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Executive Summary 
 

This project was an analysis of a bonus problem on the MAE 440, Rocket Propulsion I, course 

during the Fall 2023 Semester. It required an in-depth analysis of three identical rocket tested for 

three different vertical trajectories. A system for batch processing these rocket designs was 

created, and it was operated to attempt the discover of a solution. The problem had no known 

solutions at the start of this project. 

 

After processing hundreds of millions of designs, an analysis was performed to determine where 

the difficulty of this problem stemmed from. The relationship between how different designs 

perform on each test was analyzed to recommend potential changes to the problem so more 

solutions would appear. Overall, this project successfully analyzed the challenges of this 

problem, and found a relatively minor change that would guarantee at least one solution. 

 

Project Summary 
 

This capstone project was an extension on the final project for MAE 440, Rocket Propulsion I, in 

during the Fall 2023 Semester. That final project tested each student’s mastery of the topics 

taught during the semester. Students need an understanding of basic mission analysis, trajectory 

analysis, rocket nozzle performance, solid propellants, and thermochemistry to succeed in that 

project. I completed that project, but an optional criterion in that project caught my attention. It 

was a bonus problem. The bonus made minimal modifications to the project guidelines. Yet, 

nobody knew if it even had a solution. That is one way to get an engineer’s attention. 

 

The unknown began to bother me. So, I talked to the professor and setup up an honors capstone 

project to search for a solution. There were two mutually exclusive goals laid out for this 

capstone, and the primary goal was to find a solution. If a solution was not found, the goal would 

be to perform an analysis and determine a small change in the project guidelines that would 

create a solution. Those were the goals of this capstone. 

 

  



 

 

Original Project Guidelines 
 

The original project guidelines were still a corner stone in this capstone. Again, the bonus 

problem made minimal changes to these guidelines. So, this section seeks to break down the 

original guidelines. The first topic is the background of the project. This was a project for a 

rocket propulsion course; so, it is no surprise that the project revolved around a rocket launch. 

Specifically, the project focused on the launch of a sounding rocket. Sounding rockets are a type 

of rocket designed to carry scientific instruments to certain altitudes on a sub-orbital trajectory. 

Basically, these rockets are used to record data at various altitudes without orbiting the Earth. 

The guidelines reflected this by stating that the task was to design a sounding rocket that would 

reach a maximum altitude of five, ten, and fifteen thousand feet. 

 

Now, the three target altitudes could be reached by three different rockets. Students were able to 

adjust a group of parameters such as the nozzle and ballast mass in-between launches. The rocket 

casing would even automatically adjust based on the amount of propellant used. However, the 

geometry of the solid rocket propellant had to remain the same between each launch. The solid 

propellant’s design was based around a propellant grain. Basically, one grain is one piece of 

solid propellant. The number of grains in a rocket can be changed between launches, but the 

shape of each individual grain must be identical. For this project, the grain was defined as a 

cylinder with a central bore. 

 

 
 

Figure 1: Grain Geometry Angled View 

 



 

 

 
 

Figure 2: Grain Geometry Horizontal Cross Section 

 

 
 

Figure 3: Grain Geometry Vertical Cross Section 

 

So, every grain used had to follow this design. Every grain used had to be identical, and each 

rocket for a different test can use a different number of grains. Solid rocket propellant will burn 

on the surface area exposed; this is the burn area. Devices known as inhibiters can be used to 

change how the propellant burns, but the guidelines stated that no inhibiters were allowed. 

Inhibiters work by covering portions of the burn area to prevent it from burning. In the end, this 

propellant grain would burn along the inner radius, or bore radius, and from both ends. The outer 

radius would be up against the casing and not burn. If the grains are packed closely together, 



 

 

they can act as their own inhibitors. As a result, the guidelines specified that there would be a 

spacing of 0.125 inches before each grain. The spacing is only before because this put spacing 

between each grain; it additionally puts a spacing between the first grain and the top of the 

rocket’s casing. The last grain does not have a spacing requirement because it is placed before 

the rocket’s combustion chamber and nozzle. That placement leads to the assumption that the 

required spacing is already there. 

 

Now, the rocket’s in this project used a converging diverging nozzle. This simply meant that the 

cross-sectional area of the nozzle decreased from the combustion chamber to a location called 

the throat. The throat is the location of the smallest cross-sectional area in the nozzle, and after it 

the cross-sectional area would increase.  

 

 
 

Figure 4: Converging-Diverging Rocket Nozzle 

 

This design follows basic compressible flow principles. The hot gas from the combustion 

chamber would start moving at a sub-sonic speed: slower than the speed of sound. Sub-sonic 

flows will increase their velocity as the cross-sectional area they move through decreases. So, the 

first part of the nozzle is speeding up the flow. The flow would be expected to reach the speed of 

sound, Mach 1, at the throat of the nozzle. Once the flow reaches Mach 1, it becomes super-

sonic. Super-sonic flows will decrease in velocity if the cross-sectional area decreases. The 

desired effect is to continue increasing the flow’s velocity; so, the nozzle starts expanding in area 

after the throat. The ratio of the nozzle’s exit area over its throat is known as the area ratio. If the 

area ratio falls below one, the flow of hot gas exiting the nozzle will be sub-sonic.  

 

What if the flow of hot gas reaches Mach 1 before the nozzle’s throat? It is the same as when the 

flow reaches Mach 1 at the throat. The condition is referred to as a choked flow. The flow has 

become super-sonic, and its characteristics have changed. It now has a limited mass flow rate 

through the nozzle: shown in the following equation. 



