Electric Vehicle Steering System Optimization

Aidan Price
University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation
https://louis.uah.edu/honors-capstones/866

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.
Electric Vehicle Steering System Optimization

by

Aidan Price

An Honors Capstone
submitted in partial fulfillment of the requirements
for the Honors Diploma
to
The Honors College
of
The University of Alabama in Huntsville
05/05/2024
Honors Capstone Project Director: Dr. Nicholas Ginga

Student Date

Project Director Date

Department Chair

Digitally signed by Sean M Lane
Date: 2024.05.07 10:24:55 -05'00'

Honors College Dean Date
Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate from The University of Alabama in Huntsville, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by my advisor or, in his/her absence, by the Chair of the Department, Director of the Program, or the Dean of the Honors College. It is also understood that due recognition shall be given to me and to The University of Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

Aidan Price
Student Name (printed)

Student Signature

04/30/2024
Date
Table of Contents

Abstract... 3
Introduction.. 4
 Steering Supports.. 5
 Tie Rods... 6
 Steering Rack Mounting Plate... 6
Background Research... 7
Analysis.. 8
 Steering Supports.. 9
 Tie Rods... 11
 Steering Rack Mounting Plate... 12
Results.. 14
 Steering Supports.. 14
 Tie Rods... 16
 Steering Rack Mounting Plate... 17
Conclusion... 18
References... 20
Appendix.. 21
Abstract

One of the tasks for the MAE 491 Senior Design course is to design and build a working steering system of a single-seat race car for the Formula SAE Electric Vehicle competition. This system includes the steering wheel, steering linkages, steering rack, and tie rods, which connect to the suspension uprights. It is necessary for the steering wheel, linkages, and rack to be rigidly mounted and supported by the chassis. During normal vehicle operation in the FSAE events, the steering linkages will experience large forces and torques from the driver and the tires. The system needs to have a balance of rigidity and weight to provide adequate driver feedback while also being light. The design of these linkages and support/mounting structures will benefit from a series of Finite Element Analyses (FEA's). This project will investigate these steering components with regards to strength, rigidity, and weight to mechanically improve and optimize the steering system design. Results obtained will be useful for current and future students of the senior design class as they further improve the vehicle’s design.
Introduction

The steering system of the race car converts rotational motion of the steering wheel into linear motion of the tie rods through the use of a rack and pinion. The forces that travel through these tie rods push one wheel and pull the other, causing the vehicle to turn. A basic example of this is illustrated in Figure 1.

![Basics of a Steering Rack](image)

Figure 1: Basics of a Steering Rack [1]

The behavior of the system is dependent on the geometry of the front suspension members. The current suspension design is simplistic, and lacks kingpin inclination, caster angle, and caster trail. These variables impact the “feel” of steering immensely, and can lead to large, sudden torques at the steering wheel that the driver would have to resist [2]. Because the vehicle is in such an early stage of development, this paper will ignore the previously mentioned variables, dealing with the suspension system as little as possible. The main purpose of this paper is to verify the structural integrity of the steering components, and make sure that ongoing design is heading in the right direction. To this effect, three components of the steering system
that experience the largest loads have been selected for analysis: the steering supports, tie rods, and the steering rack mounting plate.

Steering Supports

The steering supports are used to keep the steering column in its desired location. This is done by having two steel tubes support a plate-mounted bearing which confines the steering column. Figure 2 depicts the supports in their desired location on the vehicle’s chassis.

![Mounted Steering Supports (shown in yellow)](image)

Figure 2: Mounted Steering Supports (shown in yellow)

In this configuration, lateral loads applied to the steering wheel by the driver would cause the highest stress within the steel tubes, making them act similar to a cantilevered beam. In order to make sure the supports could withstand these loads, two different tube sizes were examined:
1. ⅝” Outer Diameter, 0.0625” Steel Wall Tube
2. ¾” SCH 40 Structural Steel Pipe

Tie Rods

The tie rods are joined to either end of the steering rack using heim-joints and clevises. On the outer ends of the tie rods, heim-joints are used to connect them to the front suspension uprights. The assembly is shown in Figure 3.

