
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

5-1-2024

Portable ASL Translator Using Raspberry Pi Portable ASL Translator Using Raspberry Pi

Brooklyn Kelly
University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Kelly, Brooklyn, "Portable ASL Translator Using Raspberry Pi" (2024). Honors Capstone Projects and
Theses. 871.
https://louis.uah.edu/honors-capstones/871

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/871?utm_source=louis.uah.edu%2Fhonors-capstones%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages

Kelly 1

Portable ASL Translator Using
Raspberry Pi

by

Brooklyn Kelly
An Honors Capstone

submitted in partial fulfillment of the requirements
for the Honors Diploma

to
The Honors College

of
The University of Alabama in Huntsville

Spring 2024
Honors Capstone Project Director: Kevin Preston

Student Date

__

Project Director Date

Department Chair Date

Honors College Dean Date

Kelly 2

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or
Certificate from The University of Alabama in Huntsville, I agree that the Library of
this University shall make it freely available for inspection. I further agree that permission
for extensive copying for scholarly purposes may be granted by my advisor or, in his/her
absence, by the Chair of the Department, Director of the Program, or the Dean of the Honors
College. It is also understood that due recognition shall be given to me and to The University of
Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

Student Name (printed)

Student Signature

Date

Kelly 3

Table of Contents

Table of Contents...3
Introduction..4
Importance of the Project... 4
Collecting Images..5
Summary of the Project Process... 6
Methodology.. 6

1. Data Collection:... 6
Figure 1: “Collecting Images Code”... 7

2. Dataset Creation:...7
Figure 2: “Preprocessing Image Data”...8

3. Model Training:.. 8
Figure 3: “Range Generator”..9

4. Real-Time Gesture Recognition:..9
Figure 4: “Translated ‘A’ “... 11
Figure 5: “Translated ‘B’”..11
Figure 6: “Translated ‘C’”... 12

Performance Self-Assessment and Lessons Learned...12
Raspberry Pi Conversion..13
Comparing Specs.. 14

Figure 7: “Time Difference Formula”..15
Figure 8: “Laptop Training Example”... 15
Figure 9: “Raspberry Pi Training Example”..15

Recommendations For Future Work..16
Conclusions... 17
References... 18

Kelly 4

Introduction

The American Sign Language (ASL) Translator project addresses the communication

barriers faced by individuals with hearing impairments. This is done by developing a

real-time system that translates ASL alphabet gestures into text. Traditional methods of

communication for individuals with hearing impairments, such as lip reading and written

communication, can be challenging and inconvenient. The portable translator could also

be used for the hearing impaired to communicate with those unfamiliar with ASL. The

ASL Translator project seeks to provide an intuitive and accessible means of

communication for individuals who use ASL by leveraging machine learning and

computer vision techniques.

Importance of the Project

The ASL Translator project significantly enhances accessibility and inclusivity for

individuals with hearing impairments. Existing ASL recognition systems may lack

real-time capabilities or demand expensive hardware. This project aims to surmount

such limitations by employing machine learning techniques and optimizing for

resource-constrained environments like the Raspberry Pi 4B. Its goal is to develop a

system running on a low-cost, portable platform, thereby increasing access to ASL

translation technology.

Kelly 5

Collecting Images

I attempted to implement a loop in a previous iteration of the image collection script. It

cycled through a fixed number of classes and gathered a predetermined number of

images per class. However, this initial approach proved inadequate. Especially when

faced with a substantial dataset comprising 87,000 images for analysis. The limitations

became evident as the script struggled to handle the volume of data efficiently. It

became clear that a more scalable solution was necessary to manage such a large

dataset effectively.

One significant issue was the inefficiency caused by creating directories for each class,

even if the dataset size was not fully utilized. This leads to unnecessary overhead and

clutter. Additionally, the program was not flexible enough to add new classes

dynamically during runtime, limiting its scalability. Processing many frames in real-time

significantly slows down the program, especially on devices with limited computational

resources. This slowdown impacts the user experience and hinders the collection

process, mainly when dealing with a high frame rate or large image sizes.