 

 

 

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑎𝑟𝑒𝑎 

(1) 

 

A continuity principle states that the mass flow rate through the nozzle is constant. In the 

converging section, density and velocity will increase as the area decreases. Then, the diverging 

section will see an increase in velocity and area with a decrease in density. A choked flow is not 

bad by itself, but it is bad when the condition is met before the throat of the nozzle. Recall, 

super-sonic flows will slow down as the cross-section area decreases. A choked flow before the 

throat introduces the possibility that the flow will become sub-sonic before the throat. If the flow 

is sub-sonic at the throat, the diverging section will only slow the flow down more. This is bad 

for a rocket. 

This situation is most likely to arise during the ignition of the rocket motor. To avoid this 

situation, the guidelines had guidance on the relationship between the bore area of the grain and 

the nozzle’s throat area. If the bore area of the grain was not at least twice the throat area the 

flow would be considered choked before the throat. This effectively limits how low the bore 

radius of the grain can be based on the nozzle throat area. Now, the lower the bore radius the 

more propellant a rocket has. The bore is taking away material in the grain; so, this guidance was 

a limitation on the amount of propellant a single grain can contain. 

 

The grains were not only limited by the bore radius. The outer radius of the grains was also 

limited, but it was not limited by such a complex condition. Instead, the outer radius of the grain 

was simply constrained to a radius of 2.375 inches by the guidelines. The rocket was stated as 

having a radius of 6.19 inches, and the difference between these two values could be considered 

the thickness of the rocket’s casing. The casing had a defined maximum length: which limited 

the number of grains a design could use. The combustion chamber was rated for 1000 pounds per 

square inch of pressure. Anything over this value would have caused the chamber to rupture.  

 

The nozzle also had pressure constraints: like the chamber pressure. However, these constraints 

were not as simply defined. The pressure of the flow through the nozzle will drop in the 

diverging section. So, there are two pressures present at the exit of the nozzle: the ambient 

pressure of the atmosphere and the exit pressure of the nozzle’s flow. If these pressures are the 

same, the flow is perfectly expanded. 

 



 

 

 
 

Figure 5: Perfectly Expanded Flow 

 

Flows usually only perfectly expanded for a few moments during the rocket’s flight. The exit 

pressure of the rocket’s nozzle is based on the area ratio of the nozzle, and the ambient pressure 

is based on the altitude. Both values are constantly changing, and the flow is also changing. 

Typically, the flow will either be over expanded or under expanded. This naming convention can 

get a bit confusing. Both names are refereeing to the pressure difference between the exit 

pressure and the ambient pressure, but the names are based on the nozzle’s design. The pressure 

of the super-sonic flow decreases as the diverging section expands. If the exit pressure is less 

than the ambient pressure, the nozzle decreases the flow’s pressure too much by over expanding 

it. 

 

 
 

Figure 6: Over Expanded Flow 

 

In contrast, an under expanded flow would actually have an exit pressure greater than the 

ambient pressure. This is in reference to the fact that the nozzle did not drop the flow’s pressure 

enough to match the ambient pressure. The nozzle did not expand the flow enough. 



 

 

 

 
 

Figure 7: Under Expanded Flow 

 

The primary concern is the over expanded case. If the exit pressure is expanded too far, the 

ambient pressure can push the flow back into the nozzle. This difference in pressure creates a 

pressure gradient along the nozzle’s wall, and that gradient can lead to the flow in the nozzle 

separating from the nozzle’s wall. This condition is called flow separation, and it was not desired 

in this project. The guidelines provided a method for detecting flow separation: which will be 

discussed later. For now, the important thing to remember is that any design that causes flow 

separation would be considered invalid. 

 

Another constraint defined in the guidelines revolved around a ballast mass. The ballast was 

essentially extra weight added to the rocket. The ballast was useful to fine tune the maximum 

altitude of the sounding rocket, but it was limited to a maximum of one-pound mass. This 

constraint was necessary because almost any design that went past the target could be made to 

reach the target if enough weight was added. Instead, the ballast was meant to tune the rocket 

into reach plus or minus one foot from the defined target altitude. 

 

The final constraint each design had to manage was acceleration. Now, these were not crewed 

flights, but the scientific instruments and the rocket itself could only handle so much force. The 

guidelines defined an acceleration limit of 15gs: 483 feet per second squared. So, here is a recap 

of all the constraints. 

 

  



 

 

Table 1: Original Guideline’s Constraints 

Constraint Name Constraint Range 

Ballast Mass 0 ≤ Ballast Mass ≤ 1-lbm 

Acceleration 0 ≤ Acceleration ≤ 483 ft/s^2 

Chamber Pressure 0 ≤ Pressure ≤ 1000 psi 

Choked Flow 2*Throat Area ≤ Bore Area 

Flow Separation Not Allowed 

Nozzle’s Area Ratio 1 ≤ Area Ratio 

Altitude Tolerance -1 ≤ (Target – Rocket’s Max) ≤ 1 ft 

Casing Length 0 ≤ Casing Length ≤ 34 in 

Grain Spacing 0.125 inch 

  

Now, here is a list of all the potential inputs and if they can change between flights. The casing 

length of the rocket was also are variable value between flights, but it was automatically 

calculated based on the number of grains used. 

 

Table 2: Original Guideline’s Input Variation 

Constant Inputs Variable Inputs 

Grain’s Bore Radius Nozzle’s Throat Area 

Grain’s Outer Radius Nozzle’s Area Ratio 

Grain’s Length Number of Grains Used 

 Ballast Mass 

 Casing Length (Automatically Calculated) 

 

What did the Bonus Problem Changed? 
 

