
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

5-3-2024

Simulating the Performance of a Single Solid Propellant and Simulating the Performance of a Single Solid Propellant and

Rocket Nozzle Design in a Vertical Trajectory Rocket Nozzle Design in a Vertical Trajectory

Kyle Austin Barbour
University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Barbour, Kyle Austin, "Simulating the Performance of a Single Solid Propellant and Rocket Nozzle Design
in a Vertical Trajectory" (2024). Honors Capstone Projects and Theses. 867.
https://louis.uah.edu/honors-capstones/867

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/867?utm_source=louis.uah.edu%2Fhonors-capstones%2F867&utm_medium=PDF&utm_campaign=PDFCoverPages

Simulating the Performance of a Single Solid Propellant and

Rocket Nozzle Design in a Vertical Trajectory

by

Kyle Austin Barbour

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma

to

The Honors College

of

The University of Alabama in Huntsville

3rd May 2024

Honors Capstone Project Director: Dr. Robert Frederick

Student Date

__

Project Director Date

Department Chair Date

Honors College Dean Date

Kyle Austin Barbour 3rd May 2024

5/5/24

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or

Certificate from The University of Alabama in Huntsville, I agree that the Library of

this University shall make it freely available for inspection. I further agree that permission

for extensive copying for scholarly purposes may be granted by my advisor or, in his/her

absence, by the Chair of the Department, Director of the Program, or the Dean of the Honors

College. It is also understood that due recognition shall be given to me and to The University of

Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

Student Name (printed)

Student Signature

Date

Kyle Austin Barbour

Kyle Austin Barbour

3rd May 2024

Contents
Executive Summary .. 4

Project Summary ... 4

Original Project Guidelines... 5

What did the Bonus Problem Changed? ... 11

Simulation Design ... 13

Atmosphere Model.. 15

Thrust Model ... 17

Drag Model ... 21

Updating States ... 23

Batch Processing Methods .. 26

Why is This Problem so Difficult? ... 29

Was a Solution Found? ... 34

Conclusion .. 35

Executive Summary

This project was an analysis of a bonus problem on the MAE 440, Rocket Propulsion I, course

during the Fall 2023 Semester. It required an in-depth analysis of three identical rocket tested for

three different vertical trajectories. A system for batch processing these rocket designs was

created, and it was operated to attempt the discover of a solution. The problem had no known

solutions at the start of this project.

After processing hundreds of millions of designs, an analysis was performed to determine where

the difficulty of this problem stemmed from. The relationship between how different designs

perform on each test was analyzed to recommend potential changes to the problem so more

solutions would appear. Overall, this project successfully analyzed the challenges of this

problem, and found a relatively minor change that would guarantee at least one solution.

Project Summary

This capstone project was an extension on the final project for MAE 440, Rocket Propulsion I, in

during the Fall 2023 Semester. That final project tested each student’s mastery of the topics

taught during the semester. Students need an understanding of basic mission analysis, trajectory

analysis, rocket nozzle performance, solid propellants, and thermochemistry to succeed in that

project. I completed that project, but an optional criterion in that project caught my attention. It

was a bonus problem. The bonus made minimal modifications to the project guidelines. Yet,

nobody knew if it even had a solution. That is one way to get an engineer’s attention.

The unknown began to bother me. So, I talked to the professor and setup up an honors capstone

project to search for a solution. There were two mutually exclusive goals laid out for this

capstone, and the primary goal was to find a solution. If a solution was not found, the goal would

be to perform an analysis and determine a small change in the project guidelines that would

create a solution. Those were the goals of this capstone.

Original Project Guidelines

The original project guidelines were still a corner stone in this capstone. Again, the bonus

problem made minimal changes to these guidelines. So, this section seeks to break down the

original guidelines. The first topic is the background of the project. This was a project for a

rocket propulsion course; so, it is no surprise that the project revolved around a rocket launch.

Specifically, the project focused on the launch of a sounding rocket. Sounding rockets are a type

of rocket designed to carry scientific instruments to certain altitudes on a sub-orbital trajectory.

Basically, these rockets are used to record data at various altitudes without orbiting the Earth.

The guidelines reflected this by stating that the task was to design a sounding rocket that would

reach a maximum altitude of five, ten, and fifteen thousand feet.

Now, the three target altitudes could be reached by three different rockets. Students were able to

adjust a group of parameters such as the nozzle and ballast mass in-between launches. The rocket

casing would even automatically adjust based on the amount of propellant used. However, the

geometry of the solid rocket propellant had to remain the same between each launch. The solid

propellant’s design was based around a propellant grain. Basically, one grain is one piece of

solid propellant. The number of grains in a rocket can be changed between launches, but the

shape of each individual grain must be identical. For this project, the grain was defined as a

cylinder with a central bore.

Figure 1: Grain Geometry Angled View

Figure 2: Grain Geometry Horizontal Cross Section

Figure 3: Grain Geometry Vertical Cross Section

So, every grain used had to follow this design. Every grain used had to be identical, and each

rocket for a different test can use a different number of grains. Solid rocket propellant will burn

on the surface area exposed; this is the burn area. Devices known as inhibiters can be used to

change how the propellant burns, but the guidelines stated that no inhibiters were allowed.

Inhibiters work by covering portions of the burn area to prevent it from burning. In the end, this

propellant grain would burn along the inner radius, or bore radius, and from both ends. The outer

radius would be up against the casing and not burn. If the grains are packed closely together,

they can act as their own inhibitors. As a result, the guidelines specified that there would be a

spacing of 0.125 inches before each grain. The spacing is only before because this put spacing

between each grain; it additionally puts a spacing between the first grain and the top of the

rocket’s casing. The last grain does not have a spacing requirement because it is placed before

the rocket’s combustion chamber and nozzle. That placement leads to the assumption that the

required spacing is already there.