The script can be optimized to address these issues by implementing dynamic class

creation and more efficient frame processing instead of predefining the number of

classes. The program prompts the user to input the class label during runtime, allowing

for the creation of new classes as needed. Additionally, implementing batch processing

or frame subsampling techniques reduces processing time and improves program

efficiency. Especially when dealing with large datasets. These optimizations would

Kelly 6

enhance the program's flexibility, scalability, and performance. Making the image

collection process more efficient and user-friendly.

Summary of the Project Process

Hand gesture recognition is a technology that enables computers to interpret and

understand human hand movements. It has various applications, such as

human-computer interaction, sign language recognition, and virtual reality systems. This

paper presents a hand gesture recognition system implemented using Python and

several libraries such as OpenCV, MediaPipe, TensorFlow, and scikit-learn. The system

comprises several components: data collection, feature extraction, model training, and

real-time gesture recognition.

Methodology

1. Data Collection:

Data collection is crucial in developing a robust hand-gesture recognition

system. To begin this process, the system sets up a dictionary structure to store

the image data collected. As shown in Figure 1, the camera is then initialized

using OpenCV's VideoCapture function to capture frames for each hand gesture

class specified by the user. A data collection loop guides the process, prompting

Kelly 7

user interaction to initiate data capture. Upon receiving the command, the system

captures and saves a predetermined number of frames for each class, organizing

them into subdirectories within the primary data directory. The system then

releases the camera and closes OpenCV windows. This concludes the process

and ensures the computer resources are managed efficiently.

Figure 1: “Collecting Images Code”

2. Dataset Creation:

The system uses the MediaPipe Hands library to create a dataset of hand

gesture images. It extracts hand landmark data by configuring the MediaPipe

Hands model with specific parameters to ensure accurate landmark detection, as

shown in Figure 2. It then navigates through each class directory within a

designated dataset, processing individual image files to detect hand landmarks.

The system reads and converts each image to RGB (red, green, and blue) format

before utilizing the MediaPipe Hands model to identify hand landmarks. If the

system successfully identifies the landmarks, it extracts and normalizes the

landmark coordinates, associates them with respective class labels, and stores

the data in lists. Finally, it serializes the extracted data and labels into a pickle

Kelly 8

file, creating a structured repository of hand landmark data for further analysis

and model training.

Figure 2: “Preprocessing Image Data”

3. Model Training:

Training a hand gesture recognition model begins by creating a Convolutional

Neural Network (CNN) architecture to extract hierarchical features from input

images. This architecture is tailored to suit the dataset's requirements and

consists of annotated hand gesture images. The dataset is integrated into the

training pipeline using TensorFlow. Before the images are fed into the model,

they undergo preprocessing steps using OpenCV to ensure they are suitable for

analysis. Data augmentation techniques improve the model's condition and

general performance. This technique is implemented through TensorFlow's

ImageDataGenerator, as shown in Figure 3, which generates augmented images

efficiently. The CNN architecture uses TensorFlow's Keras API, which comprises

convolutional, pooling, and dense layers. These layers are designed to capture

intricate patterns within the input data. Optimization parameters and evaluation

Kelly 9

metrics are specified, which are vital in refining the model parameters during

training iterations. During each epoch, the model undergoes parameter

adjustments, guided by the minimization of the defined loss function, aimed at

improving performance and learning representations inherent in the data. After

completing training epochs, the model undergoes post-training evaluation, which

assesses on a separate test dataset. This validation step corroborates the

trained model's efficacy in accurately recognizing hand gestures, providing

insights into its generalization capabilities and readiness for real-world

deployment.

Figure 3: “Range Generator”

4. Real-Time Gesture Recognition:

The system demonstrates real-time hand gesture recognition through a

combination of a pre-trained model and the MediaPipe Hands library, alongside

Kelly 10

live camera input. As illustrated in Figures 4, 5, and 6, the system loads a

pre-trained machine-learning model explicitly designed for hand gesture

recognition. Upon initialization of the camera, real-time video input is captured.