Steering Rack Mounting Plate

The steering rack must be rigidly mounted to the chassis in order to work properly and minimize any play in the steering system. If its position were to change during operation, the carefully designed steering geometry would be compromised. Since some of the moment experienced by the steering rack pinion while turning the steering wheel would be transferred into the mounting plate, it is critical to verify its strength. The current design has the steering rack mounted to a 0.15” aluminum plate using two Grade 8 Steel, 5/16”-18 bolts, shown in Figure 4. The plate itself is mounted to the chassis using three weld tabs.
Background Research

It is widely accepted that the steering system should be able to tolerate much more load than it is expected to experience during operation in order to keep the driver safe. One study led by an SAE Industrial Lecturer Steve Fox examined the average torques exhibited by students in a FSAE car, and found that any competing car should be able to withstand a steering torque of 75-100 ft-lbs [3]. While no student was able to exert these loads during the testing, it is said that one should “never underestimate the strength of a scared driver” [3]. Using the larger torque and the radius of UAH’s current steering rack’s pinion, the minimum necessary force for the tie rods to withstand can be found by:

\[F = \frac{T}{r} \]

\[F = \frac{100 \text{ ft-lb}}{\left(\frac{5/8 \text{ in}}{12 \text{ in}}\right)} \left[\frac{12 \text{ in}}{ft}\right] \]

\[F = 1920 \text{ lb} \]

This value can be compared with the estimated maximum load that the steering system is expected to experience. The largest force incurred by the steering components would occur
during cornering, when the tires are experiencing a large amount of horizontal force. The UAH Suspension subteam during the 2023-2024 academic year approximated the max horizontal cornering force on the front upright to be just over 15,000 N [4]. Due to the vehicle being in its early stages of development, this value can only be considered an estimation.

Most of the horizontal cornering force on the front upright would be resisted by the top and bottom A-Arms, which attach to the vehicle’s chassis and help keep the wheels aligned. For now, it will be assumed that half of the horizontal cornering force will be resisted by the steering tie rods, even though this is a vast overestimation. Converting this into English units, a force of 1,686 lb is found. This means the maximum expected force on the steering components is less than the minimum force recommended by SAE Lecturers. To be safe, the higher load values will be used during the analysis stage.

Analysis

For each component of the steering system, a Finite Element Analysis was run to see how it would react to expected loads that it would experience during normal operation. First, a parametric solid model from SolidEdge was imported into a Patran database. These models were created throughout the year as part of the Senior Design class. Due to the inaccuracies of modeling thin, 3D elements in Patran, a 2D midplan surface was created for each component, and a mesh with a Global Edge Length (GEL) of 0.1 was applied. The thickness of each component was input into its respective Properties table. Skew tests were performed to verify the strength of each mesh (Appendix A). For each model, multiple load cases were tested. The first had the model experience a realistic loading scenario that the component is likely to see during competition. The rest were validity checks, whose purposes are to make sure the model is mathematically accurate [5]. These checks included the following:
1. Dedicated Load Test: Checks the model for small deformation and residuals.
2. Unit Displacement Test: Makes sure that no illegal grounding exists within the model.
3. Free Free Test: Verifies that the model is a rigid body when unconstrained.
4. Unit Temperature Test: Verifies the model behaves accurately under temperature loading.
5. Unit Gravity Test: Verifies that the responds correctly to inertial loading. The single point constraint forces should add up to the total weight of the model.

Results for each were compiled in an Excel file for analysis. Patran’s estimation of the model’s weight was compared to real life calculations using the model’s known volume and specific density. Deflection values from the Dedicated Load Test and the Unit Temperature Test were compared with calculated values using the following formulas:

\[
\Delta L = \alpha L_o \Delta T
\]

\[
\delta_{max} = \frac{PL^3}{3EI}
\]

Steering Supports

Testing the steering supports involved placing lateral loads at a specified distance from the tubes. These forces imitated how a driver might yank sideways on the steering wheel, or place their weight on the wheel when entering/exiting the vehicle. The previously mentioned article by Steve Fox recommends the steering column withstand at least 150 lb of lateral force [3].
Both steering support models were given the material properties of general steel, shown in Figure 5. An inertial load was applied on the model to simulate Earth’s gravity. RBE2 elements were used to apply a zero displacement boundary condition along the welded edges, as well as the lateral force exerted on the other end, shown in Figure 6. Since a 150 lb lateral load would be resisted by both the left and right steering support, only a 75 lb force was applied onto each model.
Tie Rods

In order to make finite element analysis on the tie rods simpler, their structures were idealized as a simple tube. This excludes the heim-joints which attach to the front uprights, the bung adapters on both sides, and the clevis joint. The material properties of the tie rods were assumed to be the same as the steering supports, shown in Figure 5. A 2D Shell property with a thickness of 0.0625” was applied to the created midplane surface. RBE2 elements were used to apply a zero displacement boundary condition at one end of the model, and the previously calculated axial load of 1920 lb at the other. Tests were performed applying the load in both tension and compression. The Patran setup is shown in Figures 7 and 8.

Figure 7: Tie Rod Operational Load Case (Compression)
The critical buckling load can also be found using Euler’s Buckling Formula, shown by:

\[P_{cr} = \frac{\pi^2 E I}{(KL)^2} = \frac{\pi^2 E}{(KL)^2} \times \frac{\pi}{64} (D^4 - d^4) \]

\[P_{cr} = \frac{\pi \left(29,000,000 \text{ psi}\right)}{(1 \times 1.151 \text{ in})^2} \times \frac{\pi}{64} (0.625^4 - 0.5^4) \text{ in}^4 \]

\[P_{cr} = 12,283 lb \]

This load is far larger than the expected force going into the tie rod, showing it is not likely the tie rod would critically fail during operation.

