
University of Alabama in Huntsville University of Alabama in Huntsville 

LOUIS LOUIS 

Honors Capstone Projects and Theses Honors College 

5-2-2024 

Remote Control Canine Remote Control Canine 

Tashler Dane Greene 
University of Alabama in Huntsville 

Follow this and additional works at: https://louis.uah.edu/honors-capstones 

Recommended Citation Recommended Citation 
Greene, Tashler Dane, "Remote Control Canine" (2024). Honors Capstone Projects and Theses. 890. 
https://louis.uah.edu/honors-capstones/890 

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for 
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS. 

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/890?utm_source=louis.uah.edu%2Fhonors-capstones%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages


Remote Control Canine
by

Tashler Dane Greene

An Honors Capstone
submitted in partial fulfillment of the requirements

for the Honors Diploma
to

The Honors College

of

The University of Alabama in Huntsville

May 2, 2024

Capstone Project Director: Dr. Earl Wells

________________________________________________
Student Date

________________________________________________
Project Director Date

________________________________________________
Department Chair Date

________________________________________________
Honors College Dean Date

Mobile User
Tashler Greene

Mobile User
5/5/24

5/5/24



Remote Canine Control 1

Honors College Frank Franz Hall
+1 (256) 824-6450 (voice) +1 (256) 824-7339 (fax)

Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or
Certificate from The University of Alabama in Huntsville, I agree that the Library of this
University shall make it freely available for inspection. I further agree that permission for
extensive copying for scholarly purposes may be granted by my advisor or, in his/her
absence, by the Chair of the Department, Director of the Program, or the Dean of the
Honors College. It is also understood that due recognition shall be given to me and to The
University of Alabama in Huntsville in any scholarly use which may be made of any
material in this thesis.

___________________________

Student Name (printed)

___________________________

Student Signature

___________________________

Date

Mobile User
Tashler Greene

Mobile User
5/5/24



Remote Canine Control 2

Table of Contents

Abstract 3

Introduction 3

Originality and Importance 4

Process 5

Self-Assessment and Lessons Learned 11

Conclusion 11



Remote Canine Control 3

Abstract

My Honors Capstone project was to create a covert system that can attach to a military

working dog and can securely send real-time video feed from the dog’s perspective to an

Android application used by the handler. The project utilizes a Raspberry Pi Zero 2 W to send

the video over Bluetooth connection. This paper outlines the process and challenges encountered

during the system's development, detailing configuration settings, testing methodologies, and

numerous instances of error correction. Serving as a comprehensive guide, this paper addresses

the lack of documentation found in online sources, offering valuable insights for interfacing with

legacy technology. It also provides a valuable resource for future projects involving Bluetooth

technology or video transmission.

Introduction

Have you ever wanted to create a security camera or know how one works? Have you

ever wanted to build a system that can stream live video using cheap parts? The paper discusses

the process and challenges encountered while attempting to build a system that can stream live

video between a Raspberry Pi Zero 2 W and an Android phone over Bluetooth. This project

aimed to enhance a system created for radio frequency transmission of commands between a

military working dog handler and their dog by adding the functionality of streaming live video.

This paper could serve as a valuable resource for individuals undertaking projects related to

video transmission or Bluetooth technology. It could also be of relevance to anyone working on

surveillance technology or wireless communication protocols.



Remote Canine Control 4

Originality and Importance

The originality and importance of the work that I completed for this Honors Capstone

project are tied to the product that the work enhances. My Senior Design group’s project is

Remote Canine Control, where we have created a system that allows a military working dog

handler to covertly send commands and receive status information via radio frequency

communication from a system attached to a military working dog that can be one hundred meters

away and totally obscured. The handler is able to use an Android application to select commands

and view status information such as GPS, battery levels, and signal strength.

My Honors Capstone project was to create a system that can attach to a military working

dog and send real-time video feed from the dog’s perspective to the Android application used by

the handler. Both the Senior Design project and my Honors Capstone project are based around

building systems that send information in ways that are already available and widely used, but

using secure and covert procedures. There are very few, if any, devices that send and receive live

video footage in a covert manner via Bluetooth. The work is also important because it could lead

to better and more secure communication techniques for the military, and provide more options

for military working dog handlers to choose from in the field.



Remote Canine Control 5

Process

Acquisition of Hardware

The beginning of this project was the acquisition of the hardware. I asked Dr. Emil

Jovanov to purchase a Raspberry Pi Zero 2 W, a Raspberry Pi Camera Module 3 - 12MP 120

Degree Wide Angle Lens, and a Raspberry Pi Zero Camera Cable Set by Arducam. Once I

received those pieces of hardware, I began researching how to interface with the Raspberry Pi

Zero 2 W. I realized that the Raspberry Pi Zero 2 W, which I had asked Dr. Jovanov to purchase,

did not include a microSD card, unlike many other models. The microSD card is used to flash

the operating system onto the Raspberry Pi, and without the microSD card, it is pretty much

impossible to get the Raspberry Pi functioning.