The MediaPipe Hands library identifies landmarks on the hand for each frame

captured. Subsequently, the system processes each frame from the camera feed,

detecting hand landmarks and extracting hand gesture data. Predicted gestures,

such as those depicted in the screenshots (e.g., A, B, C), are then mapped to

corresponding characters and overlaid on the frame for visualization. Annotated

frames are displayed using OpenCV. The system operates continuously until the

user exits, ensuring proper resource cleanup and system closure.

Kelly 11

Figure 4: “Translated ‘A’ “

Figure 5: “Translated ‘B’”

Kelly 12

Figure 6: “Translated ‘C’”

Performance Self-Assessment and Lessons Learned

The ASL Translator system achieved accurate real-time recognition of ASL alphabet

gestures, meeting or surpassing expectations. However, optimizing it for the Raspberry

Pi 4B's limited computational resources posed significant challenges. Transitioning from

standard computing platforms to the Raspberry Pi introduced processing power and

memory constraints, algorithmic fine-tuning, and model optimization for efficient

operation. Additionally, ensuring variations in lighting, hand orientations, and

background clutter was challenging but crucial for reliable performance across diverse

real-world scenarios. Techniques like data augmentation played a pivotal role in

overcoming these challenges. Transitioning from the Kaggle ASL Alphabet dataset

(Nagaraj, Akash) to a custom dataset creation approach significantly enhanced

Kelly 13

efficiency and flexibility. Performance and adaptability are improved by tailoring data

collection to the system's needs. Looking ahead, lessons learned will inform future

iterations, aiming to enhance further accessibility for individuals with hearing

impairments and promote greater communication and understanding in society.

Raspberry Pi Conversion

Moving the hand gesture recognition system from a conventional computer to a

Raspberry Pi presents several challenges and benefits. One of the main difficulties lies

in the hardware limitations of the Raspberry Pi compared to a typical computer. The

Raspberry Pi has less processing power, memory, and storage capacity, which affects

the system's performance, especially in real-time image processing tasks. Additionally,

the compatibility of external peripherals, such as cameras, posed challenges, requiring

adjustments or alternative hardware solutions. Furthermore, optimizing the code and

algorithms to run efficiently on the Raspberry Pi's ARM architecture and limited

resources is crucial for maintaining acceptable performance.

Despite these challenges, there are several benefits to moving the system to a

Raspberry Pi. Firstly, the compact size and low power consumption of the Raspberry Pi

make it suitable for applications, enabling hand gesture recognition systems deployment

in various environments and devices with minimal power requirements. Additionally, the

affordability of the Raspberry Pi makes it an accessible platform for hobbyists,

educators, and developers to experiment with and implement gesture recognition

Kelly 14

projects without significant financial investment. Finally, using the Raspberry Pi will

provide access to many resources, tutorials, and libraries, facilitating development and

troubleshooting efforts. For optimal performance, the Raspberry Pi requires a 64-bit

operating system tailored for ARM architecture, ensuring compatibility and efficient

utilization of resources. While shifting the system to a Raspberry Pi presents

challenges, the potential benefits in terms of versatility, affordability, and accessibility

make it a compelling platform for deploying hand gesture recognition solutions.

Comparing Specs

Comparing the performance of an application on a laptop with an AMD Ryzen (Microsoft

R Edition) and a Raspberry Pi 4B highlights a substantial difference. This discrepancy

stems from variations in CPU power, memory, storage, and graphics capabilities

between the two platforms. Notably, the laptop's Ryzen processor boasts superior

processing power and multitasking capabilities compared to the ARM-based CPU in the

Pi 4B. Based on processing time, the comparison reveals that the application completes

its task significantly faster on the laptop. Specifically, while the laptop takes less than 50

seconds (Figure 8) to process 812 files, the Raspberry Pi 4B requires approximately

360 seconds (6 minutes) (Figure 9) for the same workload.