Now, the rocket’s in this project used a converging diverging nozzle. This simply meant that the

cross-sectional area of the nozzle decreased from the combustion chamber to a location called

the throat. The throat is the location of the smallest cross-sectional area in the nozzle, and after it

the cross-sectional area would increase.

Figure 4: Converging-Diverging Rocket Nozzle

This design follows basic compressible flow principles. The hot gas from the combustion

chamber would start moving at a sub-sonic speed: slower than the speed of sound. Sub-sonic

flows will increase their velocity as the cross-sectional area they move through decreases. So, the

first part of the nozzle is speeding up the flow. The flow would be expected to reach the speed of

sound, Mach 1, at the throat of the nozzle. Once the flow reaches Mach 1, it becomes super-

sonic. Super-sonic flows will decrease in velocity if the cross-sectional area decreases. The

desired effect is to continue increasing the flow’s velocity; so, the nozzle starts expanding in area

after the throat. The ratio of the nozzle’s exit area over its throat is known as the area ratio. If the

area ratio falls below one, the flow of hot gas exiting the nozzle will be sub-sonic.

What if the flow of hot gas reaches Mach 1 before the nozzle’s throat? It is the same as when the

flow reaches Mach 1 at the throat. The condition is referred to as a choked flow. The flow has

become super-sonic, and its characteristics have changed. It now has a limited mass flow rate

through the nozzle: shown in the following equation.

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑎𝑟𝑒𝑎

(1)

A continuity principle states that the mass flow rate through the nozzle is constant. In the

converging section, density and velocity will increase as the area decreases. Then, the diverging

section will see an increase in velocity and area with a decrease in density. A choked flow is not

bad by itself, but it is bad when the condition is met before the throat of the nozzle. Recall,

super-sonic flows will slow down as the cross-section area decreases. A choked flow before the

throat introduces the possibility that the flow will become sub-sonic before the throat. If the flow

is sub-sonic at the throat, the diverging section will only slow the flow down more. This is bad

for a rocket.

This situation is most likely to arise during the ignition of the rocket motor. To avoid this

situation, the guidelines had guidance on the relationship between the bore area of the grain and

the nozzle’s throat area. If the bore area of the grain was not at least twice the throat area the

flow would be considered choked before the throat. This effectively limits how low the bore

radius of the grain can be based on the nozzle throat area. Now, the lower the bore radius the

more propellant a rocket has. The bore is taking away material in the grain; so, this guidance was

a limitation on the amount of propellant a single grain can contain.

The grains were not only limited by the bore radius. The outer radius of the grains was also

limited, but it was not limited by such a complex condition. Instead, the outer radius of the grain

was simply constrained to a radius of 2.375 inches by the guidelines. The rocket was stated as

having a radius of 6.19 inches, and the difference between these two values could be considered

the thickness of the rocket’s casing. The casing had a defined maximum length: which limited

the number of grains a design could use. The combustion chamber was rated for 1000 pounds per

square inch of pressure. Anything over this value would have caused the chamber to rupture.

The nozzle also had pressure constraints: like the chamber pressure. However, these constraints

were not as simply defined. The pressure of the flow through the nozzle will drop in the

diverging section. So, there are two pressures present at the exit of the nozzle: the ambient

pressure of the atmosphere and the exit pressure of the nozzle’s flow. If these pressures are the

same, the flow is perfectly expanded.

Figure 5: Perfectly Expanded Flow

Flows usually only perfectly expanded for a few moments during the rocket’s flight. The exit

pressure of the rocket’s nozzle is based on the area ratio of the nozzle, and the ambient pressure

is based on the altitude. Both values are constantly changing, and the flow is also changing.

Typically, the flow will either be over expanded or under expanded. This naming convention can

get a bit confusing. Both names are refereeing to the pressure difference between the exit

pressure and the ambient pressure, but the names are based on the nozzle’s design. The pressure

of the super-sonic flow decreases as the diverging section expands. If the exit pressure is less

than the ambient pressure, the nozzle decreases the flow’s pressure too much by over expanding

it.

Figure 6: Over Expanded Flow

In contrast, an under expanded flow would actually have an exit pressure greater than the

ambient pressure. This is in reference to the fact that the nozzle did not drop the flow’s pressure

enough to match the ambient pressure. The nozzle did not expand the flow enough.

Figure 7: Under Expanded Flow

The primary concern is the over expanded case. If the exit pressure is expanded too far, the

ambient pressure can push the flow back into the nozzle. This difference in pressure creates a

pressure gradient along the nozzle’s wall, and that gradient can lead to the flow in the nozzle

separating from the nozzle’s wall. This condition is called flow separation, and it was not desired

in this project. The guidelines provided a method for detecting flow separation: which will be

discussed later. For now, the important thing to remember is that any design that causes flow

separation would be considered invalid.

Another constraint defined in the guidelines revolved around a ballast mass. The ballast was

essentially extra weight added to the rocket. The ballast was useful to fine tune the maximum

altitude of the sounding rocket, but it was limited to a maximum of one-pound mass. This

constraint was necessary because almost any design that went past the target could be made to

reach the target if enough weight was added. Instead, the ballast was meant to tune the rocket

into reach plus or minus one foot from the defined target altitude.

