
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

5-5-2024

Implementing Reinterpreted Requirements into an Existing Senior Implementing Reinterpreted Requirements into an Existing Senior

Design Project Design Project

Cooper James Bond
University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Bond, Cooper James, "Implementing Reinterpreted Requirements into an Existing Senior Design Project"
(2024). Honors Capstone Projects and Theses. 870.
https://louis.uah.edu/honors-capstones/870

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/870?utm_source=louis.uah.edu%2Fhonors-capstones%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages

2

Table of Contents

Abstract 3

Introduction 4

Process and Implementation 7

 First Roadblock 7

 All Windows Are to be Resizable 9

 All Three Stadium Scoreboard Are to Be Part of the

Same Window

16

 Other Changes and Notes 20

Conclusion/Assessment 21

3

Abstract

 The English Dart Premier League draws large crowds, and it is difficult for the audience

to see the dartboard and keep track of the status of the match. The UAH CS 499 Senior Project

Assignment “Dart Premier League” hopes to solve this issue through the implementation of

thirteen features. For CS 499-02 FA23 Group 3, the thirteen features were implemented through

their development of the Bullseye Scoreboard program. The purpose of “Implementing

Reinterpreted Requirements into an Existing Senior Design Project” is to rework two of those

requirements as implemented in the Bullseye Scoreboard to better perform for the intended

audience. It was intended to implement the reworked requirements through existing features of

PyQt: resizeEvent()and QStackedWidget. Ultimately the resizeEvent() implementation was

successful, but the QStackedWidget implementation was found to be impractical given existing

structure of the code, instead an alternative solution was found that while not meeting the explicit

requirement, met the intended goal of the requirement.

4

Introduction

The UAH CS 499 Senior Project Assignment “Dart Premier League” has thirteen

requirements that together result in an entity structured around two displays and an algorithmic

implementation of a darts game. The first display, which whoever is recording the games of darts

uses, will consist of two separate views: “Set up match view” through which the specifics behind

the current match is input to the system, and “Match in progress view” through which the current

match is recorded live, and must be resizable. The second display, through which the audience of

the darts game will see information regarding the match and league, will consist of three separate

views, all of which are required to be resizable:

• “Competitor Info View” which will display information about the current players and

their statistics from previous matches in the league.

• “Match Info View” which will display information regarding the current players and their

statistics from the current match.

• “Main Scoreboard” which will display an alternative version of “Match Info View” that

includes information of the current leg of the match rather than statistics encompassing

the entire match so far (which may consist of multiple legs). While not explicitly

required, in Bullseye Scoreboard it is used to implement the requirement, “If the player is

on track for the minimum number of throws to win the leg it will be displayed on the

scoreboard.”

In addition to these visual requirements are algorithmic requirements designed to enable

the scorer to accurately show the state of the darts game automatically, meaning that the program

must be able to correctly emulate a game of darts, in addition to displaying information regarding

5

the league (information about matches and players). Strict requirements for these algorithms

were:

• League management: maintain players and player information.

• Set-up for a match: Select competitors, scoring leg start value, number of legs, number of

matches, initial running statistics to display, date of match, location of match, official

names, layout for stadium scoreboard.

• Championship play, which consists of multiple matches.

• Ability to maintain data for darts thrown.

• Calculate and display if a player is on track for a perfect leg (where they are able to

complete a leg in the minimum number of throws possible).

• Proper implementation of a dart match’s leg, including scoring for a leg starting at either

801, 501, or 301, properly updating current score for the current player when recording

their dart throws, and restrictions in a dart match like a winning dart has to be a double,

winning is setting score exactly to zero, and a failsafe to account for a player getting their

score to 1 where it is now impossible to win with a double.

These were all implemented in the Bullseye Scoreboard by the members of CS 499-02

FA23 Group 3, through PyQt, a set of Python bindings for C++’s Qt application framework, but

there was a disjunct between implementation of some requirements, which while met the

requirements, directly impeded the intention of the program, an interface to record and display

the current state of a dart match. This disjunct is found in the following two requirements:

• "The stadium scoreboard ... can be modified by the scorer during the match without

having to bring the stadium scoreboard down."

6

o Issue: this requirement is met as long as there is not a period where no windows

are visible on the display, leading to an instance where changing the window

causes the window to resize or move itself being acceptable. This actively takes

away from the viewing experience of the audience.

• "The scorer’s interface will consist of a resizable dartboard..." and "The stadium

scoreboard is to be resizable..."

o Issue: this requirement leads to a situation where the “Set up match view” for the

scorer does not need to be resizable, even though it will be on the same display as

the “match in progress view” that is required to be resizable. This could lead to

situations where the “match in progress view” works on a display but the “set up

match view” does not.

