
University of Alabama in Huntsville University of Alabama in Huntsville 

LOUIS LOUIS 

Honors Capstone Projects and Theses Honors College 

4-15-2024 

Development of MSFC ET-30s Next Generation of the Structural Development of MSFC ET-30s Next Generation of the Structural 

Load Test Measurement Acquisition System using LabVIEW Load Test Measurement Acquisition System using LabVIEW 

Mary Claire Marguerite Corell 
University of Alabama in Huntsville 

Follow this and additional works at: https://louis.uah.edu/honors-capstones 

Recommended Citation Recommended Citation 
Corell, Mary Claire Marguerite, "Development of MSFC ET-30s Next Generation of the Structural Load Test 
Measurement Acquisition System using LabVIEW" (2024). Honors Capstone Projects and Theses. 877. 
https://louis.uah.edu/honors-capstones/877 

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for 
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS. 

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/877?utm_source=louis.uah.edu%2Fhonors-capstones%2F877&utm_medium=PDF&utm_campaign=PDFCoverPages


Development of MSFC ET-30's Next Generation
of the Structural Load Test Measurement

Acquisition System using LabVIEW
by

Mary Claire Marguerite Corell
An Honors Capstone

submitted in partial fulfillment of the requirements
for the Honors Diploma

to
The Honors College

of
The University of Alabama in Huntsville

Date
Honors Capstone Project Director: Mr. Phillip Hood

_________________________________4/15/2024____________________

Student (signature) Date

____________________________________________________

Project Director (signature) Date

_____________________________________________________

Department Chair (signature) Date

_____________________________________________________

Honors College Dean (signature) Date

4/15/2024

04/20/2024



1

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or
Certificate from The University of Alabama in Huntsville, I agree that the Library of this
University shall make it freely available for inspection. I further agree that permission for
extensive copying for scholarly purposes may be granted by my advisor or, in his/her absence,
by the Chair of the Department, Director of the Program, or the Dean of the Honors College. It is
also understood that due recognition shall be given to me and to The University of Alabama in
Huntsville in any scholarly use which may be made of any material in this thesis.

_Mary Claire Marguerite Corell_____

Student Name (printed)

_______________________________

Student Signature

___ 4/15/2024________________________

Date



2

Table of Contents

Table of Contents 2
Dedication 3
Abstract 4
Introduction 5
Requirements 5
Process 6

Installing NI Linux Real-Time 7
Starting Small 7
Multiple Channels 8
Writing to Binary Files 12
Using ZMQ 13
Implementing State Machines 14
Finalizing My Code 16

Conclusion 17
References 18



3

Dedication

To my mentor, who saw my potential and gave me the incredible opportunity to

work on this project and hone my technical skills.

To my husband and parents, who have encouraged me to reach for the stars and

never stopped supporting me along the way.



4

Abstract

The Structural Load Test Measurement and Acquisition System (SLTMAS) is

software created by NASA Marshall Space Flight Center’s (MSFC) Structural Strength

Test Branch to collect and process voltage data correlating to strain, temperature, and

load during static structural tests. The data collected by the SLTMAS system is used to

visualize data that will be relevant for analysis for both development tests and

qualification tests. Qualification tests will take test articles to limits that qualify an article

for flight by applying loads that include expected flight loads and their safety factors.

Previously, the SLTMAS program was run on SCXI chassis with a Windows operating

system. The SCXI hardware has reached end of life, and this project encompasses a

portion of the development effort to transition to new PXIe hardware utilizing LabVIEW

on the NI Linux Real-Time Platform. Additional concepts include multithreading and

networking. This paper will explore the process of creating a prototype that will meet the

requirements given to me by my mentor.



5

Introduction

Since the SCXI hardware has entered end of life, this project will provide detail

on exploring the transition to using PXIe hardware with NI Linux Real-Time. The

operating system currently on the SCXI chassis is Windows. However, since the original

program on the SCXI was written, NI has released NI Linux Real-Time (Introduction to

NI Linux Real-Time 2023). NI Linux Real-Time is not compatible with SCXI chassis, so

we would like to explore development on the PXIe chassis. The sampling rate for the

PXIe program will reach as high 25,600 Hz compared to the highest sampling rate used

for the SCXI program being 1000 Hz. Thus, it would be useful to inspect if the real-time

performance of NI Linux Real-Time with the increased sampling rate of the PXIe chassis

would be worthwhile to switch to. There will be multiple requirements set by my mentor

that I will have to follow to prove that it could replace the current system that will be

discussed in the requirements section. In this paper, I will highlight the steps I took and

the knowledge I used to create a proof of concept for the PXIe program that runs on NI

Linux Real-Time and what lessons I have learned in the process.

