			information	NIHSS score.	which	stroke	timely
	occlusion			on any		helps	patients for	neurologica
Year: 2022	(LVO) on			medical	Results: The	clarify the	context was	1
	vascular			procedures	median time	relationshi	not included,	assessments
	imaging			done.	from the last	ps	which could	post-
					known	between	provide	procedure.
	Purpose: better				normal to	variables	valuable	Hospitals
	understand and				symptom		insights into	should

	address the				identification	and	the	continue
	delays in				was 5.1	outcomes.	differences	educational
	diagnosing and				hours. The		of care and	efforts to
	treating IHS;				median time		outcomes.	increase
	reduce				from			awareness
	morbidity and				symptom			among
	mortality				identification			healthcare
	associated with				to stroke team			professional
	IHS through the				alert was 2.1			s regarding
	development of				hours. Only			the
	improved				21% of			importance
	protocols and				ischemic			of early
	practices for				stroke			stroke
	stroke detection				patients			detection
	and treatment				received			and the
					acute stroke			initiation of
					interventions,			stroke
					with 4%			alerts.
					receiving tPA			
					and 18%			
					undergoing			
					thrombectom			
					у.			
Author:	Objectives: to	Research	Interventio	Instrument	Study	This study	Findings	Prioritize
Drogemuel	prioritize staff	Design:	n:	s: Face,	Findings:	took place	may be	education
ler, C.J.,	education,	Quality	implantatio	Arms,	The new	over a	influenced	and
Kashyao,	simplify the IHS	Improvement	n of a new	Speech, and	protocol led	time frame	by staffing	empowerme
B., Huna	process,		IHS	Time	to an increase	over two	and financial	nt of
Wagner, R.	empower staff	Sample:	protocol	(FAST)	in stroke	years. It	resources	nursing
L.,	to activate IHS	multidisciplina	that	assessment;	cases	also	within the	staff, set a
Shebeshi,	code, ensure	ry teams	consisted	progress	identified and	contained	setting; lack	time goal
Н.,	adequate	within the	of alerting	note	treated with	means of	of data for	target,
Clayton,	support and	hospital; 217	а	template		education,	those who	redesigning

M. W.,	teamwork,	patients were	specialized	with code	improved	implement	had stroke	response
Fennig, M.	identify well-	included in the	stroke team	details	time to CT.	ation,	symptoms	team
W., &	defined quality	analysis	and clear			organizati	and a stroke	members,
Hussein, H.	metrics, provide		the	Data	Results: It	on, and	code was not	establish
M.	feedback	Setting: urban	computed	Collection	was found	quality	called; lack	real-time
	communication	comprehensive	tomograph	Methods:	that stroke	reviews.	of data in	feedback;
Title: A		stroke center	y (CT)	collection of	mimics were	The main	which MRI	explore
Successful	Aim: To		scanner;	postimpleme	attributed to	focus for	rather than	circumstanc
Quality	improve the		also	ntation	evolution of a	success	CT was used	es of the
Improveme	identification of		included	event data	previously	was to	for initial	stroke code
nt Project	and quality of		staff	on IHS	diagnosed	prioritize	imaging;	to better
for	care for		education,	cases (ex.	stroke, brain	education	missing	identify
Detection	inpatient strokes		case	Patient	tumor,	and	patient	hospitalized
and			review, and	demographi	delirium,	empower	identificatio	patients at
Manageme	Purpose:		discussion	cs, time of	encephalopat	ment of	n limited full	higher risk
nt of Acute	increase stroke		of	day, hospital	hy, seizures,	nursing	view of	
Stroke in	cases identified,		opportuniti	unit,	respiratory	staff.	stroke code	
Hospitalize	rapid evaluation,		es for	outcome);	failure, and		events	
d Patients	and high		process	descriptive	psychogenic			
	utilization of		improveme	statistics	disorder. The			
Year: 2020	acute stroke		nt	used for	mean time to			
	therapies			demographi	CT was 18.7			
				c and	minutes in			
				clinical	2017 and			
				characteristi	17.0 minutes			
				cs; progress	in 2018. 38%			
				notes with	achieved the			
				code details	target of			
				were created	fifteen			
				for event	minutes or			
				documentati	less and 68%			
				on by the	in twenty			