Steering Rack Mounting Plate

An aluminum material property was created using the values in Figure 9, and applied to the meshed model of the mounting plate, along with a thickness of 0.15”. Five RBE2 elements were created: three for zero displacement boundary conditions, and two for applying torques to the plate. The first three model locations where the plate is bolted into the chassis. The latter two transfer the total torque experienced by the rack pinion into the plate. In reality, not all of
the torque experienced by the rack’s pinion will be resisted by the plate, but this analysis will model the worst case scenario. The Patran setup can be seen in Figure 10.

Figure 9: Aluminum 6061 Material Properties [7]

Figure 10: Mounting Plate Operational Load Case
Results

Steering Supports

![Table showing the results of various load cases and tests for ¾” SCH 40 Steel Steering Supports.](image)

Figure 11: Patran Stress, Deflection, and Factor of Safety (FS) Results for ¾” SCH 40 Steel Steering Supports

![Formulae and calculations for Unit Temp Hand Calculations, Dedicated Load Hand Calculations, and Weight Hand Calculations.](image)

Figure 12: Validity Tests Percent Errors for ¾” SCH 40 Steel Steering Supports
Figure 13: Patran Stress, Deflection, and Factor of Safety (FS) Results for ⅝” OD Steel Steering Supports

<table>
<thead>
<tr>
<th>Actual Load Case</th>
<th>Max Stress (psi)</th>
<th>Max Displacement (in)</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>46900</td>
<td>0.16</td>
<td>1.08315565</td>
</tr>
<tr>
<td>Unit Displacement Test</td>
<td>845000</td>
<td>1.01</td>
<td>0.06011834</td>
</tr>
<tr>
<td>Dedicated Load Case</td>
<td>46900</td>
<td>0.16</td>
<td>1.08315565</td>
</tr>
<tr>
<td>Unit Temperature Test</td>
<td>29100</td>
<td>0.00694</td>
<td>1.74570447</td>
</tr>
<tr>
<td>Unit Gravity Test (X)</td>
<td>78.4</td>
<td>0.000197</td>
<td>647.959184</td>
</tr>
<tr>
<td>Unit Gravity Test (Y)</td>
<td>3.36</td>
<td>0.000000741</td>
<td>15119.0476</td>
</tr>
<tr>
<td>Unit Gravity Test (Z)</td>
<td>74.6</td>
<td>0.000201</td>
<td>680.965147</td>
</tr>
</tbody>
</table>

Figure 14: Validity Tests Percent Errors for ⅝” OD Steel Steering Supports

\[
\Delta L = \alpha L_0 \Delta T \\
\Delta L = 6.18 \times 10^{-3} \\
\% \text{Error} = 12.39\%
\]

\[
\delta_{\max} = \frac{PL^3}{3EI} \\
0.1671385 \\
\% \text{Error} = 4.27\%
\]

\[
W = V \times \text{specific weight} \\
0.293558836 \\
\% \text{Error} = 6.86\%
\]
Tie Rods

<table>
<thead>
<tr>
<th></th>
<th>Max Stress (psi)</th>
<th>Max Displacement (in)</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Load case (Tension)</td>
<td>19100</td>
<td>0.00653</td>
<td>2.659685864</td>
</tr>
<tr>
<td>Actual Load Case (Compression)</td>
<td>19100</td>
<td>0.00653</td>
<td>2.659685864</td>
</tr>
<tr>
<td>Unit Displacement Test</td>
<td>250000</td>
<td>1</td>
<td>0.2032</td>
</tr>
<tr>
<td>Dedicated Load Case</td>
<td>70500</td>
<td>0.283</td>
<td>0.720567376</td>
</tr>
<tr>
<td>Unit Temperature Test</td>
<td>12700</td>
<td>0.0045</td>
<td>4</td>
</tr>
<tr>
<td>Unit Gravity Test (X)</td>
<td>128</td>
<td>0.000381</td>
<td>396.875</td>
</tr>
<tr>
<td>Unit Gravity Test (Y)</td>
<td>2.96</td>
<td>0.000000507</td>
<td>17162.16216</td>
</tr>
<tr>
<td>Unit Gravity Test (Z)</td>
<td>130</td>
<td>0.000381</td>
<td>390.7692308</td>
</tr>
</tbody>
</table>

Figure 15: Patran Stress, Deflection, and Factor of Safety (FS) Results for Tie Rods

\[\Delta L = \alpha L_o \Delta T \]

Unit Temp Hand Calcs
\[\Delta L (in) = 0.004486742 \]
\[\% \, Error = 0.30\% \]