Requirements

The purpose of this project is to create the LabVIEW code that allows the PXIe

chassis to operate as a part of the SLTMAS system. The SLTMAS operator will load a

database with information about how the sensors being used for that test are set up,

start the SCXI chassis with the local program written for Windows, and then monitor the

system while the load is applied to the test article. This functionality will need to be

replicated for the new system. The requirements for this project are listed below:



6

1. The program must run on the National Instruments Linux Real-Time (NILVRT)

Operating System.

2. The program must take data from at least two different sensors.

3. The program must be able to take sensor data at a maximum of 25,600 Hz.

4. The program must be able to send properly formatted ZMQ messages that will

be received by a ZMQ broker.

5. The program must be able to receive and parse ZMQ messages from a ZMQ

broker.

6. The program must have multiple states: setup, standby, data acquire, shutdown.

7. The program must be able to acquire, store, and send data at variable rates

given via ZMQ messages.

8. During the data acquire state, the program must be able to receive a trigger

signal that will empty

9. Once the program has connected to the ZMQ broker, the program must send

heartbeat messages to confirm it is connected.

Process

Before I could begin work, I needed to figure out what tools I needed and ensure

I had them ready. First of all, I needed a PXIe chassis with cards to support taking

strain, CLTS, and thermocouple measurements. I also needed to ensure that NI Linux

Real-Time was the system’s operating system and that I could connect it to the internet

and use the package manager to download necessary libraries. After I received a PXIe

chassis, I installed an 8-channel strain module, a 20-channel cryogenic linear



7

temperature sensor (CLTS) module, and a 32-channel thermocouple module into the

PXIe chassis. Normally, there would be more modules hooked up to the PXIe during a

real test, but for my purposes, I started small.

Installing NI Linux Real-Time

Once I installed everything, it was time to change the operating system from

Windows to NI Linux Real-Time. One of my coworkers gave me a USB with NI Linux

Real-Time to boot from. However, when I went to boot from USB, there was no option

for what I wanted to do in the BIOS setup. I looked up what PXIe chassis are compatible

with NI Linux Real-Time, and found that the one I had was not compatible. I learned my

first lesson of this project: always check to make sure what you have is compatible with

what you are trying to do. So, I grabbed a chassis that I checked was compatible with NI

Linux Real-Time and installed the modules onto that one instead. With the new chassis,

I was able to boot from the USB with the right operating system and was able to get

started writing LabVIEW. I used OPKG to download the ZMQ library, and then I was off

to coding.

Starting Small

To familiarize myself with LabVIEW, I started with the simple task of taking strain

from one channel before moving on to more complex concepts. Instrumentation like

strain gauges were new to me, but luckily with background knowledge from my circuits

class, I could understand them in no time. In LabVIEW, DAQmx is one of the ways we

can control our devices. There were settings for setting up DAQmx for strain gauges

that I did not know how to set. Were we using an external or internal voltage source?



8

What type of bridge configuration do the strain gauges have? What are the values for

the lead wire resistance, and voltage excitation? I asked my coworkers and found that

we used an internal voltage source and strain gauges with a quarter bridge

configuration. However, the rest of the values were variable between strain gauges. We

use a database that keeps up with the different values for the different gauges we use.

So, for my initial testing, I hardcoded the values that were variable. I set the DAQmx

Create Virtual Channel node to take strain gauge from one channel. Once I

accomplished this, it was time to move on to taking strain from multiple channels.

Multiple Channels

For multiple channels, I had to create a loop that would add the new virtual

channel to the previous list of virtual channels. Once I was able to do this, I felt it was

time to take the variability of values into account. One of the issues I ran into was VI’s

that were supported on Windows but not supported on Linux Real-Time. One of these

toolkits is the Database Connectivity toolkit. So, in the meantime, I created a CSV file to

parse through and pull values from. Once I got the values out, I needed to figure out

how to have the DAQmx Create Virtual Channel VI read them in. The data types of the

variables wired in were important, and not readily apparent to me then. To start, I

created a cluster with all of the setting values and wired it into the node. I found that I

could not simply wire a string input into the node, but that the value the node wanted

was an integer. I eventually found the corresponding codes by reading NI’s

documentation. The code for “Internal'' was 10200 and the code for “Quarter Bridge II''

was 10272. With the settings wired correctly, I could take data from the strain gauges.

Once I had an understanding of taking data from strain, it was fairly easy to add in



9

thermocouples and CLTSs, though I only had one CLTS to work with. I added a column

to the CSV file that would indicate what type of sensor it was and then added a case

structure that would choose what type of channel to create based on the input. The

program would then loop, and each time add the sensor’s virtual channel to the

pre-existing list of virtual channels. For the CLTS, I set the channel to read resistance,

since CLTS is not pre-set in LabVIEW. From this resistance, we would be able to

calculate the temperature ourselves. Despite having only one CLTS, I ensured my

program would be scalable to add more.