				responding	minutes or			
				nurse	less.			
Author:	Objectives: to	Research	Interventio	Instrument	Study	The study	Data	This study
Gumbinger	study the time-	Design:	n:	s: Modified	Findings:	included a	accuracy	emphasizes
, C.,	dependent	retrospective	administrati	Ranking	Treatment	substantial	relies on	the
Reuter, B.,	effectiveness of	cohort study	on of	scale,	with rtPA	sample of	information	importance
Stock, C.,	thrombolytic		recombinan	NIHSS,	was	84,439	input at	of initiating
Sauer, T.,	therapy for acute	Sample:	t tissue-	hospital	associated	patients.	various	thrombolyti
Wiethõlter,	ischemic stroke	patients with	type	records	with an	Data was	hospitals,	c therapy
H., Bruder,		acute ischemic	plasminoge		overall	collected	and while	within the
I., Rode,	Aim: assess the	stroke	n activator	Data	favorable	over a	efforts were	first 4.5
S., Kern,	impact of time	(n=84,439)	(rtPA) for	Collection	outcome. The	five-year	made to	hours after
R.,	elapsed between		patients	Methods:	chance of a	period,	ensure	the onset of
Ringleb,	stroke onset and	Setting: 148	with acute	not specified	lower	allowing	correctness	a stroke.
Р.,	thrombolytic	hospitals	ischemic		modified	for the	through	The study
Hennerici,	therapy on	within the state	stroke		Ranking	examinatio	logic checks	emphasizes
M.G.,	patient	of Baden-			score at	n of trends	and data	the
Hacke, W.	outcomes,	Wuerttemberg,			discharge was	and	quality	importance
	particularly	Germany			significantly	changes	assessments,	of speeding
Title: Time	focusing on				increased	over time.	the extensive	up the
to	functional				with rtPA	The study	coverage	process for
treatment	outcomes and				treatment,	included a	prevented	thrombolyti
with	mortality				and the effect	diverse	complete	c therapy in
recombina					was larger	patient	data	hospitals.
nt tissue	Purpose:				with short	population	verification.	The study
plasminoge	provide insight				time to	in terms of	The study	reaffirms
n activator	into the real-				treatment.	age,	could not	that the
and	world					comorbidit	adjust for	effectivenes
outcome of	effectiveness				Results: The	ies, and	potential	s of
stroke in	and safety of				mean rate of	other	influential	thrombolyti
clinical	thrombolytic				thrombolytic	baseline	factors not	c therapy
practice:	therapy in the				therapy for all	characteris	collected in	for acute
retrospecti	treatment of				patients with	tic. The	the state-	ischemic

ve analysis	stroke, which		acute	study	wide	stroke is
of hospital	emphasis on		ischemic	assessed	database.	time
quality	early treatment		stroke was	the impact	The group of	dependent.
assurance	and potential		12%, with a	of time to	patients	1
data with	benefits and		constant	treatment	treated	
comparison	risks associated		increase over	on patient	beyond the	
with results	with the		time. The	outcomes,	4.5-hour	
from	treatment		mean time to	emphasizi	time window	
randomize			treatment for	ng the	was	
d clinical			patients	importanc	relatively	
trials			receiving	e of early	small and	
			rtPA was 140	interventio	not	
Year: 2014			minutes. The	n in acute	standardized	
			odds ratio	ischemic		
			decreased	stroke.		
			from 2.5 for			
			treatment			
			within 90			
			minutes to			
			1.3 for			
			treatment			
			within 3.0-4.5			
			hours. The			
			adjusted in-			
			house			
			mortality for			
			the group			
			treated after			
			4.5 hours was			
			significantly			
			higher.			