The final constraint each design had to manage was acceleration. Now, these were not crewed

flights, but the scientific instruments and the rocket itself could only handle so much force. The

guidelines defined an acceleration limit of 15gs: 483 feet per second squared. So, here is a recap

of all the constraints.

Table 1: Original Guideline’s Constraints

Constraint Name Constraint Range

Ballast Mass 0 ≤ Ballast Mass ≤ 1-lbm

Acceleration 0 ≤ Acceleration ≤ 483 ft/s^2

Chamber Pressure 0 ≤ Pressure ≤ 1000 psi

Choked Flow 2*Throat Area ≤ Bore Area

Flow Separation Not Allowed

Nozzle’s Area Ratio 1 ≤ Area Ratio

Altitude Tolerance -1 ≤ (Target – Rocket’s Max) ≤ 1 ft

Casing Length 0 ≤ Casing Length ≤ 34 in

Grain Spacing 0.125 inch

Now, here is a list of all the potential inputs and if they can change between flights. The casing

length of the rocket was also are variable value between flights, but it was automatically

calculated based on the number of grains used.

Table 2: Original Guideline’s Input Variation

Constant Inputs Variable Inputs

Grain’s Bore Radius Nozzle’s Throat Area

Grain’s Outer Radius Nozzle’s Area Ratio

Grain’s Length Number of Grains Used

 Ballast Mass

 Casing Length (Automatically Calculated)

What did the Bonus Problem Changed?

The bonus problem, the problem of this capstone, made minimal changes to the project

guidelines. The target tolerance was raised from plus or minus one foot to plus or minus one

hundred feet. Additionally, the only variable input between tests was the number of grains used.

The casing length was now also fixed to the length needed to fit the maximum number of grains

used. The updated tables are below.

Table 3: New Guideline’s Constraints

Constraint Name Constraint Range

Ballast Mass 0 ≤ Ballast Mass ≤ 1-lbm

Acceleration 0 ≤ Acceleration ≤ 483 ft/s^2

Chamber Pressure 0 ≤ Pressure ≤ 1000 psi

Choked Flow 2*Throat Area ≤ Bore Area

Flow Separation Not Allowed

Nozzle’s Area Ratio 1 ≤ Area Ratio

Altitude Tolerance -100 ≤ (Target – Rocket’s Max) ≤ 100 ft

Casing Length 0 ≤ Casing Length ≤ 34 in

Grain Spacing 0.125 inch

Table 4: New Guideline’s Input Variation

Constant Inputs Variable Inputs

Grain’s Bore Radius Number of Grains Used

Grain’s Outer Radius

Grain’s Length

Nozzle’s Throat Area

Nozzle’s Area Ratio

Ballast Mass

Casing Length (Fixed)

Simulation Design

My original simulation for the original final project was in MATLAB, but I decided to write this

version in C. Why? I figured C would provide the performance boost necessary for batch

processing, and I wanted to learn C. Yes, this was my first project in C. C has become my

favorite language, but my application of it would be considered rudimentary. The program

created still performed its task, and it performed better than anything I could have written in

MATLAB. However, I was not able to capitalize on its full potential since I started learning the

language for this project.

The highest-level view of the simulation program is a collection of structures and functions.

Each structure’s purpose was to either store or link data stored in variables, and each function

was meant to manipulate the data stored in those structures. Linking structures were structures

that indirectly held data. They were responsible for connecting either data structures or other

linking structures. The best example of these was the Simulation structure which linked all

data relevant to a single simulation: shown below.

Figure 8: Simulation Linking Structure Example

The Simulation could be passed into the RunSimulation() function, and the function

would perform all calculations necessary too complete the simulation. This configuration

allowed for multiple instances of a simulation structure to be created, and each instance could be

tested and scored on its performance. Essentially, this design made batch processing easier. The

Atmosphere structure has been showed below to provide and example of a data storing

structure.

Simulation

Rocket Atmosphere Constraint

Flags

Failure

Flags

Simulation

Properties

Figure 9: Atmosphere Data Structure Example

Both the linking and data carrying structures work together to pass all relevant information

between functions. The structures only store the necessary data to continue the simulation;

therefore, the history of data being calculated is not saved.

Atmosphere

double pressure;

double density;

double temperature;

double universal_gas_constant;

double gas_constant;

double adiabatic_index;

double moeluclar_weight;

double speed_of_sound;

Atmosphere Model

The first model to be discussed is the simulations atmosphere model. The model was relatively

simple, and it only required a few variables to track. The biggest contribution of the atmosphere

model were the ambient pressure, density, and temperature values. The following equations were

used to determine these values at any given time step.

h -- Rocket’s Altitude in 𝑓𝑡

P -- Ambient Pressure in 𝑝𝑠𝑖

R -- Ambient Density in
𝑙𝑏𝑚

𝑓𝑡3

T -- Ambient Temperature in 𝑅

If h ≤ 83,000

P = −4.272981E − 14 ∗ ℎ3 + 8.060081E − 9 ∗ ℎ2 − 5x482655E − 4 ∗ h + 14.69241

(2A)

Else

 𝑃 = 0

(2B)

If h ≤ 82,000

𝑅 = 1.255𝐸 − 11 ∗ ℎ2 − 1.9453𝐸 − 6 ∗ ℎ + 0.7579

(3A)

Else

𝑅 = 0

(3B)

If h ≤ 32,809

𝑇 = −0.0036 ∗ ℎ + 518

(4A)

Else

𝑇 = 399

(4B)

In addition to these variables, the atmosphere model calculated the gas constant of the air for

calculations revolving around the speed of sound: which this model also held.