To combat these issues, which would enable an acceptable submission if following the

strict requirements but may yield a program that is unwieldly to use or view, the following

changes were made to those two requirements:

• All three stadium scoreboards will be part of the same window, rather than three separate

windows that give the illusion of being one window.

• "All windows are to be resizable".

7

Process and Implementation

First Roadblock

 When starting work on the project, one immediate concern was found, at some point

between presenting it as a senior design and beginning work on this project, it had seemingly

broken. All text white, making things like setting up a match impossible to do:

Figure 1: Intended Welcome Screen Display with

System Exit Prompt

Figure 2: Actual Welcome Screen Display with

System Exit Prompt

8

Figure 3: Intended Player Select Screen

Figure 4: Actual Player Select Screen

This issue was assumed to be due to a difference in existing python packages on my

system running it, as between the senior design and starting to work on it, I had to format it due

to malware. Assuming that the issue was caused by a silent error in text formatting due to a

missing package, an error that was not being recorded to the console, the attempted solution was

to pull up the list of packages present on my original machine and individually download them.

Doing this did not result in any changes. Ultimately, due to a serendipitous thought, it was

determined the actual reasoning behind this was the fact my new system was using Dark Theme

instead of Light Theme. Ultimately, a partial solution was found by adding the line

QApplication.instance().setPalette(app.style().standardPalette())

9

before executing the app in main. This resulted in a partial fix that while leaving the text on the

Welcome Screen white, fixed the system exit prompt in the Welcome Screen and set the text on

the Player Select Screen to black, making it visible.

Figure 5: Acceptably “Fixed” Welcome Screen

Display with System Exit Prompt

Figure 6: Fixed Player Select Screen (Visually

identical to Figure 3)

All Windows Are to be Resizable

 While implementing the ability to resize the “Set up match view” it was determined three

existing windows needed to be reworked to enable the ability to resize: Welcome Screen, Player

Select Screen, and Match Setup Screen. The intent was to implement this through the

resizeEvent function found in PyQt, a function that is automatically called on a window every

10

time that window is resized. For those windows to be resizable, the FixedSize each was assigned,

which restricts the window to those specific dimensions and cannot be resized at all, had to be

removed. Doing this did make the windows resizable, but not their components. Not only did the

components of the window not move nor update, but it was possible to make the window itself

smaller than the components:

Figure 7: Player Select Screen resized to

be extremely small, cutting off

components

Figure 8: Player Select Screen not redrawing background

when resized.

The solution to this was a combination of two actions, the addition of setting each

windows MinimumSize equal to the original FixedSize, prevents a window from being smaller

than those dimensions, and adding a resizeEvent function and a custom function in each window

called adjust_widgets which is called in the resizeEvent function. This adjust_widgets function

applies a custom geometric transformation on the Geometry value of each widget, which

11

modifies their x value, y value, width, and height in a specific manner depending on the “type”

of widget, where a widget is one of Qt’s building blocks for GUIs (labels, dropdown menus,

buttons, etc) and “type” is a custom identifier I made for the sake of categorization to classify

how they should interact with the resizing screen,. These types are as follows:

• Centered Label: Centered Label (Label being Qt’s name for something that holds text or

pixel maps) should always be in the center of the screen horizontally, and the same

position (I.e. 2/3 the way) down the screen vertically regardless of how the window is

resized.

• Centered Button: Centered Buttons will always be in the center of the screen horizontally,

and same position down the screen vertically regardless of how the window is resized.

Additionally, they should scale up in size as the window becomes larger.

• Corner Button: Corner Buttons should always be the same distance (I.e. 50 pixels) from

whatever corner of the screen they are positioned in at default, regardless of how the

window is resized. These buttons do not change in size.

• Left Labels: Left Labels will always be the same distance from the left side of the screen,

and the same position down the screen vertically.

• Left Label’s Menus: These are the ComboBoxes (Qt’s name for drop down menus) and

SpinBoxes (Qt’s name for the boxes you can type input in in a restricted range, and has

arrows that increment up or down with a step size) that appear to the right of Left Labels.

Their left side will be the same distance from the left side of screen, and their right side

will be the same distance from the right side of the screen.