Author:	Objectives:	Research	Interventio	Instrument	Study	Demonstra	May not be	Increase
Kamal, H.,	compare the	Design: Cross-	n: not	s: Get With	Findings:	ted how a	generalizabl	efforts
Ahmed, M.	meantime from	sectional study	applicable	the	ICU/ED	better	e to the	toward
K., Zha,	last known			Guidelines-	patients had a	nurse-to-	quality of	higher
A., Lail, N.	neurologically	Sample: all		Stroke	significantly	patient	care in other	quality
S., Shirani,	intact to	patient		Database;	shorter time	ratio and	centers;	neuro-
P., Sawyer,	symptom	diagnosed with		IBM SPSS	to stroke	more	confounding	specific
R. N., &	detection and	in-hospital AIS		Statistics	symptom	knowledge	effect of	nursing
Mowla, A.	eligibility for	over a 10-year			detection	about	comorbiditie	education
	acute treatment	period		Data	form last	stroke	s which may	for nurses
Title:	of patients based			Collection	known	symptoms	have led to	on regular
Strokes	on their physical	Setting: large		Methods:	neurologicall	among	poor	floors;
occurring	location in	high-volume		variables	y intact when	nursing	outcomes;	encourage a
in the	hospital	comprehensive		included	compared to	staff may	outcomes	low
hospital:		stroke center		demographi	floor patients;	lead to	cannot be	threshold
Symptom	Aim: provide			cs,	they also had	quicker	reliably	for
recognition	data about the			comorbiditie	a trend	recognitio	interpreted	initiating
and	care delivery			s, clinical	toward a	n of the	as solely	stroke
eligibility	and outcome of			presentation	higher	neurologic	being	alerts;
for	this patient			s, the	likelihood of	al deficits	dependent	streamline
treatment	population			NIHSS, bed	being eligible	among	on delayed	inpatient
in the				location/leve	for acute	inpatient	treatments	stroke alert
Intensive	Purpose: to put			l of care,	treatment	strokes	due to	algorithms
Care Units	emphasis on			duration			decisions for	
Versus	timely and early			from last	Results:		not pursuing	
Hospital	detection of in-			known	7.5% of		aggressive	
wards	hospital AIS			neurological	patients		treatment	
				ly intact to	received		may be due	
Year: 2020				symptom	brain imaging		to overall	
				recognition,	within 25		poor medical	
				duration	minutes of		status and	
				from	symptom		contraindicat	
				symptom	recognition;		ions	

				recognition	79%			
				to brain	underwent			
				imaging.	brain imaging			
				location of	within 6			
				infarction	hours of			
				and vascular	symptom			
				distribution	recognition,			
				on brain	and of these			
				imaging,	26% received			
				and	intravenous			
				treatment	thrombolysis			
				undertaken;	within the			
				statistical	first 4.5 hours			
				analyses	of symptom			
				were	onset and			
				carrying out	17%			
				using the	underwent			
				IBM SPSS	endovascular			
				Statistics	treatment.			
				software				
Author:	Objectives: to	Research	Interventio	Instrument	Study	The study	This study	The study
Manners,	identify factors	Design:	n:	s: none	Findings:	leveraged	was	suggests
J.,	contributing to	retrospective	implementa	specified	After the	an existing	conducted at	that
Khandker,	high morbidity	and	tion of a		implementati	stroke	a single	healthcare
N., Barron,	and mortality in	prospective	revised	Data	on of the	code	comprehensi	institutions
A., Aziz,	in-hospital	cohort analysis	stroke code	Collection	revised stroke	protocol	ve stroke	should
Y., Desai,	stroke (IHS)		protocol	Methods:	code	and made	center which	consider
S.M.,	cases	Sample: two	designed to	The study	protocol,	guided	may limit	revising and
Morrow,		main cohorts:	improve	primarily	there was a	revisions	the	implementi
В.,	Aim: To	pre-	the	relies on the	significant	to it,	generalizabil	ng stroke
Delfyett,	improve the	implementatio	recognition	collection	reduction in	reflecting	ity of the	code
W.T.,	diagnosis and	n group	, diagnosis,	and analysis	the rate of	conditions	findings. A	protocols
Martin-	time to	(n=136) and	and	of clinical	stroke	where	larger	for IHS