Ru -- The universal gas constant in
𝑓𝑡∗𝑙𝑏𝑓

𝑙𝑏𝑚𝑚𝑜𝑙∗𝑅

M -- The molecular weight of air in
𝑙𝑏𝑚

𝑙𝑏𝑚𝑚𝑜𝑙

g -- The conversion from 𝑙𝑏𝑓 to 𝑙𝑏𝑚 for Ru

R -- The specific gas constant for air
𝑓𝑡2∗𝑙𝑏𝑚

𝑠2∗𝑅

𝑅 =
𝑅𝑢

𝑀 ∗ 𝑔

(5)

The speed of sound was calculated by the following equation.

R -- The specific gas constant for air in
𝑓𝑡2∗𝑙𝑏𝑚

𝑠2∗𝑅

T -- Ambient Temperature in 𝑅

γ -- The adiabatic index of air

a -- The speed of sound in
𝑓𝑡

𝑠

𝑎 = √𝑅 ∗ 𝑇 ∗ 𝛾

(6)

Thrust Model

The thrust model used for the rocket contained the most steps. The first information needed was

the parameters that describe the propellant that made up the grains used in the rocket. The

following table shows these parameters.

Table 5: Propellant Parameters

Name Symbol Value

Characteristic Exhaust Velocity 𝑐∗
5210

𝑓𝑡

𝑠

Adiabatic Index 𝛾 1.25

Reference Burn Rate Constant 𝑎0
0.030

𝑖𝑛

𝑠
∗ (

𝑙𝑏𝑓

𝑖𝑛2
)

−𝑛

Burn Rate Exponent 𝑛 0.35

Temperature Sensitivity 𝜎𝑝
0.001

𝐹

Initial Burn Temperature 𝑇𝑏 70 𝐹

Reference Initial Burn Temperature 𝑇𝑏,0 70 𝐹

Density 𝜌𝑝
0.065

𝑙𝑏𝑚

𝑖𝑛3

These values were used to calculate the actual burn rate constant, 𝑎, through the following

equation.

𝑎 = 𝑎0 ∗ exp [𝜎𝑝 ∗ (𝑇𝑏,0 − 𝑇𝑏)]

(7)

Now, the first iterative calculation can begin: the burn area calculation. First, the grain’s web

needs to be discussed. The web is the distance of material that has been removed from the grain

since the ignition. So, the web would be the distance the inner radius of the grain has expanded

while burning, and the length of the grain would also be shrinking from either side during this

process.

Ab -- The burn area of all propellant grains in 𝑖𝑛2

N -- The number of grains

w -- The web in 𝑖𝑛

L -- The initial length of each grain in 𝑖𝑛

Ro -- The initial outer radius of each grain in 𝑖𝑛

Ri -- The initial inner radius of each grain in 𝑖𝑛

𝐴𝑏 = 2𝜋 ∗ 𝑁 ∗ [(𝑅𝑖 + 𝑤)(𝐿 − 2 ∗ 𝑤) + (𝑅𝑜
2 − (𝑅𝑖 + 𝑤)2)]

(8)

Next, the chamber pressure was calculated.

a -- The burn rate constant of the propellant in
𝑖𝑛

𝑠
∗ (

𝑙𝑏𝑓

𝑖𝑛2)
−𝑛

n -- The burn rate exponent of the propellant

Ab -- The burn area of all propellant grains in 𝑖𝑛2

At -- The throat area of the nozzle in 𝑖𝑛2

c* -- The characteristic exhaust velocity of the propellant in
𝑓𝑡

𝑠

ρp -- The density of the propellant in
𝑙𝑏𝑚

𝑖𝑛3

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖

𝑝𝑐 = [𝑎 ∗ 𝑐∗ ∗ 𝜌𝑝 ∗
𝐴𝑏

𝐴𝑡
]

1
1−𝑛

(9)

The next calculation had to be done numerically. The goal was to find the exit pressure of the

rocket’s nozzle, and that required the following equation.

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖

γ -- The adiabatic index of the rocket’s propellant

M -- The mach number of the flow at the exit of the nozzle

pe -- The nozzle’s exit pressure in 𝑝𝑠𝑖

𝑝𝑒 = 𝑝𝑐 ∗ (1 +
𝛾 − 1

2
∗ 𝑀2)

−𝛾
𝛾−1

(10)

The issue is finding the Mach number at the exit of the nozzle. That Mach number has a

relationship with the nozzle area ratio, but there is no direct way to solve the following equation

for the exit Mach number.

M -- The mach number of the flow at the exit of the nozzle

γ -- The adiabatic index of the rocket’s propellant

ε -- The nozzle’s area ratio

𝜀 =
1

𝑀
[(1 +

𝛾 − 1

2
∗ 𝑀2) (

𝛾 + 1

2
)]

𝛾+1
2(𝛾−1)

(11)

As a result, the Newton-Raphson Algorithm was applied to numerically solve for the Mach

number based on the relative different between iterations. Once the change in the evaluation of

the exit Mach number fell below a relative value of 0.0001, the algorithm would stop. With the

exit Mach number, the exit pressure could be found.