Configuration of Raspberry Pi Zero 2 W

Once I acquired a microSD card and adapter to be able to write to the microSD from my

computer, I was able to load the operating system onto the microSD and plug it into the

Raspberry Pi. When the Raspberry Pi is given power, it immediately checks to see if there is a

microSD plugged in to retrieve the operating system from. This meant that once I plugged the

microSD card that had the operating system on it and gave the Raspberry Pi power, the

Raspberry Pi would immediately load the operating system and begin working. I learned through

repeated attempts that certain features needed to be added to the microSD card before plugging it

into the Raspberry Pi. The most important of these features were enabling Secure Shell Protocol

or SSH with password protection and providing the Raspberry Pi with the network information

of the local network I wanted it to connect to. I had to do this so that the Raspberry Pi would be

accessible via SSH on my local network. I did not use a micro USB or a micro HDMI to be able

to write to and see the display of the operating system on the Raspberry Pi. Instead, I used SSH



Remote Canine Control 6

to access the Raspberry Pi and enable the Virtual Network Computing (VNC) server. From there,

I could use a third party application like RealVNC to see the display of and use the operating

system on the Raspberry Pi. Some other features I changed on the microSD before plugging it

into the Raspberry Pi were changing the hostname and setting the local settings like the time

zone. The hostname change made the Raspberry Pi easier to find on the network because when

scanning the local network with nmap, I could search for the name I choose, “dogvideo”, instead

of the specific IP address of the Raspberry Pi. The local settings change was important because

certain functions on the Raspberry Pi depend on the time zone and would not be reliable without

the correct information provided to the Raspberry Pi.

Testing the Raspberry Pi Camera Module 3

Once I had the Raspberry Pi Zero 2 W configured and accessible, it was time to test the

camera functionality. I connected the Raspberry Pi Camera Module 3 to the Raspberry Pi with

one of the camera cables that I requested at the beginning of the project. After the camera

module was attached to the microcontroller, I tried many different commands and encountered

many issues. Upon initial research, I was led to believe that the command “raspistill” would be

my best at testing the camera because the operating system I loaded onto the Raspberry Pi was a

Legacy version. The “raspistill” command is an older command dealing with Raspberry Pi

cameras. To use it, you need to allow the Legacy Camera to be used in “raspi-config”. One weird

issue that I never understood was that my command line “raspi-config” allowed me to toggle the

use of the Legacy Camera, but my desktop version on the Raspberry Pi did not give me the

option. Unfortunately, “raspistill” would only give me errors. I utilized many commands to

determine what was preventing me from using “raspistill”. One of these commands was

“vcgencmd get_camera”, which would allow me to see if the Raspberry Pi could see the camera



Remote Canine Control 7

module and if it could access it. After extensive research into why the errors that I was receiving

were appearing, I determined that I would not be able to use “raspistill”, but instead tried

“libcamera-hello”. Libcamera is a newer library that provides commands that replace the older

Raspberry Pi commands. Libcamera is mainly meant to be used on the newer operating systems,

but for some reason that was the only method that I could find that would allow me to access and

use the connected Raspberry Pi Camera Module 3.

Hotspot Connection

The next step in my process was trying to get the Raspberry Pi to connect to my mobile

hotspot so that I could work on the project anywhere, not just on the initial local network that I

set it up with. My process for this was powering the Raspberry Pi off, removing the microSD,

rewriting the operating system to the microSD with the network information for my mobile

hotspot, restarting the Raspberry Pi with the new operating system, and waiting for it to connect.

Unfortunately, the Raspberry Pi would never connect to the mobile hotspot. I learned later that

there was a faster way to change the network information on the Raspberry Pi, which was by

editing the file “/etc/wpa_supplicant/wpa_supplicant.conf” using “sudo nano”. I did attempt to

use this method, but never had any luck with it, so I stuck to rewriting the operating system,

since I knew that it worked when connecting to my local network.

Corrupt microSD

While attempting to connect the Raspberry Pi to my mobile hotspot, I made the grave

error of using Windows Disk Management to delete the content of the microSD that I was using

for the Raspberry Pi. I mistakenly deleted all partitions on the microSD, leading to the microSD

becoming corrupted and unwritable. I spent time researching how to recover the corrupted



Remote Canine Control 8

microSD card, but after many hours, determined it would be a better use of time to buy a new

one to continue my progress on the project.