The bonus problem, the problem of this capstone, made minimal changes to the project 

guidelines. The target tolerance was raised from plus or minus one foot to plus or minus one 

hundred feet. Additionally, the only variable input between tests was the number of grains used. 

The casing length was now also fixed to the length needed to fit the maximum number of grains 

used. The updated tables are below. 

 

  



 

 

Table 3: New Guideline’s Constraints 

Constraint Name Constraint Range 

Ballast Mass 0 ≤ Ballast Mass ≤ 1-lbm 

Acceleration 0 ≤ Acceleration ≤ 483 ft/s^2 

Chamber Pressure 0 ≤ Pressure ≤ 1000 psi 

Choked Flow 2*Throat Area ≤ Bore Area 

Flow Separation Not Allowed 

Nozzle’s Area Ratio 1 ≤ Area Ratio 

Altitude Tolerance -100 ≤ (Target – Rocket’s Max) ≤ 100 ft 

Casing Length 0 ≤ Casing Length ≤ 34 in 

Grain Spacing 0.125 inch 

 

Table 4: New Guideline’s Input Variation 

Constant Inputs Variable Inputs 

Grain’s Bore Radius Number of Grains Used 

Grain’s Outer Radius  

Grain’s Length  

Nozzle’s Throat Area  

Nozzle’s Area Ratio  

Ballast Mass  

Casing Length (Fixed)  

 

 

  



 

 

Simulation Design 
 

My original simulation for the original final project was in MATLAB, but I decided to write this 

version in C. Why? I figured C would provide the performance boost necessary for batch 

processing, and I wanted to learn C. Yes, this was my first project in C. C has become my 

favorite language, but my application of it would be considered rudimentary. The program 

created still performed its task, and it performed better than anything I could have written in 

MATLAB. However, I was not able to capitalize on its full potential since I started learning the 

language for this project. 

 

The highest-level view of the simulation program is a collection of structures and functions. 

Each structure’s purpose was to either store or link data stored in variables, and each function 

was meant to manipulate the data stored in those structures. Linking structures were structures 

that indirectly held data. They were responsible for connecting either data structures or other 

linking structures. The best example of these was the Simulation structure which linked all 

data relevant to a single simulation: shown below. 

 

 
 

Figure 8: Simulation Linking Structure Example 

 

The Simulation could be passed into the RunSimulation() function, and the function 

would perform all calculations necessary too complete the simulation. This configuration 

allowed for multiple instances of a simulation structure to be created, and each instance could be 

tested and scored on its performance. Essentially, this design made batch processing easier. The 

Atmosphere structure has been showed below to provide and example of a data storing 

structure. 

 

Simulation 

Rocket Atmosphere Constraint 

Flags 

Failure 

Flags 

Simulation 

Properties 



 

 

 

Figure 9: Atmosphere Data Structure Example 

 

Both the linking and data carrying structures work together to pass all relevant information 

between functions. The structures only store the necessary data to continue the simulation; 

therefore, the history of data being calculated is not saved. 

 

 

  

Atmosphere 

double pressure; 

double density; 

double temperature; 

double universal_gas_constant; 

double gas_constant; 

double adiabatic_index; 

double moeluclar_weight; 

double speed_of_sound; 



 

 

Atmosphere Model 
 

The first model to be discussed is the simulations atmosphere model. The model was relatively 

simple, and it only required a few variables to track. The biggest contribution of the atmosphere 

model were the ambient pressure, density, and temperature values. The following equations were 

used to determine these values at any given time step. 

 

h -- Rocket’s Altitude in 𝑓𝑡 

P -- Ambient Pressure in 𝑝𝑠𝑖 

R -- Ambient Density in 
𝑙𝑏𝑚

𝑓𝑡3 

T -- Ambient Temperature in 𝑅 

 

If h ≤ 83,000 

P = −4.272981E − 14 ∗ ℎ3 +  8.060081E − 9 ∗ ℎ2 −  5x482655E − 4 ∗ h +  14.69241 

(2A) 

Else  

 𝑃 = 0 

(2B) 

 

If h ≤ 82,000 

𝑅 = 1.255𝐸 − 11 ∗ ℎ2 − 1.9453𝐸 − 6 ∗ ℎ + 0.7579 

(3A) 

Else 

𝑅 = 0 

(3B) 

 

If h ≤ 32,809 

𝑇 =  −0.0036 ∗ ℎ + 518 

(4A) 

Else 

𝑇 = 399 

(4B) 

 

In addition to these variables, the atmosphere model calculated the gas constant of the air for 

calculations revolving around the speed of sound: which this model also held. 

 

  



 

 

Ru  -- The universal gas constant in 
𝑓𝑡∗𝑙𝑏𝑓

𝑙𝑏𝑚𝑚𝑜𝑙∗𝑅
 

M  -- The molecular weight of air in 
𝑙𝑏𝑚

𝑙𝑏𝑚𝑚𝑜𝑙
 

g   -- The conversion from 𝑙𝑏𝑓 to 𝑙𝑏𝑚 for Ru 

R  -- The specific gas constant for air 
𝑓𝑡2∗𝑙𝑏𝑚

𝑠2∗𝑅
 

 

𝑅 =
𝑅𝑢

𝑀 ∗ 𝑔
 

(5) 

 

The speed of sound was calculated by the following equation. 