Gill, C.,	thrombolysis	post-	treatment	data from	mimics.	hospitals	sample size	cases.
Shutter, L.,	and	implementatio	of HIS;	patient	Several time	often need	could allow	Hospitals
Jovin,	thrombectomy	n group (n=69)	involved	medical	metrics	to adapt	for a more	should
T.G.,	in IHS cases		stroke	records and	showed	existing	in-depth	prioritize
Jadhav,		Setting:	education	the	improvement	protocols	analysis.	stroke
A.P.	Purpose: to	comprehensive	for	implementat	s in the post-	to improve	The use of	education
	analyze IHS	stroke center	providers,	ion of	implementati	patient	rolling	for a wide
Title: An	activations,		improved	changes in	on groups.	care.	feedback	range of
interdiscipl	guide revisions		communica	the stroke		Containing	may induce	healthcare
inary	to the stroke		tion,	code	Results: The	both	potential	providers
approach to	code protocol,		parallel	protocol as	rate of stroke	retrospecti	bias in the	and
an in-	and assess the		processing,	an	mimics	ve and	post-	establish
hospital	impact of these		expectation	intervention.	decreased	prospectiv	implementat	feedback
stroke	changes on		s for		from 52.% to	e data	ion data. The	mechanisms
improves	patient		therapeutic		33.3%. Mean	allowed	study did not	for stroke
stroke	outcomes		decision-		time to	for a	include a	code
detection			making,		imaging after	compariso	control	activations.
and			and		the protocol	n of	group that	They
treatment			feedback		changes was	outcomes	did not	should also
time					7.6 minutes	before and	undergo the	place a
					shorter.	after the	protocol	strong
Year: 2019					Mean time to	protocol	revisions.	emphasis
					acute	implement	The study	on reducing
					reperfusion	ation. The	did not	time
					therapy	study used	thoroughly	metrics.
					decreased	rolling	assess	
					from 45.7	feedback	missed cases	
					minutes to	to provide	of IHS.	
					19.8 minutes.	informatio		
						n and		
						reinforcem		
						ent		
						elements		

						of the		
						protocol.		
Author:	Objectives:	Research	Interventio	Instrument	Study	Through a	There is	Hybrid
Newey, C.	Using high-	Design: Pilot	n: hybrid	s: five-point	Findings:	hybrid	limited time	simulations,
R., Bell,	fidelity	Study	simulation	Likert	There was a	simulation	that is	combined
R., Burks,	simulation to		using a	questionnair	reported	, the	necessary to	with
M., &	learn advanced	Sample:	combinatio	e	significant	limited	create	manikin
Nattanmai,	skills for caring	neuroscience	n of lecture		improvement	capabilitie	simulation	and lecture,
Р.	for patients with	nurses $(n = 37)$	and	Data	in	s of	scenarios	can be used
	acute		simulation	Collection	understanding	simulation	and	as a training
Title: A	neurological	Setting:	manikin	Methods: A	and managing	s is	resources	tool in
new	deterioration	University of		confidential,	patients with	overcome	needed to	preparing
strategy in	through	Missouri		voluntary	acute stroke	through	host a	nurses to
neurocritic	repetition and	Health System,		survey was	and	incorporati	simulation.	deal with
al care	teamwork	Columbia, MO		administered	neurological	ng an	Manikins	neurologica
nurse				pre- and	deterioration	actor/actre	have limited	1
continuing	Aim: Increase			post-	after	ss and	capabilities	emergencie
stroke	the confidence			simulation	participating	PowerPoin	of	s.
education:	of nurses in the			asking	in this hybrid	t	simulating	
A hybrid	care of patients			nurses about	simulation.	informatio	neurological	
simulation	with acute			their		n	emergencies.	
pilot study	stroke through			comfort	Results: For	including	A small	
	education and			level	all six	videos and	sample size	
Year: 2017	training			regarding	questions	images.	may make it	
				patients with	included in	High-	difficult to	
	Purpose:			stroke;	the survey,	fidelity	generalize	
	Improve nurses'			demographi	the majority	manikins	the findings	
	understanding of			c data was	of nurses	were used	of this study.	
	patients with			collected	agreed with	to make		
	acute stroke and			including	the responses	the		
	neurological			age, gender,	pre- (68.7-	simulation		
	deterioration			nursing	85.7%) and	as realistic		
				experience,	post- (81.1-	as		