Dedicated Load Hand Calcs
\[\delta_{\max} = \frac{PL^3}{3EI} \]
\[\delta_{\max} = 0.271876025 \]
\[\% \, Error = 4.09\% \]

Weight Hand Calcs
\[W = V \times \text{specific weight} \]
\[W = 0.3200865 \]
\[\text{Patran Calculated Weight (l)} \]
\[2.59E-01 \]
\[\% \, Error = 6.46\% \]

Free Free Test Results
- SC1FREEFREETEST, A4: Mode 1: Freq. = 0.003961338
- SC1FREEFREETEST, A4: Mode 2: Freq. = 0.00198861
- SC1FREEFREETEST, A4: Mode 3: Freq. = 0.00139845
- SC1FREEFREETEST, A4: Mode 4: Freq. = 0.00133369
- SC1FREEFREETEST, A4: Mode 5: Freq. = 0.00153332
- SC1FREEFREETEST, A4: Mode 6: Freq. = 0.00213009
- SC1FREEFREETEST, A4: Mode 7: Freq. = 0.00336191
- SC1FREEFRETTEST, A4: Mode 8: Freq. = 0.00213009
- SC1FREEFREETEST, A4: Mode 9: Freq. = 0.00133369
- SC1FREEFREETEST, A4: Mode 10: Freq. = 0.00133369

Figure 16: Validity Tests Percent Errors for Tie Rods
Steering Rack Mounting Plate

<table>
<thead>
<tr>
<th>Actual Load Case</th>
<th>Max Stress (psi)</th>
<th>Max Displacement (in)</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Displacement Test</td>
<td>33400</td>
<td>0.00595</td>
<td>1.19760479</td>
</tr>
<tr>
<td>Dedicated Load Case</td>
<td>35700</td>
<td>0.272</td>
<td>1.120448179</td>
</tr>
<tr>
<td>Unit Temperature Test</td>
<td>0.000181</td>
<td>0.00672</td>
<td>220994475.1</td>
</tr>
<tr>
<td>Unit Gravity Test (X)</td>
<td>1.72</td>
<td>9.45E-08</td>
<td>23255.81395</td>
</tr>
<tr>
<td>Unit Gravity Test (Y)</td>
<td>19</td>
<td>0.0000157</td>
<td>2105.263158</td>
</tr>
<tr>
<td>Unit Gravity Test (Z)</td>
<td>1.57</td>
<td>0.000000117</td>
<td>25477.70701</td>
</tr>
</tbody>
</table>

Figure 17: Patran Stress, Deflection, and Factor of Safety (FS) Results for Mounting Plate

Figure 18: Validity Tests Percent Errors for Mounting Plate
Conclusion

When comparing the results of the validity checks to theoretical calculations, relatively small percent errors were found, proving the mathematical validity of the models. Under the expected operational load conditions, the larger steering support reported a Factor of Safety of 3.94, while the smaller option gave 1.08. In order to ensure the safety of the driver and the steering column itself, it is recommended that the design of the steering supports continue with the larger, ¾” SCH 40 option.

The tie rods reported acceptable Factors of Safety of 2.66 for both tension and compression, proving the current design is sufficient. In the future, students can look into optimizing the tie rods by using thinner steel or aluminum tubing in order to reduce the weight. For the steering rack mounting plate, a Factor of Safety of 1.20 was calculated. This test had the plate experience moments far larger than physically expected, but it may be prudent for future students to mount the current plate more securely or manufacture another plate of a stronger material. Either way, future weight optimization may be done by decreasing material on the corners of the plate, but this should first be tested using FEA.

This study was performed using estimated loads and idealized models. Going forward, students will want to perform physical tests with the manufactured steering components. Once the steering system is assembled and attached to the front suspension, students can test the tie rods by placing strain gauges along the length of each and taking measurements while steering the car. Repeating this test at different speeds will give more accurate results compared to the idealized models used in this paper. The steering supports can also be tested with strain gauges. Multiple drivers can apply lateral forces on the steering wheel when getting out of the car, giving more realistic load values for Finite Element models.
As the design of the vehicle develops in the future, it is important for students to revisit tests of this nature. Since the car is in its early design phase, the suspension and steering geometries are likely to change, with the steering system components likely to follow. Further tests can be performed on other components of the steering system, such as the steering column, U-joints, and hardware used to mount the steering components to the chassis. Weight optimization can also be done in order to enhance the performance of the car.
References

 www.designjudges.com/articles/cockpit-control-forces.

 https://docs.google.com/presentation/d/1OQeXHH9q4qnZDKtESleQGKXXuN-3vhmUKRRxG7QZa7Y/edit#slide=id.p.

7. “Steels, General Properties .” *MatWeb*,
Appendix

A. Skew Tests to Verify Integrity of Created Meshes
B. Stress Results of Operational Load Case