 

R  -- The specific gas constant for air in 
𝑓𝑡2∗𝑙𝑏𝑚

𝑠2∗𝑅
 

T  -- Ambient Temperature in 𝑅 

γ -- The adiabatic index of air 

a -- The speed of sound in 
𝑓𝑡

𝑠
 

 

𝑎 = √𝑅 ∗ 𝑇 ∗ 𝛾 

(6) 

 

  



 

 

Thrust Model 
 

The thrust model used for the rocket contained the most steps. The first information needed was 

the parameters that describe the propellant that made up the grains used in the rocket. The 

following table shows these parameters. 

 

Table 5: Propellant Parameters 

Name Symbol Value 

Characteristic Exhaust Velocity 𝑐∗ 
5210

𝑓𝑡

𝑠
 

Adiabatic Index 𝛾 1.25 

Reference Burn Rate Constant 𝑎0 
0.030

𝑖𝑛

𝑠
∗ (

𝑙𝑏𝑓

𝑖𝑛2
)

−𝑛

 

Burn Rate Exponent 𝑛 0.35 

Temperature Sensitivity 𝜎𝑝 
0.001

𝐹
 

Initial Burn Temperature 𝑇𝑏 70 𝐹 

Reference Initial Burn Temperature 𝑇𝑏,0 70 𝐹 

Density 𝜌𝑝 
0.065

𝑙𝑏𝑚

𝑖𝑛3
 

 

These values were used to calculate the actual burn rate constant, 𝑎, through the following 

equation. 

 

𝑎 =  𝑎0 ∗ exp [𝜎𝑝 ∗ (𝑇𝑏,0 − 𝑇𝑏)]  

(7) 

 

Now, the first iterative calculation can begin: the burn area calculation. First, the grain’s web 

needs to be discussed. The web is the distance of material that has been removed from the grain 

since the ignition. So, the web would be the distance the inner radius of the grain has expanded 

while burning, and the length of the grain would also be shrinking from either side during this 

process. 

 

  



 

 

Ab   -- The burn area of all propellant grains in 𝑖𝑛2 

N   -- The number of grains 

w   -- The web in 𝑖𝑛 

L    -- The initial length of each grain in 𝑖𝑛 

Ro  -- The initial outer radius of each grain in 𝑖𝑛 

Ri   -- The initial inner radius of each grain in 𝑖𝑛 

 

𝐴𝑏 = 2𝜋 ∗ 𝑁 ∗ [(𝑅𝑖 + 𝑤)(𝐿 − 2 ∗ 𝑤) + (𝑅𝑜
2 − (𝑅𝑖 + 𝑤)2)] 

(8) 

 

Next, the chamber pressure was calculated. 

 

a -- The burn rate constant of the propellant in 
𝑖𝑛

𝑠
∗ (

𝑙𝑏𝑓

𝑖𝑛2)
−𝑛

 

n -- The burn rate exponent of the propellant 

Ab   -- The burn area of all propellant grains in 𝑖𝑛2 

At   -- The throat area of the nozzle in 𝑖𝑛2 

c* -- The characteristic exhaust velocity of the propellant in 
𝑓𝑡

𝑠
 

ρp -- The density of the propellant in 
𝑙𝑏𝑚

𝑖𝑛3  

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖 

 

𝑝𝑐 = [𝑎 ∗ 𝑐∗ ∗ 𝜌𝑝 ∗
𝐴𝑏

𝐴𝑡
]

1
1−𝑛

 

(9) 

 

The next calculation had to be done numerically. The goal was to find the exit pressure of the 

rocket’s nozzle, and that required the following equation. 

 

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖 

γ -- The adiabatic index of the rocket’s propellant 

M -- The mach number of the flow at the exit of the nozzle 

pe -- The nozzle’s exit pressure in 𝑝𝑠𝑖 

 

𝑝𝑒 =  𝑝𝑐 ∗ (1 +
𝛾 − 1

2
∗ 𝑀2)

−𝛾
𝛾−1

 

(10) 

 



 

 

The issue is finding the Mach number at the exit of the nozzle. That Mach number has a 

relationship with the nozzle area ratio, but there is no direct way to solve the following equation 

for the exit Mach number. 

 

M -- The mach number of the flow at the exit of the nozzle 

γ -- The adiabatic index of the rocket’s propellant 

ε -- The nozzle’s area ratio 

 

𝜀 =
1

𝑀
[(1 +

𝛾 − 1

2
∗ 𝑀2) (

𝛾 + 1

2
)]

𝛾+1
2(𝛾−1)

 

(11) 

 

As a result, the Newton-Raphson Algorithm was applied to numerically solve for the Mach 

number based on the relative different between iterations. Once the change in the evaluation of 

the exit Mach number fell below a relative value of 0.0001, the algorithm would stop. With the 

exit Mach number, the exit pressure could be found. 

 

The exit pressure was the final piece necessary to find the thrust coefficient of the rocket, and 

this is the final piece before calculating the thrust. 

 

cf -- The thrust coefficient 

γ -- The adiabatic index of the propellant 

pe -- The exit pressure of the rocket’s nozzle in 𝑝𝑠𝑖 

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖 

pa -- The ambient pressure of the atmosphere in 𝑝𝑠𝑖 

ε -- The nozzle’s area ratio 

 

𝑐𝑓 = [(
2 ∗ 𝛾2

𝛾 − 1
) ∗ (

2

𝛾 + 1
)

𝛾+1
𝛾−1

∗ (1 − (
𝑝𝑒

𝑝𝑐
)

𝛾−1
𝛾

)]

1
2

+ (
𝑝𝑒

𝑝𝑐
−

𝑝𝑎

𝑝𝑐
) 𝜀 

(12) 

 

Before the thrust can be calculated, the nozzle needs to be checked for flow separation. If the 

thrust coefficient is less than the value calculated by the following equation, flow separation has 

occurred. 