				critical care	91.9%)	possible.		
				nursing	simulation.	The use of		
				experience,		repetition		
				and prior		and		
				experience		teamwork		
				with		was		
				simulation		implement		
				manikin		ed to		
						increase		
						nurses'		
						confidence		
						and		
						understand		
						ing.		
Author:	Objectives: use	Research	Interventio	Instrument	Study	Reliable	Overlapping	Extend
Reynolds,	multifaceted	Design:	n: New	s:	Findings:	and valid	initiatives	findings to
S. S.,	strategies to	pretest/posttest	printed	Meaningful	There was a	instrument	may have	identify
Murray, L.	promote	design study	educational	Use	noted	s were	contributed	which
L.,	implementation		materials	requirement	improvement	used to	to increased	bundle of
McLennon,	of evidence-	Sample:	were	s from the	in nursing	measure	adherence to	strategies
S. M., &	based practice	experienced	created and	Centers of	adherence to	the	stroke	are most
Bakas, T.		nurses $(n = 88)$	developed	Medicare	stroke	success of	activities.	effective for
	Aim: determine		from	and	guidelines.	the study.	Documentati	implementi
Title:	if a tailored,	Setting:	guideline	Medicaid	-	The use of	on audits	ng evidence
Implement	multifaceted	neurocritical	recommend	Services; A	Results:	multiple	measuring	into nursing
ation of a	stroke	care unit	ations.	one-way	Before the	strategies	adherence to	practice.
Stroke	competency		There was	analysis of	program,	rather than	these stroke	_
Competenc	program would		also an	variance	adherence to	traditional	activities	
y Program	improve nurses'		educational	(ANOVA)	documenting	didactic	occur	
to Improve	knowledge of		outreach		NIHSSS/neur	education	throughout	
Nurses'	and adherence to		process that		ological	was shown	the whole	

Knowledge	evidence-based	consisted	Data	assessments	to have	hospital and	
of and	practices in the	of one-on-	Collection	were 88.6%;	positive	not solely on	
Adherence	care of patients	one	Methods:	this improved	results.	the	
to Stroke	with stroke	educational	Adherence	to 90.5%		neurocritical	
Guidelines		session by	was	after the		care unit.	
	Purpose:	members of	measured	program.		Other	
Year: 2016	Improve patient	the	using	Dysphagia		quality	
	care by better	implementa	documentati	documentatio		improvemen	
	education for	tion team	on audits; all	n improved		t initiatives	
	nurses	with the	patients who	from 71% to		that were	
		nurses.	experienced	75%. When		coinciding	
			stroke were	nurses were		may have	
			included in	asked to		contributed	
			these audits.	identify		to improved	
			The stroke	potentially		documentati	
			knowledge	barriers to		on	
			assessment	consistently		adherence	
			consisted of	providing		rates.	
			multiple-	stroke care			
			choice	according to			
			questions	guidelines,			
			that were	before the			
			put into	program,			
			three	84% of			
			subscales	respondents			
			(frequency	reported a			
			of	lack of			
			neurological	knowledge of			
			assessments,	the required			
			patient and	activities as a			
			family	barrier; this			
			education,	percentage			
			dysphagia);	decreased to			

		there were	65% during		
		also	the follow-up		
		4150	the follow-up		
		questions	assessment.		
		about	Complexity/d		
		barriers to	ifficulty in		
		implementin	understanding		
		g stroke	the		
		guidelines.	requirements		
		The nurses	was reported		
		participated	by 49%		
		in this	during the		
		survey	preprogram		
		before the	assessment,		
		start of the	and then		
		program,	decreased to		
		immediately	34% post		
		after the	program.		
		program,			
		and three			
		weeks after			
		the program			

0	The patient has no residual symptoms.
1	The patient has no significant disability; able to carry out all pre-stroke activities.
2	The patient has slight disability; unable to carry out all pre-stroke activities but able
	to look after self without daily help.
3	The patient has moderate disability; requiring some external help but able to walk
	without the assistance of another individual.
4	The patient has moderately severe disability; unable to walk or attend to bodily
	functions without assistance of another individual.
5	The patient has severe disability; bedridden, incontinent, requires continuous care.
6	The patient has expired (during the hospital stay or after discharge from the
	hospital).
7	Unable to contact patient/caregiver.
8	Modified Rankin Score not performed, OR unable to determine (UTD) from the
	medical record documentation.