The code implementation to achieve these goals, using width/height_factor being the

current width/height of the screen divided by default width/height of screen, and the text

12

appearing between “self.” and “.setGeometry”/”.move" being the name of the corresponding

type of object is as follows:

• Centered Label:

self.label.setGeometry(self.label_x * width_factor, self.label_y * height_factor,

 min(int(self.label_width * width_factor), self.width()),

 self.label_height * height_factor)

• Centered Button:

self.quitBtn.setGeometry(self.quitBtn_x * width_factor, self.quitBtn_y *

 height_factor, self.quitBtn_width * width_factor, self.quitBtn_height *

 height_factor)

• Corner Button:

 self.finishBtn.move(self.width()-(self.defaultWidth - self.finishBtn_x),

 self.height() - (self.defaultHeight - self.finishBtn_y))

• Left Labels:

 self.matchDateLabel.move(self.matchDateLabel_x, self.matchDateLabel_y *

 height_factor)

• Left Label’s Menus:

13

o Due to a quirk in the visual size of labels and menus compared to their actual size,

additional code needed to be written so that each Left Label’s Menu would appear

centered on the appropriate Left Label instead of shifting away from center as

manually implemented in the default size.

matchDateYConversion = (self.matchDateLabel.geometry().y() + (1 / 2) *

 self.matchDateLabel_height - (1 / 2) * self.matchDate_height)

self.matchDate.setGeometry(self.matchDate_x,

 matchDateYConversion,self.width() - self.matchDate_x - 50,

 self.matchDate_height)

For the background of the windows to update, the part that draws the background found

in paintEvent needed to be updated to reflect the new screen size, and update() would need to be

called in resizeEvent as doing so would end up calling paintEvent. The original implementation

of paintEvent drew a gradient that transitions from a shade of pink originating from 25, 400 to a

shade of blue originating from the bottom right corner of the screen, then drew a rectangle with

that gradient encompassing the entire window (0,0 to 700, 900 at default). To keep the gradients

original design the input for width/height factor was used again as follows:

grad1 = QLinearGradient(25 * self.width() / 700, 400 * self.height() / 900, self.width(),

 self.height())

This ends up drawing a gradient originating from the same proportion down and across

the screen as default to the same bottom corner of the screen, both as found in the default

14

window size. This results in windows that are resizable, and do not take away from the scorers’

ability to input things regardless of the new window size:

Figure 5: Acceptably Fixed Welcome Screen

Display with System Exit Prompt (Default Size)

Figure 9: Resized Welcome Screen (Show Center Labels

and Center Buttons)

15

Figure 6: Fixed Player Select Screen

(Visually identical to Figure 3) (Default

Size)

Figure 10: Resized Player Select Screen (Shows Center

Labels, Left Labels, and Left Label’s Menus)

16

Figure 11: Match Info Screen (Default Size)

Figure 12: Resized Match Info Screen (Shows Center

Labels, Left Labels, and Left Label’s Menus)

All Three Stadium Scoreboard Are to Be Part of the Same Window

 The three stadium scoreboards are the views at which the audience see, and each have

data regarding the match. The three are as follows: “Competitor Info View” which will display

information about the current players and their statistics from previous matches in the league,

“Match Info View” which will display information regarding the current players and their

statistics from the current match, and “Main Scoreboard” which will display an alternative

version of “Match Info View” that includes information of the current leg of the match rather

than statistics encompassing the entire match so far (which may consist of multiple legs)

including if a player is on track for a perfect leg. The intent behind the new requirement, “All

17

three stadium scoreboards will be part of the same window, rather than three separate windows

that give the illusion of being one window” was to remove the visual issues that occur when

swapping between scoreboards, the window would flash and change size and position on the

screen. This would take away from the viewing experience of the audience.

The planned solution to this would have been through implementation of Qt’s

StackedWidget, which enables stacking multiple window widgets, and then selecting which one

is visible. Ultimately, this was determined to be far too impractical to implement given the

current structure of the code. The way the individual scoreboards are defined, along with

positioned in the code, made it that setting them up as components of the stacked widget would

require a massive amount of refactoring. Only MainScoreboard is defined as a window,

MatchScoreboard and CompetitorScoreboard are both defined as “objects.” Thus, leading to two

variations on creating a window that requires a dramatically different set up for the code to build

their respective windows, and changes in the structure for built in Qt functions. Attempting to

standardize them and then combine the modified windows would likely introduce an

unnecessarily large number of errors in the code that attempting to fix would cascade into

breaking other parts of the code. This can be seen how when originally implemented, it broke all

fonts on the windows (unrelated to the dark mode font issue mentioned earlier).

The second attempt was to make it that the MainScoreboard had different functions that

populated it with different components depending on the Scoreboard selected, when a scoreboard

was “changed” instead of hiding the current scoreboard’s window and showing the other

scoreboard’s window, it would delete the contents of the window and then repopulate it with the

contents of the selected scoreboard. While this enabled swapping between the 3 scoreboards with

the only issue being the dimensions visually change, solving the issues where the position on

18

screen and the “flashing” that occurred on scoreboard swap, only MainScoreboard would

properly render, the other two would become gray boxes.