 

  



 

 

cf,min -- The minimum thrust coefficient 

ε -- The nozzle’s area ratio 

 

𝑐𝑓,𝑚𝑖𝑛 =  −0.0445 ∗ ln2(𝜀) + 0.5324 ∗ ln(𝜀) + 0.1843 

(13) 

 

Now the thrust is calculated by the following equation. 

 

T -- Rocket’s thrust in 𝑙𝑏𝑓 

cf -- The thrust coefficient 

At   -- The throat area of the nozzle in 𝑖𝑛2 

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖 

 

 

𝑇 =  𝑐𝑓 ∗ 𝑝𝑐 ∗ 𝐴𝑡 

(14) 

 

 

  



 

 

Drag Model 
 

The drag model was used to calculated the drag force acting on the rocket at every time step 

during its flight. The first step was to find the Mach number of the rocket. 

 

M -- The Mach number of the rocket 

a -- The speed of sound at a given altitude in 
𝑓𝑡

𝑠
  

v -- The velocity of the rocket in 
𝑓𝑡

𝑠
 

 

𝑀 =
𝑣

𝑎
 

(15) 

 

The Mach number was then used to estimate the drag coefficient, 𝑐𝑑, from the following table. 

 

Table 6: Drag Coefficient Estimation 

Mach Number Range Drag Coefficient Equation 

0 ≤ M <  0.6 𝑐𝑑 = 1.5 

0.6 ≤ M < 1.2 𝑐𝑑 =  −0.12 + 0.45 ∗ 𝑀 

1.2 ≤ M <1.8 𝑐𝑑 = 0.76 − 0.283 ∗ 𝑀 

1.8 ≤ M < 4.0 𝑐𝑑 = 0.311 − 0.034 ∗ 𝑀 

4.0 ≤ M 𝑐𝑑 = 0.175 

 

(16) 

The reference area of the rocket was found from its diameter, and that area was converted to 

match the units of the ambient density. 

 

Ar -- The reference area of the rocket 

Rr -- The radius of the rocket 

 

𝐴𝑟 =
1

4
∗

1

144
∗ 𝜋 ∗ 𝑅𝑟

2 

(17) 

 

The final drag calculation was as follows. 

 

  



 

 

D -- The drag force in 𝑙𝑏𝑚 

cd -- The drag coefficient 

v -- The velocity of the rocket in 
𝑓𝑡

𝑠
 

Ar -- The reference area of the rocket in 𝑓𝑡2 

ρ -- The ambient density of the atmosphere in 
𝑙𝑏𝑚

𝑓𝑡3 

 

𝐷 =  𝑐𝑑 ∗ 𝜌 ∗ 𝑣 ∗ 𝑎𝑏𝑠(𝑣) ∗
𝐴𝑟

2
 

(18) 

 

The absolute value of the rocket’s velocity is used in the drag equation because it allows for the 

direction of the drag force to be consistent every time it is calculated. The drag force returned 

will always be pointed in the same direction as the rocket’s velocity. Therefore, the force can be 

flipped every time its effects on the rocket are considered regardless of the rocket’s direction. 

 

  



 

 

Updating States 
 

The states of the rocket need to be updated every iteration of the simulation’s main loop. The 

first state considered was the web used in the thrust model. The web is supposed to update by a 

value of 0.01 inches every iteration by default, but it can update by less if this default value 

would push the web over the maximum web. The maximum web was the maximum value the 

web could reach before either the length of the grain became zero or the bore radius became 

equal to the outer radius. 

 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑒𝑏 = min ( 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 − 𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠,
1

2
∗ 𝑔𝑟𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ) 

(19) 

The propellants burn rate would also be updated with each time step. 

 

rb -- The burn rate of the propellant in 
𝑖𝑛

𝑠
 

a -- The burn rate constant of the propellant in 
𝑖𝑛

𝑠
∗ (

𝑙𝑏𝑓

𝑖𝑛2)
−𝑛

 

n -- The burn rate exponent of the propellant 

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖 

 

𝑟𝑏 = 𝑎 ∗ 𝑝𝑐
𝑛 

(20) 

 

The time step did have a default value of 0.1, but this default value was only used after burn out 

of the rocket’s motor. During the boost phase, the time step was found using the following 

equation. 

 

rb -- The burn rate of the propellant in 
𝑖𝑛

𝑠
 

Δw -- The difference between the web at the next time and the current time in 𝑖𝑛  

Δt -- The difference between the next time value and the current time value in 𝑠 

 

∆𝑡 =
∆𝑤

𝑟𝑏
 

(21) 

 

The mass of the rocket was then calculated. While most components of the rocket’s mass remain 

constant, the propellant mass changed as fuel was used. The mass of the propellant was found 

with the following equation. 

 

  



 

 

mp -- The mass of the propellant in 𝑙𝑏𝑚 

N -- The number of grains 

w -- The web of the propellant grain in 𝑖𝑛 

ρp -- The density of the propellant in 
𝑙𝑏𝑚

𝑖𝑛3
 

Ri -- The inner radius of the propellant grain in 𝑖𝑛 

Ro -- The outer radius of the propellant grain in 𝑖𝑛 

L -- The length of the propellant grain in 𝑖𝑛 

 

𝑚𝑝 = 𝑁 ∗ 𝜋 ∗ [𝑅𝑜
2 − (𝑅𝑖 + 𝑤)2] ∗ 𝜌𝑝 ∗ (𝐿 − 2 ∗ 𝑤) 

(22) 

 

 

The rocket’s casing mass was found based on the length of the casing, and a constant provided 

by the guidelines. 