Appendix B: Modified Rankin Score

ITEM	INSTRUCTION		RACE Score
FACIAL PALSY	Ask the patient to show their teeth	ABSENT (symmetrical movement) MILD (slightly asymmetrical) MODERATE TO SEVERE (completely asymmetrical)	0 1 2
ARM MOTOR FUNCTION	Extending the arm of the patient 90 degrees (if sitting) of 45 degrees (if supine)	NORMAL TO MILD (limb upheld more than 10 seconds) MODERATE (limb upheld less than 10 seconds) SEVERE (patient unable to raise arm against gravity)	0 1 2
LEG MOTOR FUNCTION	Extending the leg of the patient 30 degrees (if supine)	NORMAL TO MILD (limb upheld more than 5 seconds) MODERATE (limb upheld less than 5 seconds) SEVERE (patient unable to raise leg against gravity)	0 1 2
HEAD AND GAZE DEVIATION	Observe eyes and cephalic deviation to one side	ABSENT (eye movements to both sides were possible and no cephalic deviation was observed) PRESENT (eyes and cephalic deviation to one side was observed)	0 1
APHASIA If right hemiparesis	Ask the patient two verbal orders: - "close your eyes" - "make a fist"	NORMAL (performs both tasks correctly) MODERATE (performs one task correctly) SEVERE (performs neither task)	0 1 2
AGNOSIA If left hemiparesis	- "Who's arm is this?" while showing him/her Asking: the paretic arm (asomatognosia) - "Can you move your arm?" (anosognosia)	NORMAL (no asomatognosia nor anosognosia) MODERATE (asomatognosia or anosognosia) SEVERE (both asomatognosia and anosognosia)	0 1 2
* Chart adapted from Perez de la stroke scale to predict large arterie	- Ossa N, Carrera D, Gorchs M, et al. Design and validation of a prehospital al occlusion: the rapid arterial occlusion evaluation scale.	RACE SCALE TOTAL:	

Appendix C: Rapid Arterial Occlusion Evaluation (RACE) Scale

Stroke; a journal of cerebral circulation. Jan 2014;45(1):87-91.

Any score above a "0" is a "Stroke Alert"

Appendix D: Modified NIHSS

<u>Item Number</u> 1B	<u>Item Name</u> LOC Questions	Scoring Guide 0=answers both correctly 1=answers one correctly 2=answers neither correctly	Patient Score
1C	LOC Commands	0=performs both tasks correctly 1=performs one task correctly 2=performs neither task	
2.	Gaze	0=normal 1=partial gaze palsey 2=total gaze palsey	
3.	Visual Fields	0=no visual loss 1=partial hemianopsia 2=complete hemianopsia 3=bilateral hemianopsia	
5a.	Left Arm Motor	0=no drift 1=drift before 10 seconds 2=falls before 10 seconds 3=no effort against gravity 4=no movement	
5b.	Right Arm Motor	0=no drift 1=drift before 10 seconds 2=falls before 10 seconds 3=no effort against gravity 4=no movement	
6a.	Left Leg Motor	0=no drift 1=drift before 5 seconds 2=falls before 5 seconds 3=no effort against gravity 4=no movement	
6b.	Right Leg Motor	0=no drift 1=drift before 5 seconds 2=falls before 5 seconds 3=no effort against gravity 4=no movement	
8.	Sensory	0=normal 1=abnormal	
9.	Language	0=normal 1=mild aphasia 2=severe aphasia 3=mute or global aphasia	
11.	Neglect	0=normal 1=mild 2=severe	
		Score (out of 31):	

* Scoring from Original Scale

it of 31): (0