The third attempt, which succeeded, was adding lines to copy over the current

scoreboard’s Geometry (x position on screen, y position on screen, width, height) to the selected

scoreboard, and loading all the scoreboards once before choosing which one stays visible on the

screen. This does not meet the literal criteria of the requirement, “All three stadium scoreboards

will be part of the same window, rather than three separate windows that give the illusion of

being one window,” but does meet the intention of the requirement, improving the viewing

experience of the audience by removing the flashing, jumping, and resizing of the windows when

scoreboards are changed. Copying over the geometry removes the jumping and resizing of the

windows, and loading all the scoreboards once prevents flashing the first time a scoreboard is

loaded manually (as now they’ve been loaded ahead of time)

Loading the scoreboards preemptively:

 # HON code, Loads scoreboards before continuing to the original code

 self.set_screen_selection_to_competitor_scoreboard()

 self.set_screen_selection_to_main_scoreboard()

 self.set_screen_selection_to_match_scoreboard()

 # Original code, load selected scoreboard

 if self.scoreboard_selection == 'Competitor Scoreboard':

 self.set_screen_selection_to_competitor_scoreboard()

 elif self.scoreboard_selection == 'Main Scoreboard':

 self.set_screen_selection_to_main_scoreboard()

 elif self.scoreboard_selection == 'Match Scoreboard':

 self.set_screen_selection_to_match_scoreboard()

 else:

 return

 Example of copying over geometry when swapping to match scoreboard from main

scoreboard or competitor scoreboard:

19

 def set_screen_selection_to_match_scoreboard(self):

 if self.scoreboard_selection == 'Main Scoreboard':

 # Setting the geometry of match scoreboard to main scoreboard, the previous

scoreboard

 self.match_window.setGeometry(self.main_scoreboard.geometry())

 self.main_scoreboard.hide()

 elif self.scoreboard_selection == 'Competitor Scoreboard':

 # Setting the geometry of match scoreboard to competitor scoreboard, the previous

scoreboard

 self.match_window.setGeometry(self.competitor_window.geometry())

 self.competitor_window.hide()

 self.match_window.show()

 self.scoreboard_selection = 'Match Scoreboard'

 self.update_all()

Figure 13: Resized Scorer’s Interface & Resized Main Scoreboard View

20

Figure 14: Resized Scorer’s Interface & Resized Competitor Info (Competitor Info changed from Main

Scoreboard in Figure 13 kept the geometry of Main Scoreboard, being visually indistinguishable from

being the same window)

Other Changes and Notes:

• Calculating and displaying if a player was on track for a perfect leg was broken because a

variable it used checking for the number of darts thrown by a player was not being

updated properly for player 2. Instead, player 1’s darts thrown was being incremented

during both their turn and player 2’s turn, causing the code to think player 1 was no

longer on track for a perfect leg once player 1 threw a dart after player 2 threw a dart, and

player 2 to supposedly always be on track for a perfect leg. This was discovered and

fixed.

21

• The last names in Competitor Info were not using the proper font. This was due to setting

the font on the first names twice, once after setting the text for first name and once after

setting the text for last names.

• When a Scoreboard is snapped to any display ratio except for full screen via Window’s

snap assist (i.e. dragging a window to the left side of the screen makes it fill up the left

half of the screen) it will not properly transfer geometries snapping a scoreboard, then

swapping from and back to it (I.e. Snap window A to left half of screen, Swap to Window

B where geometries properly transferred, Swap back to window A where geometries fail

to transfer, resetting position and dimensions). It is unknown how to fix this but is not a

cause for concern as in regular use cases it will take up a full screen of a different display,

thus won’t be impacted by this bug that only triggers when using window’s snap assist

for part of the screen.

Conclusion/Assessment

 Overall, I am satisfied with the result of these additions to CS 499-02 FA23 Group 3’s

senior project. While it is true that the literal meaning of the requirement “making the three

scoreboards part of the same window” was not met, the intention behind it, improving the

viewing experience of the audience by removing the flashing and jumping of the windows when

scoreboards are changed, was. The specific implementation of the “all windows are to be

resizable” requirement makes it that performance would not be lost on weirdly sized windows

due to poor rescaling making UI elements more difficult to interact with, excluding extreme

cases. Through these changes, the project now is better suited for practical real-world uses, and

due to its improved quality of life would be more appealing to prospective buyers.

	Implementing Reinterpreted Requirements into an Existing Senior Design Project
	Recommended Citation

	Honors-Thesis-Filled-Copyright-Page_cbond_signed_both.pdf

		2024-05-05T18:45:33-0500
	Sean Lane