Camera Issues

AFter setting up the Raspberry Pi with the new microSD card, I tested my system with

“libcamera-hello” and, to my surprise, I did not get the same results that I had previously. Now,

my Raspberry Pi was not presenting errors to me, but would try to preview the camera’s view

and would only show a black screen. When attempting “libcamera-vid”, it seemed that the

camera would flash between a black screen and the same image, even if I moved the camera to a

different perspective. I researched this newfound issue, but found no documentation of the issue.

I decided that instead of trying to focus on fixing a new issue that had no documentation, I would

move on to a different aspect of the project and return to the camera issues at a later date.

Data Transmission

I then shifted my focus to data transmission, a critical component for the project’s

success. I began researching different video formats and what might be my best bet, but realized

that after running into so many issues already, it may make more sense to focus on just sending a

string of text between the Raspberry Pi and the Android device. I started searching for example

projects online and code that may be similar to the code I would write.

I wrote a program for the Raspberry Pi to act as a Bluetooth server and a program for the

Android device to act as a Bluetooth client. The Raspberry Pi would find the already established

Bluetooth connection with the Android device and begin continuously sending strings to the

Android device. The strings counted from one to ten so that I would be able to see the constant

change in strings on the Android application or the lack thereof which would lead me to another



Remote Canine Control 9

issue in that case. Unfortunately, this is where a lot of progress ended. I ran into severe problems

with the Bluetooth data transmission.

I used an older Android phone for my project because of convenience and backward

compatibility, but this inevitably led to many problems. A friend of mine had an older Android

phone that I could borrow and I decided to use that for the project because, theoretically, if I

could get the program to run on an older phone, it would work for any Android device that was

produced after the phone I was using. This proved to add a challenge to my work because the

older Android device runs on Android Lollipop which is Android’s fifth iteration of their

operating system. To put that into context, the current Android phones are running the thirteenth

iteration, so there are a lot of differences. When trying to load my application onto the older

phone, I received errors saying the Application Programming Interfaces, APIs, and Software

Development Kits, SDKs, for the Android application were too high to run on the older Android

device I was choosing to use for my project. This meant that I wrote my code for a newer

operating system and it would not work on the older device.

Once I fixed this problem, I loaded the application onto my device and began testing it.

The code that would allow me to connect the devices or check the already established connection

required a permissions called “BLUETOOTH_CONNECT”. When checking if the permission

was allowed in my code, I would receive errors saying that the device did not allow the

permissions. After looking through the errors I was receiving, I found that this permission was

not in existence when Android Lollipop was created, so the device did not know what permission

to check and would always return that the permission was not allowed. This put an end to my

progress, because I was unable to find a way around enabling “BLUETOOTH_CONNECT”,



Remote Canine Control 10

which meant the program would never fully run or receive the incoming text from the Raspberry

Pi.

Before I figured out that the issue was my permission check, I spent a lot of time

researching how to write the program for the Raspberry Pi differently. I was a lot more confident

in my Android application code because I had just recently been programming for an Android

application project. I learned a lot about the different ways of transmitting data over Bluetooth,

like using pybluez or “tee /dev/rfcomm0”. I even considered writing the Raspberry Pi Bluetooth

server in java, but after some more research decided that the coding language did not impact the

problems I was running into.

After the many problems that I ran into, I was unable to find a work around for the

problem of data transmission. I considered purchasing a cheap, newer Android device, but with

the time constraints I was facing, it did not seem like a worthwhile decision. The time spent

fixing the many other problems I faced depleted the time that I had and led to an inability to

finish the project.



Remote Canine Control 11

Self-Assessment and Lessons Learned

Considering the resources and time available, I made significant progress on the project. I

ran into many issues and with little documentation of these issues or their solutions, it consumed

my time fixing them. I would have liked to dedicate more time to the project and am considering

pursuing the end result after graduation.

I recommend that anyone working on a similar project or continuing mine be prepared for

numerous obstacles. Tons of research upfront will alleviate obstructions and mistakes made, but

there are only so many issues that can be predicted and prepared for. I would suggest utilizing

online resources and YouTube videos because there is a lot of documentation on small DIY

projects that are similar to this one.

Conclusion

While the project is definitely achievable, it presented many challenges and required

extensive learning about data transmission and Bluetooth technology. I utilized an exorbitant

amount of research and time to make the progress that I did, but this project definitely requires

more. In the future, I hope to continue this project and make the final product that was intended.


	Remote Control Canine
	Recommended Citation

	Honors Capstone - Tashler Greene

		2024-05-07T10:28:03-0500
	Sean M Lane


		milenka@uah.edu
	2024-05-05T17:53:12-0500
	Aleksandar Milenkovic