The exit pressure was the final piece necessary to find the thrust coefficient of the rocket, and

this is the final piece before calculating the thrust.

cf -- The thrust coefficient

γ -- The adiabatic index of the propellant

pe -- The exit pressure of the rocket’s nozzle in 𝑝𝑠𝑖

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖

pa -- The ambient pressure of the atmosphere in 𝑝𝑠𝑖

ε -- The nozzle’s area ratio

𝑐𝑓 = [(
2 ∗ 𝛾2

𝛾 − 1
) ∗ (

2

𝛾 + 1
)

𝛾+1
𝛾−1

∗ (1 − (
𝑝𝑒

𝑝𝑐
)

𝛾−1
𝛾

)]

1
2

+ (
𝑝𝑒

𝑝𝑐
−

𝑝𝑎

𝑝𝑐
) 𝜀

(12)

Before the thrust can be calculated, the nozzle needs to be checked for flow separation. If the

thrust coefficient is less than the value calculated by the following equation, flow separation has

occurred.

cf,min -- The minimum thrust coefficient

ε -- The nozzle’s area ratio

𝑐𝑓,𝑚𝑖𝑛 = −0.0445 ∗ ln2(𝜀) + 0.5324 ∗ ln(𝜀) + 0.1843

(13)

Now the thrust is calculated by the following equation.

T -- Rocket’s thrust in 𝑙𝑏𝑓

cf -- The thrust coefficient

At -- The throat area of the nozzle in 𝑖𝑛2

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖

𝑇 = 𝑐𝑓 ∗ 𝑝𝑐 ∗ 𝐴𝑡

(14)

Drag Model

The drag model was used to calculated the drag force acting on the rocket at every time step

during its flight. The first step was to find the Mach number of the rocket.

M -- The Mach number of the rocket

a -- The speed of sound at a given altitude in
𝑓𝑡

𝑠

v -- The velocity of the rocket in
𝑓𝑡

𝑠

𝑀 =
𝑣

𝑎

(15)

The Mach number was then used to estimate the drag coefficient, 𝑐𝑑, from the following table.

Table 6: Drag Coefficient Estimation

Mach Number Range Drag Coefficient Equation

0 ≤ M < 0.6 𝑐𝑑 = 1.5

0.6 ≤ M < 1.2 𝑐𝑑 = −0.12 + 0.45 ∗ 𝑀

1.2 ≤ M <1.8 𝑐𝑑 = 0.76 − 0.283 ∗ 𝑀

1.8 ≤ M < 4.0 𝑐𝑑 = 0.311 − 0.034 ∗ 𝑀

4.0 ≤ M 𝑐𝑑 = 0.175

(16)

The reference area of the rocket was found from its diameter, and that area was converted to

match the units of the ambient density.

Ar -- The reference area of the rocket

Rr -- The radius of the rocket

𝐴𝑟 =
1

4
∗

1

144
∗ 𝜋 ∗ 𝑅𝑟

2

(17)

The final drag calculation was as follows.

D -- The drag force in 𝑙𝑏𝑚

cd -- The drag coefficient

v -- The velocity of the rocket in
𝑓𝑡

𝑠

Ar -- The reference area of the rocket in 𝑓𝑡2

ρ -- The ambient density of the atmosphere in
𝑙𝑏𝑚

𝑓𝑡3

𝐷 = 𝑐𝑑 ∗ 𝜌 ∗ 𝑣 ∗ 𝑎𝑏𝑠(𝑣) ∗
𝐴𝑟

2

(18)

The absolute value of the rocket’s velocity is used in the drag equation because it allows for the

direction of the drag force to be consistent every time it is calculated. The drag force returned

will always be pointed in the same direction as the rocket’s velocity. Therefore, the force can be

flipped every time its effects on the rocket are considered regardless of the rocket’s direction.

Updating States

The states of the rocket need to be updated every iteration of the simulation’s main loop. The

first state considered was the web used in the thrust model. The web is supposed to update by a

value of 0.01 inches every iteration by default, but it can update by less if this default value

would push the web over the maximum web. The maximum web was the maximum value the

web could reach before either the length of the grain became zero or the bore radius became

equal to the outer radius.

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑒𝑏 = min (𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 − 𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠,
1

2
∗ 𝑔𝑟𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ)

(19)

The propellants burn rate would also be updated with each time step.

rb -- The burn rate of the propellant in
𝑖𝑛

𝑠

a -- The burn rate constant of the propellant in
𝑖𝑛

𝑠
∗ (

𝑙𝑏𝑓

𝑖𝑛2)
−𝑛

n -- The burn rate exponent of the propellant

pc -- The chamber pressure of the rocket in 𝑝𝑠𝑖

𝑟𝑏 = 𝑎 ∗ 𝑝𝑐
𝑛

(20)

The time step did have a default value of 0.1, but this default value was only used after burn out

of the rocket’s motor. During the boost phase, the time step was found using the following

equation.

rb -- The burn rate of the propellant in
𝑖𝑛

𝑠

Δw -- The difference between the web at the next time and the current time in 𝑖𝑛

Δt -- The difference between the next time value and the current time value in 𝑠

∆𝑡 =
∆𝑤

𝑟𝑏

(21)

The mass of the rocket was then calculated. While most components of the rocket’s mass remain

constant, the propellant mass changed as fuel was used. The mass of the propellant was found

with the following equation.

mp -- The mass of the propellant in 𝑙𝑏𝑚

N -- The number of grains

w -- The web of the propellant grain in 𝑖𝑛

ρp -- The density of the propellant in
𝑙𝑏𝑚

𝑖𝑛3

Ri -- The inner radius of the propellant grain in 𝑖𝑛

Ro -- The outer radius of the propellant grain in 𝑖𝑛

L -- The length of the propellant grain in 𝑖𝑛

𝑚𝑝 = 𝑁 ∗ 𝜋 ∗ [𝑅𝑜
2 − (𝑅𝑖 + 𝑤)2] ∗ 𝜌𝑝 ∗ (𝐿 − 2 ∗ 𝑤)

(22)

The rocket’s casing mass was found based on the length of the casing, and a constant provided

by the guidelines.