 

𝑐𝑎𝑠𝑖𝑛𝑔 𝑚𝑎𝑠𝑠 = 𝑐𝑎𝑠𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 0.25 

(23) 

 

The total mass of the rocket was found with the following equation. 

 

me -- The empty mass of the rocket in 𝑙𝑏𝑚 

mc -- The mass of the casing in 𝑙𝑏𝑚 

mb -- The mass of the ballast in 𝑙𝑏𝑚 

mp -- The mass of the propellant in 𝑙𝑏𝑚 

mt -- The total mass of the rocket in 𝑙𝑏𝑚 

 

𝑚𝑡 =  𝑚𝑝 + 𝑚𝑒 + 𝑚𝑐 + 𝑚𝑏  

(24) 

 

Now, the three primary states of the rocket can be updated: acceleration, velocity, and position. 

These states were updated using Euler Integration. The side effect this integration had was an 

offset in indices. The acceleration state vector always lagged one iteration behind both the 

velocity and position states. This was because the acceleration state was defined in the first 

iteration, but the velocity and position states are needed during the first iteration. Therefore, the 

velocity and position states were initialized to zero. The maximum velocity achieved by the 

rocket would be at the time index right after burn out. Burn out was the time step were the 

maximum web was reach, and the simulation did iterate through the boost model at the 

maximum web. The following is the first equation: acceleration. 

 



 

 

a -- The acceleration of the rocket at the current time in 
𝑓𝑡

𝑠2
 

T -- The thrust of the rocket at the current time in 𝑙𝑏𝑓 

D -- The drag force acting on the rocket at the current time in 𝑙𝑏𝑚 

mt -- The total mass of the rocket at the current time in 𝑙𝑏𝑚 

c -- The conversion from 𝑙𝑏𝑓 to 𝑙𝑏𝑚 in 
𝑙𝑏𝑚∗𝑓𝑡

𝑠2∗𝑙𝑏𝑓
 

g -- The acceleration due to gravity in 
𝑓𝑡

𝑠2
 

 

𝑎 =
𝑇 ∗ 𝑐 − 𝐷

𝑚𝑡
− 𝑔 

(25) 

 

Next, velocity was found. 

vt -- The rocket’s velocity at the current time in 
𝑓𝑡

𝑠
 

vt+1 -- The rocket’s velocity at the next time in 
𝑓𝑡

𝑠
 

a -- The rocket’s acceleration at the current time in 
𝑓𝑡

𝑠2 

Δt -- The change in time 

 

𝑣𝑡+1 = 𝑣𝑡 + 𝑎 ∗ ∆𝑡 

(26) 

 

Finally, the position state was updated. 

 

ht -- The rocket’s altitude at the current time in 𝑓𝑡 

ht+1 -- The rocket’s altitude at the next time in 𝑓𝑡 

vt -- The rocket’s velocity at the current time in 
𝑓𝑡

𝑠
 

vt+1 -- The rocket’s velocity at the next time in 
𝑓𝑡

𝑠
 

Δt -- The change in time 

 

ℎ𝑡+1 = ℎ𝑡 +
𝑣𝑡 + 𝑣𝑡+1

2
∗ ∆𝑡 

(27) 

 

  



 

 

Batch Processing Methods 
 

Batch processing is simply a method of testing designs in groups to find the desired result. This 

project relied heavily on this concept. Three different methods were used to perform batch 

processing: each at different levels. Together these methods provided this project with the results 

it obtained. Designs were not considered failures if constrain values were exceeded. Instead, 

designs were only considered failures if they encountered flow separated, choked flow, or their 

nozzle’s area ratio fell below one. Any designs that did not fail were saved to the disk for easy 

management. 

 

The highest-level batch processing method was simply a human guessing and checking. This 

method was not elaborate, but it used to human’s intuition and knowledge of the subject to make 

massive movements across the solution space to find results. The solution space for this problem 

is massive, and this method was not used to narrow down a design. Instead, this method was 

used to get an idea on a good range of values to have the computer test.  

 

Each design was defined by nine parameters: grain inner radius, grain outer radius, grain length, 

ballast mass, nozzle throat area, nozzle area ratio, first test’s grain number, second test’s grain 

number, and third test’s grain number. Multiply the number of values tested for each parameter, 

and the result is the number of combinations that will be tested. For example, I want to test all 

the designs with each input having to possible values. There are nine parameters; so, that 

simplifies to 29 = 256. That is not many designs. A human could run through those in a 

semester. However, if each input was increase to just ten possible values: 109 =

10,000,000,000. This gets out of hand fast; the computer can deal with it. 

 

The second method for batch processing was a brute force method. Simply, the computer was 

given a range of values for each parameter and told to run a test with every combination. This 

method was still not the icon of efficiency, but it never missed a valid design. If there was a valid 

design in the range provided, the computer would find it. The efficiency of this method varied 

based on how many valid designs were found in its range. The simulation was designed to return 

early if any of the three failure modes were encountered. This prevented wasting time on 

calculations that would provide an invalid result anyways. Either way, this method could run 

through about 2,000,000 to 10,000,000 designs every hour. 

 

The final method was to treat the solution space like a group of nodes. Each node was a design, 

and it was connected to eighteen other nodes. That is one connection per input variation: nine 

inputs in two directions each. The process was provided one valid node to start, and it would 

expand that node. The demonstrations for this only use four connections per node for simplicity. 

In the following figures, green nodes are designs that were tested and worked, red nodes are 

designs that failed, and blue nodes are known but not tested designs. 