A strain sensor comprises a metal grid pattern on conductive foil. Two leads are

attached to the gauge, and a current is sent through. When a gauge experiences

compressing or stretching, the gauge changes in resistance. The measured change in

resistance can be used to calculate the strain. See Figure 1 for an example of the

output of six channels of strain. For the strain example, I bent a pliable metal plate with

two three-wire strain gauges up and down. The data, which is in microstrain, dips below

zero, then dips above zero as I bent the metal plate in the opposite direction.



10

Figure 1. Six Channels of Strain Data

A thermocouple is a sensor composed of two wires of dissimilar metals. The two

wires are bound together to form a junction. When this junction is heated or cooled, a

voltage is induced which can be used to calculate the temperature. See Figure 2 for an

example output of a 4-channel Thermocouple reading. The thermocouple read the room

to be about 20° Celsius, which is because the thermocouples were placed closer to the

chassis area where fans cool the equipment off.



11

Figure 2. Four Channels of Thermocouple Data

A CLTS sensor is primarily used to measure temperatures below -150°. It is

similar to strain in that it measures resistance. The CLTS’s resistance was about 192

Ohms, which when I used our equation to convert to Celsius yielded 77.52° Fahrenheit

or 25.29° Celsius. The difference of 5° degrees Celsius can be attributed to the CLTS

not being placed close to the fans like the thermocouples were.



12

Figure 3. One Channel of CLTS Data

Writing to Binary Files

After collecting the data, it must be recorded to a binary file. However, when I

wired an array of data to the Write to Binary File VI, my file was larger than I expected. I

went through and converted the values back to what I expected them to be, and the

data matched what was being displayed by the program, but there were still extra

values. Eventually, I realized that the extra values indicated the size of the array of

sensor data. To deal with this, instead of building an array, I converted the values to

strings and concatenated them together for each loop iteration. Once all of the values

were concatenated, when I translated the binary file into a readable format, I did not get

any extra bytes, and everything read like it was supposed to.



13

Using ZMQ

Now that I had completed data acquisition and data logging, it was time for the

real challenge: integrating ZMQ into LabVIEW. Using shared object libraries on NI Linux

Real-Time presented more challenges than on Windows, especially since I had

previously been more accustomed to working with Windows machines.

The documentation I found online for accessing shared object libraries would work for

Windows systems, not NI Linux Real-Time. On Windows, LabVIEW will automatically

create functions based on the header file that accompanies the .dll file. However, it does

not do this for Linux .so files. So, I had to manually create all of the functions which

means I also had to interpret data types from C into LabVIEW data types. For most of

the values, it was fairly straightforward. I had trouble figuring out what datatype a void

pointer should be. Looking at NI’s documentation, I eventually settled on a 32-byte

integer (Supported Data Types for the Import Shared Library Wizard 2023). So, I initially

set up the program to send data. I used zmq_context to create a context and

zmq_socket to create a socket. Then, I fed the socket into zmq_connect which would

connect to the IP address of the broker. The zmq_connect function was set to publish.

Then, I connected the socket to zmq_send to begin sending data.

One of the biggest mistakes I made during this time was using the wrong function

with Call Library Function Node. I mixed up zmq_msg_send and zmq_send. I had been

using zmq_send, but using the function parameters for zmq_msg_send instead. With

zmq_msg_send, it sends a message of zmq_msg_t type, and it just needs the socket

and the flag. For zmq_send, it is given a pointer to a buffer variable and the length of

the message the buffer is pointing to. It also requires the socket and flag argument



14

(ZMQ API reference). The program was not sending any messages to the existing ZMQ

broker. I was curious if that flag I had set was incorrect. So, I adjusted what I thought

was the flag argument in zmq_msg_send and set it to five. Suddenly, it was sending five

bytes of data. I thought that was strange, so I set it to ten. Once again, it was sending

ten bytes of data. At first, I thought that the function itself was messed up and that the

flag argument was misnamed. However, I realized that I had been looking at the wrong

function for parameters. Once I figured out that I was using the wrong function

parameters, I made sure to use the correct function prototypes, and everything started

to work as intended. The broker began to receive messages with the data.

When I finally got the program to properly send data, it seemed that all I had to

do was create a different socket for subscribing, and setting the zmq_connect flag to

subscribe. This was not the case, as one of the parameters in the zmq_recv function is

a void pointer, which contains the message. I ran into some issues with this and

encountered memory issues within LabVIEW. The program started to crash frequently

and it was not receiving any messages. Eventually, I found that LabVIEW has built-in

manager functions that assist with allocating and deallocating pointers. I used

LabVIEW’s DSNewPtr function to create a pointer to feed into the zmq_recv function

and then copied the pointer's value into a string. From there, I could parse the message

to find out the type of message and the data in the message.