𝑐𝑎𝑠𝑖𝑛𝑔 𝑚𝑎𝑠𝑠 = 𝑐𝑎𝑠𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 0.25

(23)

The total mass of the rocket was found with the following equation.

me -- The empty mass of the rocket in 𝑙𝑏𝑚

mc -- The mass of the casing in 𝑙𝑏𝑚

mb -- The mass of the ballast in 𝑙𝑏𝑚

mp -- The mass of the propellant in 𝑙𝑏𝑚

mt -- The total mass of the rocket in 𝑙𝑏𝑚

𝑚𝑡 = 𝑚𝑝 + 𝑚𝑒 + 𝑚𝑐 + 𝑚𝑏

(24)

Now, the three primary states of the rocket can be updated: acceleration, velocity, and position.

These states were updated using Euler Integration. The side effect this integration had was an

offset in indices. The acceleration state vector always lagged one iteration behind both the

velocity and position states. This was because the acceleration state was defined in the first

iteration, but the velocity and position states are needed during the first iteration. Therefore, the

velocity and position states were initialized to zero. The maximum velocity achieved by the

rocket would be at the time index right after burn out. Burn out was the time step were the

maximum web was reach, and the simulation did iterate through the boost model at the

maximum web. The following is the first equation: acceleration.

a -- The acceleration of the rocket at the current time in
𝑓𝑡

𝑠2

T -- The thrust of the rocket at the current time in 𝑙𝑏𝑓

D -- The drag force acting on the rocket at the current time in 𝑙𝑏𝑚

mt -- The total mass of the rocket at the current time in 𝑙𝑏𝑚

c -- The conversion from 𝑙𝑏𝑓 to 𝑙𝑏𝑚 in
𝑙𝑏𝑚∗𝑓𝑡

𝑠2∗𝑙𝑏𝑓

g -- The acceleration due to gravity in
𝑓𝑡

𝑠2

𝑎 =
𝑇 ∗ 𝑐 − 𝐷

𝑚𝑡
− 𝑔

(25)

Next, velocity was found.

vt -- The rocket’s velocity at the current time in
𝑓𝑡

𝑠

vt+1 -- The rocket’s velocity at the next time in
𝑓𝑡

𝑠

a -- The rocket’s acceleration at the current time in
𝑓𝑡

𝑠2

Δt -- The change in time

𝑣𝑡+1 = 𝑣𝑡 + 𝑎 ∗ ∆𝑡

(26)

Finally, the position state was updated.

ht -- The rocket’s altitude at the current time in 𝑓𝑡

ht+1 -- The rocket’s altitude at the next time in 𝑓𝑡

vt -- The rocket’s velocity at the current time in
𝑓𝑡

𝑠

vt+1 -- The rocket’s velocity at the next time in
𝑓𝑡

𝑠

Δt -- The change in time

ℎ𝑡+1 = ℎ𝑡 +
𝑣𝑡 + 𝑣𝑡+1

2
∗ ∆𝑡

(27)

Batch Processing Methods

Batch processing is simply a method of testing designs in groups to find the desired result. This

project relied heavily on this concept. Three different methods were used to perform batch

processing: each at different levels. Together these methods provided this project with the results

it obtained. Designs were not considered failures if constrain values were exceeded. Instead,

designs were only considered failures if they encountered flow separated, choked flow, or their

nozzle’s area ratio fell below one. Any designs that did not fail were saved to the disk for easy

management.

The highest-level batch processing method was simply a human guessing and checking. This

method was not elaborate, but it used to human’s intuition and knowledge of the subject to make

massive movements across the solution space to find results. The solution space for this problem

is massive, and this method was not used to narrow down a design. Instead, this method was

used to get an idea on a good range of values to have the computer test.

Each design was defined by nine parameters: grain inner radius, grain outer radius, grain length,

ballast mass, nozzle throat area, nozzle area ratio, first test’s grain number, second test’s grain

number, and third test’s grain number. Multiply the number of values tested for each parameter,

and the result is the number of combinations that will be tested. For example, I want to test all

the designs with each input having to possible values. There are nine parameters; so, that

simplifies to 29 = 256. That is not many designs. A human could run through those in a

semester. However, if each input was increase to just ten possible values: 109 =

10,000,000,000. This gets out of hand fast; the computer can deal with it.

The second method for batch processing was a brute force method. Simply, the computer was

given a range of values for each parameter and told to run a test with every combination. This

method was still not the icon of efficiency, but it never missed a valid design. If there was a valid

design in the range provided, the computer would find it. The efficiency of this method varied

based on how many valid designs were found in its range. The simulation was designed to return

early if any of the three failure modes were encountered. This prevented wasting time on

calculations that would provide an invalid result anyways. Either way, this method could run

through about 2,000,000 to 10,000,000 designs every hour.

The final method was to treat the solution space like a group of nodes. Each node was a design,

and it was connected to eighteen other nodes. That is one connection per input variation: nine

inputs in two directions each. The process was provided one valid node to start, and it would

expand that node. The demonstrations for this only use four connections per node for simplicity.

In the following figures, green nodes are designs that were tested and worked, red nodes are

designs that failed, and blue nodes are known but not tested designs.