 

 

 

 

Figure 10: Expansion of a Single Design Node 

 

As designs were tested, they were also scored. This allowed the algorithm to sort each design 

based on its score, and the algorithm would expand the highest scoring designs first. The designs 

score was based on the standard percent different equation: applied to the constraint and 

observed values. 

 

 𝑠𝑐𝑜𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 =
(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
∗ 100 

(28) 

 

The percent difference acted as weight: adjusting the maximum score values for each criterion. 

The most preferred of these was the maximum altitude; it was weighted the highest and saw the 

algorithm heavily pursue designs that made it inside the altitude tolerance for all three tests. 

After more expansion, the batch of designs would look something like the following figure. 

 



 

 

 

 

Figure 11: Expanded Solution Space Example 

 

The above figure shows how the algorithm would expand the solution space in the direction that 

it believed a solution existed. However, the problem with this method also begins to show. What 

if all the designs the algorithm can expand to are invalid? Well, the algorithm would simply stop; 

it would state it ran out of designs. The problem was not that the algorithm ran out of designs. 

The problem was that this proved that solutions existed in groups. This method could only find a 

solution if that solution was in the same groups as the starting design. This was why three 

methods were used in this project. A human would quickly identify a region of the solution space 

that showed promise. The brute force method would identify potential starting nodes within a 

portion of that region. Then, the pathfinding method would work its way from that starting 

design towards a potential solution. These were the methods used when trying to find a solution. 

 

  



 

 

Why is This Problem so Difficult? 
 

Why was this problem so difficult? The difficulty arises from lack of adaptability. Each of the 

three tests, five, ten, and fifteen thousand feet, have ever so slightly different preferences. The 

5,000-foot test prefers a small throat area; it allows that design to reach higher with fewer grains 

and less propellent. However, the 15,000-foot test prefers a larger throat area; this allows the 

design to reduce the maximum chamber pressure and acceleration experienced during the 

15,000-foot test. There are multiple balancing acts that would be need to be found for a design to 

reach within 100 feet of each target altitude. 

 

Consider the following base design. 

Table 7: Analysis Base Design 

Input Value 

Grain Inner Radius 0.800 

Grain Outer Radius 1.800 

Grain Length 4.300 

Ballast Mass 0.000 

Nozzle Throat Area 0.800 

Nozzle Area Ratio 4.000 

15,000 Test Grain Number 4 

10,000 Test Grain Number 3 

5,000 Test Grain Number 2 

 

Here is how this design performed. 

 

Table 8: Base Design Results 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 15,991.086 11,045.831 4091.983 

Maximum Acceleration (ft/s^2) 362.253 222.397 96.493 

Maximum Chamber Pressure (psi) 542.199 348.294 186,668 

 

The table above displays a common issue with this problem; two designs are on one side of the 

target and one is on the opposite side. In this example, the 5,000-foot test needs to raise its 

maximum altitude, but the 15,000- and 10,000-foot tests need to lower theirs. What happens 

when the area ratio is lowered to 3? 

 

Table 9: Base Design with Area Ratio = 3 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 15,781.579 11,025.837 4389.770 

Maximum Acceleration (ft/s^2) 356.206 221.036 99.358 

Maximum Chamber Pressure (psi) 542.199 348.294 186,668 

 



 

 

The results were desired. Each test moved in the desired direction, maximum acceleration 

slightly rose, and the chamber pressure remained constant. What about an area ratio of 2? 

 

Table 10: Base Design with Area Ratio = 2 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 15,158.129 10,579.599 4428.255 

Maximum Acceleration (ft/s^2) 341.007 213.560 98.813 

Maximum Chamber Pressure (psi) 542.199 348.294 186,668 

 

The altitudes are still moving in the right direction, and the chamber pressure remains constant. 

The chamber pressure is determined by the grain geomtery and area ratio; so, it will not change 

unless those variables are changed. However, the acceleration has started to fall. This would be 

good, but it is also concerning. Is the problem going to flip? What about an area ratio of 1.5? 

 

Table 11: Base Design with Area Ratio = 1.5 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 14,409.657 9,932.432 4,199.813 

Maximum Acceleration (ft/s^2) 324.828 204.100 95.353 

Maximum Chamber Pressure (psi) 542.199 348.294 186,668 

 

Now all three designs are below their target is there a solution in this space. This would be the 

desired position. Each test is linked. A change that alters one test will alter each of the other test 

in the same direction but with a different magnitude. The last statement is not always true; 

raising the area ratio too high can cause the 5,000-foot test to plummet while the other two rise. 

However, that statement is a reasonable approximation of the problem as a solution is 

approached.  What about 1.6 for that area ratio? 

 

Table 12: Base Design with Area Ratio = 1.6 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 14,607.431 10,106.562 4270.093 

Maximum Acceleration (ft/s^2) 328.922 206.563 96.364 

Maximum Chamber Pressure (psi) 542.199 348.294 186,668 

 

The original problem has returned. Two designs are on one side of the target, and one design is 

on the opposite side. This pattern encompassed this project, and it was present when varying 

each input. More variation in the grain numbers were required to solve this issue. The grain 

number in each test was the only way to effectively move two designs in different directions in 

this scenario. However, that control does not outpace the gain in acceleration. By adding more 

grains, designs that only go 4,000 feet up but have over 700 ft/s^2 for maximum acceleration and 

1150 psi for maximum chamber pressure; both of these values are already over their respective 

constraints. Additionally, designs like this become common with more grain numbers. More 

viable designs were found with less grain.  