To quantify this performance difference, we calculate the performance improvement

factor for the laptop compared to the Raspberry Pi 4B:

Kelly 15

Figure 7: “Time Difference Formula”

This indicates that the application runs approximately 7.2 times faster on the laptop than

on the Raspberry Pi 4B. While this comparison provides valuable insights, it is essential

to consider that projections for future hardware iterations, such as a hypothetical Pi 5,

would depend on various factors, including advancements in hardware specifications,

software optimizations, and workload characteristics. Below are the epochs shown to

the user during training, which depict the accuracy, losses, remaining files, and

remaining time left for that training batch.

Figure 8: “Laptop Training Example”

Figure 9: “Raspberry Pi Training Example”

Kelly 16

Recommendations For Future Work

There are several ways to focus on improving the ASL Translator system. One way to

make the system more versatile and applicable to a broader range of communication

scenarios is to expand the vocabulary of recognized gestures beyond the ASL alphabet.

Expanding the library of hand gestures is possible with this current model, but it is a

lengthy process. Therefore, a more user-friendly development process is a crucial goal

for future projects.

Another critical goal is fine-tuning the model's hand histogram, which depicts the lighting

and shapes of hand gestures. Fine-tuning is important because the lighting is very

sensitive. Creating something that can automatically update to the best version of the

histogram can make this project more user-friendly.

Efforts could also be made to improve the user interaction experience with the system.

This could involve implementing intuitive user interfaces, incorporating feedback

mechanisms, and exploring ways to add to the library to cater to diverse user

preferences and needs.

A promising idea for future expansion is the integration of video frame comparison

techniques. By analyzing sequences of video frames, the system could detect dynamic

hand gestures and motions, allowing for the recognition of gestures beyond stagnant

poses. This would enable the system to recognize complex gestures, signs, and

expressions, significantly expanding the system's vocabulary and applicability.

Kelly 17

Conclusions

In conclusion, the ASL Translator project represents a groundbreaking initiative in

accessibility technology, leveraging state-of-the-art machine learning and computer

vision techniques to empower individuals with hearing impairments. By developing a

real-time system capable of recognizing and translating ASL alphabet gestures, the

project significantly enhances accessibility and inclusivity for all individuals, regardless

of their hearing abilities. Originally based on the ASL Alphabet dataset from Kaggle, the

project has evolved to incorporate a more efficient approach to creating custom

datasets for hand gesture recognition. This shift allows for greater flexibility and

adaptability in data collection, leading to improved performance and scalability.

As the project advances, it holds the potential to revolutionize communication for

individuals with hearing impairments and foster greater understanding and inclusivity in

society. Future iterations of the ASL Translator system could explore further

enhancements in gesture recognition accuracy, user interaction experiences, and

dynamic gesture recognition capabilities. With ongoing technological advancements and

collaborative efforts, the ASL Translator project stands poised to make a meaningful

impact on the lives of individuals with hearing impairments, creating a more inclusive

and accessible world for everyone.

Kelly 18

References

Nagaraj, Akash. 2018. "ASL Alphabet." Available at:

https://www.kaggle.com/grassknoted/aslalphabet_akash. DOI:

10.34740/KAGGLE/DSV/29550.

Computer Vision Eng. "Sign Language Detector Python." GitHub,

https://github.com/computervisioneng/sign-language-detector-python.

“Sign Language” GitHub, EvilPort2/Sign-Language: A very simple CNN project. (github.com)

UserBenchmark CPU. UserBenchmark. https://cpu.userbenchmark.com/.

https://www.kaggle.com/grassknoted/aslalphabet_akash
https://github.com/computervisioneng/sign-language-detector-python
https://github.com/Evilport2/Sign-Language
https://cpu.userbenchmark.com/

	Portable ASL Translator Using Raspberry Pi
	Recommended Citation

	Brooklyn_Kelly_SP24 Honors Capstone

		2024-05-02T16:43:00-0500
	Sean M Lane

		2024-05-02T09:54:57-0500
	Letha Etzkorn