Figure 10: Expansion of a Single Design Node

As designs were tested, they were also scored. This allowed the algorithm to sort each design

based on its score, and the algorithm would expand the highest scoring designs first. The designs

score was based on the standard percent different equation: applied to the constraint and

observed values.

 𝑠𝑐𝑜𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 =
(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
∗ 100

(28)

The percent difference acted as weight: adjusting the maximum score values for each criterion.

The most preferred of these was the maximum altitude; it was weighted the highest and saw the

algorithm heavily pursue designs that made it inside the altitude tolerance for all three tests.

After more expansion, the batch of designs would look something like the following figure.

Figure 11: Expanded Solution Space Example

The above figure shows how the algorithm would expand the solution space in the direction that

it believed a solution existed. However, the problem with this method also begins to show. What

if all the designs the algorithm can expand to are invalid? Well, the algorithm would simply stop;

it would state it ran out of designs. The problem was not that the algorithm ran out of designs.

The problem was that this proved that solutions existed in groups. This method could only find a

solution if that solution was in the same groups as the starting design. This was why three

methods were used in this project. A human would quickly identify a region of the solution space

that showed promise. The brute force method would identify potential starting nodes within a

portion of that region. Then, the pathfinding method would work its way from that starting

design towards a potential solution. These were the methods used when trying to find a solution.

Why is This Problem so Difficult?

Why was this problem so difficult? The difficulty arises from lack of adaptability. Each of the

three tests, five, ten, and fifteen thousand feet, have ever so slightly different preferences. The

5,000-foot test prefers a small throat area; it allows that design to reach higher with fewer grains

and less propellent. However, the 15,000-foot test prefers a larger throat area; this allows the

design to reduce the maximum chamber pressure and acceleration experienced during the

15,000-foot test. There are multiple balancing acts that would be need to be found for a design to

reach within 100 feet of each target altitude.

Consider the following base design.

Table 7: Analysis Base Design

Input Value

Grain Inner Radius 0.800

Grain Outer Radius 1.800

Grain Length 4.300

Ballast Mass 0.000

Nozzle Throat Area 0.800

Nozzle Area Ratio 4.000

15,000 Test Grain Number 4

10,000 Test Grain Number 3

5,000 Test Grain Number 2

Here is how this design performed.

Table 8: Base Design Results

Test 15,000 10,000 5,000

Maximum Altitude (ft) 15,991.086 11,045.831 4091.983

Maximum Acceleration (ft/s^2) 362.253 222.397 96.493

Maximum Chamber Pressure (psi) 542.199 348.294 186,668

The table above displays a common issue with this problem; two designs are on one side of the

target and one is on the opposite side. In this example, the 5,000-foot test needs to raise its

maximum altitude, but the 15,000- and 10,000-foot tests need to lower theirs. What happens

when the area ratio is lowered to 3?

Table 9: Base Design with Area Ratio = 3

Test 15,000 10,000 5,000

Maximum Altitude (ft) 15,781.579 11,025.837 4389.770

Maximum Acceleration (ft/s^2) 356.206 221.036 99.358

Maximum Chamber Pressure (psi) 542.199 348.294 186,668

The results were desired. Each test moved in the desired direction, maximum acceleration

slightly rose, and the chamber pressure remained constant. What about an area ratio of 2?

Table 10: Base Design with Area Ratio = 2

Test 15,000 10,000 5,000

Maximum Altitude (ft) 15,158.129 10,579.599 4428.255

Maximum Acceleration (ft/s^2) 341.007 213.560 98.813

Maximum Chamber Pressure (psi) 542.199 348.294 186,668

The altitudes are still moving in the right direction, and the chamber pressure remains constant.

The chamber pressure is determined by the grain geomtery and area ratio; so, it will not change

unless those variables are changed. However, the acceleration has started to fall. This would be

good, but it is also concerning. Is the problem going to flip? What about an area ratio of 1.5?

Table 11: Base Design with Area Ratio = 1.5

Test 15,000 10,000 5,000

Maximum Altitude (ft) 14,409.657 9,932.432 4,199.813

Maximum Acceleration (ft/s^2) 324.828 204.100 95.353

Maximum Chamber Pressure (psi) 542.199 348.294 186,668

Now all three designs are below their target is there a solution in this space. This would be the

desired position. Each test is linked. A change that alters one test will alter each of the other test

in the same direction but with a different magnitude. The last statement is not always true;

raising the area ratio too high can cause the 5,000-foot test to plummet while the other two rise.

However, that statement is a reasonable approximation of the problem as a solution is

approached. What about 1.6 for that area ratio?

Table 12: Base Design with Area Ratio = 1.6

Test 15,000 10,000 5,000

Maximum Altitude (ft) 14,607.431 10,106.562 4270.093

Maximum Acceleration (ft/s^2) 328.922 206.563 96.364

Maximum Chamber Pressure (psi) 542.199 348.294 186,668

The original problem has returned. Two designs are on one side of the target, and one design is

on the opposite side. This pattern encompassed this project, and it was present when varying

each input. More variation in the grain numbers were required to solve this issue. The grain

number in each test was the only way to effectively move two designs in different directions in

this scenario. However, that control does not outpace the gain in acceleration. By adding more

grains, designs that only go 4,000 feet up but have over 700 ft/s^2 for maximum acceleration and

1150 psi for maximum chamber pressure; both of these values are already over their respective

constraints. Additionally, designs like this become common with more grain numbers. More

viable designs were found with less grain.