 

 

 

At this point, over 300 hundred million designs have been tested for this project. There are many 

designs that have gotten extremely close, but the before mentioned issue remains. Two designs 

end up on one side of the target, and the other is on the opposite. This challenge is extremely 

difficult because there was no apparent way to adjust the height of a single test without affecting 

the other tests in the same direction. Every combination of two successes and one failure were 

found during this project. Below is a table showing the common patterns encountered. 

 

Table 13: Common Outcomes 

15,000 Test 10,000 Test 5,000 Test 

Too Low Passed Passed 

Passed Passed Too Low 

Passed Too High Passed 

 

Here is an example of the first combination. The S stands for success and the C is for a constraint 

violation, altitude in all these cases, and the test are placed in descending order from left to right. 

 

Table 14: CSS Design 

Input Value 

Grain Inner Radius 1.100 

Grain Outer Radius 2.100 

Grain Length 2.900 

Ballast Mass 1.000 

Nozzle Throat Area 1.590 

Nozzle Area Ratio 1.480 

15,000 Test Grain Number 5 

10,000 Test Grain Number 4 

5,000 Test Grain Number 3 

 

Table 15: CSS Results 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 14210.294 10083.912 4999.403 

Maximum Acceleration (ft/s^2) 326.583 225.364 131.575 

Maximum Chamber Pressure (psi) 289.703 205.523 132.022 

 

 

The second combination is next. 

  



 

 

Table 16: SSC Design 

Input Value 

Grain Inner Radius 1.139 

Grain Outer Radius 2.211 

Grain Length 3.440 

Ballast Mass 0.562 

Nozzle Throat Area 1.355 

Nozzle Area Ratio 1.201 

15,000 Test Grain Number 4 

10,000 Test Grain Number 3 

5,000 Test Grain Number 2 

 

Table 17: SSC Results 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 14980.102 9964.229 3644.712 

Maximum Acceleration (ft/s^2) 311.155 193.855 87.929 

Maximum Chamber Pressure (psi) 336.225 215.981 115.746 

 

The third combination is listed below. 

Table 18: SCS Design 

Input Value 

Grain Inner Radius 1.113 

Grain Outer Radius 2.061 

Grain Length 3.196 

Ballast Mass 1.000 

Nozzle Throat Area 1.800 

Nozzle Area Ratio 1.900 

15,000 Test Grain Number 5 

10,000 Test Grain Number 4 

5,000 Test Grain Number 3 

 

  



 

 

Table 19: SCS Results 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 14999.067 10622.281 4999.528 

Maximum Acceleration (ft/s^2) 320.313 218.277 123.553 

Maximum Chamber Pressure (psi) 249.593 177.068 113.743 

 

The results above show the frustration that surrounded this project every time a batch finished 

processing. The SCS result even has two tests within the original one-foot tolerance, but the 

10,000-foot test was two high. Out of all these combinations the SCS results should the greatest 

promise of finding a solution. The biggest problem appears to be the spacing of the altitudes. To 

fix this more grains are needed to more variation can be applied between tests, but this idea 

quickly changes the issue to the acceleration and pressure values. These values grow too fast 

when grains are added. 

 

  



 

 

Was a Solution Found? 
 

Was a solution found? No. No design was found that could pass all three tests, but one design did 

come close. How close? One design got within 500 feet of the 100-foot tolerance and passing all 

three tests. 

 

Table 20: Closest Design 

Input Value 

Grain Inner Radius 1.120 

Grain Outer Radius 2.070 

Grain Length 3.170 

Ballast Mass 1.000 

Nozzle Throat Area 1.800 

Nozzle Area Ratio 1.810 

15,000 Test Grain Number 5 

10,000 Test Grain Number 4 

5,000 Test Grain Number 3 

 

Table 21: Closest Result 

Test 15,000 10,000 5,000 

Maximum Altitude (ft) 14930.579 10590.830 5032.263 

Maximum Acceleration (ft/s^2) 320.259 218.649 124.328 

Maximum Chamber Pressure (psi) 250.459 177.682 114.138 

 

Even with this result, the problem still shows itself. Not having all the maximum altitudes on the 

same side of their target makes this problem extremely difficult. Decreasing one design will 

decrease all the design. Trying to avoid drop two designs by less than 100 feet and one design by 

almost 500 felt near impossible. Of course, there is likely a solution created after adding an 

unreasonable amount of grains, but the acceleration and pressure values make it more practical to 

fire these rockets out of a railgun. There may be a solution out there, but this was my best 

attempt. 

 

  



 

 

Conclusion 
 

Overall, this project was extremely fun. It helped me further my understanding of rocket 

propulsion and programming. I still wonder if there is a solution, but I am ready to pass that 

challenge onto the next in line. Until then, these are my recommendations for adjusting the 

project guidelines to create at least one solution. 

 

My analysis shows that the biggest issue was the spacing of the target altitudes. The are nicely 

spaced at a consistent five thousand feet, but that was the problem. The current altitudes 

appeared to be a bit outside a single design is able to cover by only adjusting grains. If the goal is 

the guarantee a solution, changing the 10,000-foot target to 10,500 would be viable. This 

guarantees at least one, in fact the only one so far, solution. However, too make the bonus still 

challenging but more possible one of two solutions are recommended. Either raise the 10,000-

foot target to 11,000 feet, or lower the 15,000-foot target to 14,000 feet. Both of these solutions 

open a sizable amount of solutions that are still challenging to find. The 5,000-foot target should 

remain were it is because the solutions that would require it to move would see this target 

lowered by over 1,000 feet. These are my recommendations for adjusting the project guidelines 

to guarantee solutions to the bonus problem: without making it too easy. 
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