Implementing State Machines

Once I got the program to send/receive messages and acquire data, it was time

to create the various states. After reviewing NI’s documentation for state machines, I

used case structures (Application Design Patterns: State Machines 2023). The first



15

state created the socket and context to connect the subscriber and publisher. It was

also here that I initialized the queues that would share data between states that were

running at the same time. The next state receives the CSV files necessary to set up the

virtual channels. Once the channels are set up, there will be three states going forward:

the heartbeat state, the command receive state, and the data acquiring state. In the

heartbeat state, the program will use zmq_send to send status messages to the broker.

The command receive state will receive commands, parse them, and then add what

command needs to be executed to a queue that will tell the data-acquiring state what to

do. The data acquire loop uses a case structure to determine what to do based on what

comes through the queue. If no command has been received, the data-acquiring state

will stay idle. Once a start message has been received through the queue, the program

will use the virtual channels that have been set up to take data. The data is saved into

two different queues: the storage queue and the sending queue. If an exit command has

been received, all states will stop execution and move to a shutdown state, where

pointers will be de-allocated, zmq_close will destroy the socket, and zmq_ctx_destroy

will destroy the context.

Once these states were working, I added variable rates for acquiring and

sending. The program receives these rates in Hz from the broker, converts them to

milliseconds, and uses the Wait (ms) function to ensure the loops follow the data rate

given. If 100 Hz is given, the program will convert it to 10 ms, and then the loop will wait

10 ms, execute the loop, wait 10 ms, execute the loop, and so on. The data will be

acquired faster than is sent or stored. For example, the program can take data and

store data in a buffer at 25,000 Hz but only send data every 100 Hz. This means that if



16

an event occurs, the user can send a trigger command, which will dump the buffer into a

file to be analyzed later.

Finalizing My Code

It was at this point, where everything was working together, that I decided it was

time to make passes through my code to make it better. I was able to meet with a

LabVIEW expert who guided me through LabVIEW standards of coding and how to

refactor some of my code to increase its readability. For instance, everything in your VI

should generally fit on one screen without scrolling. Before this, I had to scroll in both

the X and Y directions in order to look at all of my code. To get your code to fit in one

screen and be tidy, it is important to create sub VI’s of tasks that can be repeated by

multiple different portions of the code. I had sub VI’s for acquiring data since the

program would be acquiring multiple different types of sensors at different times so the

acquiring code could easily be reused. I also split the code into VI’s based on state as

well.

So, I started going through my code and splitting items into subVI’s. I color-coded

the subVI’s based on their function. Helper functions like converting timestamps into the

format we were using were yellow. SubVI’s that were for ZMQ were green. SubVI’s for

general states were blue. I cleaned my wires so the eyes could easily follow the

program's execution. This also greatly helped with debugging, since everything was

partitioned, it was a lot easier to find the error. For example, I could check which subVI’s

finished their execution and which didn’t to find what was causing a program to crash.

For each subVI I created, I would also add a description of each input and output so that future

users would have a basic understanding of how to use them. I also ensured that my code had



17

plenty of comments to indicate why I was doing what I was doing. Finally, I had code that not

only fit the requirements but was much easier to read and understand.

Conclusion

Before this project, I had little experience in combined hardware and software

systems. However, once I got acquainted with LabVIEW’s DAQmx functions and the

types of sensors we used, implementing simple code to take data became a breeze.

The hard part, I soon found out, was using the Call Function Library Node in LabVIEW

to call on the ZMQ shared object library file on the PXIe machine. Once I figured out

how to call ZMQ functions, it was finally time to combine all of the pieces. I was able to

create a prototype that fit all of the requirements given to me. As we transition to NI

Linux Real-Time, future development will be able to continue from where this project

has ended.



18

References

Application design patterns: state machines. (2023, November 6). NI.

https://www.ni.com/en/support/documentation/supplemental/16/simple-state-mac

hine-template-documentation.html

Introduction to NI Linux Real-Time. (2023, June 1). NI.

https://www.ni.com/en/shop/linux/introduction-to-ni-linux-real-time.html#section-2

079855842

Supported Data Types for the Import Shared Library Wizard - NI. (2023, July, 17).

https://www.ni.com/docs/en-US/bundle/labview/page/supported-data-types-for-th

e-import-shared-library-wizard.html

ZMQ API reference. (n.d.). https://libzmq.readthedocs.io/en/latest/


	Development of MSFC ET-30s Next Generation of the Structural Load Test Measurement Acquisition System using LabVIEW
	Recommended Citation

	tmp.1721150282.pdf.7kNZz

		2024-04-25T17:40:51-0500
	Sean M Lane