At this point, over 300 hundred million designs have been tested for this project. There are many

designs that have gotten extremely close, but the before mentioned issue remains. Two designs

end up on one side of the target, and the other is on the opposite. This challenge is extremely

difficult because there was no apparent way to adjust the height of a single test without affecting

the other tests in the same direction. Every combination of two successes and one failure were

found during this project. Below is a table showing the common patterns encountered.

Table 13: Common Outcomes

15,000 Test 10,000 Test 5,000 Test

Too Low Passed Passed

Passed Passed Too Low

Passed Too High Passed

Here is an example of the first combination. The S stands for success and the C is for a constraint

violation, altitude in all these cases, and the test are placed in descending order from left to right.

Table 14: CSS Design

Input Value

Grain Inner Radius 1.100

Grain Outer Radius 2.100

Grain Length 2.900

Ballast Mass 1.000

Nozzle Throat Area 1.590

Nozzle Area Ratio 1.480

15,000 Test Grain Number 5

10,000 Test Grain Number 4

5,000 Test Grain Number 3

Table 15: CSS Results

Test 15,000 10,000 5,000

Maximum Altitude (ft) 14210.294 10083.912 4999.403

Maximum Acceleration (ft/s^2) 326.583 225.364 131.575

Maximum Chamber Pressure (psi) 289.703 205.523 132.022

The second combination is next.

Table 16: SSC Design

Input Value

Grain Inner Radius 1.139

Grain Outer Radius 2.211

Grain Length 3.440

Ballast Mass 0.562

Nozzle Throat Area 1.355

Nozzle Area Ratio 1.201

15,000 Test Grain Number 4

10,000 Test Grain Number 3

5,000 Test Grain Number 2

Table 17: SSC Results

Test 15,000 10,000 5,000

Maximum Altitude (ft) 14980.102 9964.229 3644.712

Maximum Acceleration (ft/s^2) 311.155 193.855 87.929

Maximum Chamber Pressure (psi) 336.225 215.981 115.746

The third combination is listed below.

Table 18: SCS Design

Input Value

Grain Inner Radius 1.113

Grain Outer Radius 2.061

Grain Length 3.196

Ballast Mass 1.000

Nozzle Throat Area 1.800

Nozzle Area Ratio 1.900

15,000 Test Grain Number 5

10,000 Test Grain Number 4

5,000 Test Grain Number 3

Table 19: SCS Results

Test 15,000 10,000 5,000

Maximum Altitude (ft) 14999.067 10622.281 4999.528

Maximum Acceleration (ft/s^2) 320.313 218.277 123.553

Maximum Chamber Pressure (psi) 249.593 177.068 113.743

The results above show the frustration that surrounded this project every time a batch finished

processing. The SCS result even has two tests within the original one-foot tolerance, but the

10,000-foot test was two high. Out of all these combinations the SCS results should the greatest

promise of finding a solution. The biggest problem appears to be the spacing of the altitudes. To

fix this more grains are needed to more variation can be applied between tests, but this idea

quickly changes the issue to the acceleration and pressure values. These values grow too fast

when grains are added.

Was a Solution Found?

Was a solution found? No. No design was found that could pass all three tests, but one design did

come close. How close? One design got within 500 feet of the 100-foot tolerance and passing all

three tests.

Table 20: Closest Design

Input Value

Grain Inner Radius 1.120

Grain Outer Radius 2.070

Grain Length 3.170

Ballast Mass 1.000

Nozzle Throat Area 1.800

Nozzle Area Ratio 1.810

15,000 Test Grain Number 5

10,000 Test Grain Number 4

5,000 Test Grain Number 3

Table 21: Closest Result

Test 15,000 10,000 5,000

Maximum Altitude (ft) 14930.579 10590.830 5032.263

Maximum Acceleration (ft/s^2) 320.259 218.649 124.328

Maximum Chamber Pressure (psi) 250.459 177.682 114.138

Even with this result, the problem still shows itself. Not having all the maximum altitudes on the

same side of their target makes this problem extremely difficult. Decreasing one design will

decrease all the design. Trying to avoid drop two designs by less than 100 feet and one design by

almost 500 felt near impossible. Of course, there is likely a solution created after adding an

unreasonable amount of grains, but the acceleration and pressure values make it more practical to

fire these rockets out of a railgun. There may be a solution out there, but this was my best

attempt.

Conclusion

Overall, this project was extremely fun. It helped me further my understanding of rocket

propulsion and programming. I still wonder if there is a solution, but I am ready to pass that

challenge onto the next in line. Until then, these are my recommendations for adjusting the

project guidelines to create at least one solution.

My analysis shows that the biggest issue was the spacing of the target altitudes. The are nicely

spaced at a consistent five thousand feet, but that was the problem. The current altitudes

appeared to be a bit outside a single design is able to cover by only adjusting grains. If the goal is

the guarantee a solution, changing the 10,000-foot target to 10,500 would be viable. This

guarantees at least one, in fact the only one so far, solution. However, too make the bonus still

challenging but more possible one of two solutions are recommended. Either raise the 10,000-

foot target to 11,000 feet, or lower the 15,000-foot target to 14,000 feet. Both of these solutions

open a sizable amount of solutions that are still challenging to find. The 5,000-foot target should

remain were it is because the solutions that would require it to move would see this target

lowered by over 1,000 feet. These are my recommendations for adjusting the project guidelines

to guarantee solutions to the bonus problem: without making it too easy.

	Simulating the Performance of a Single Solid Propellant and Rocket Nozzle Design in a Vertical Trajectory
	Recommended Citation

	tmp.1721150282.pdf.BSi0c

		2024-05-07T10:24:07-0500
	Sean M Lane

