
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

4-23-2024

Volume Ray Casting for Special Effects Volume Ray Casting for Special Effects

Jesse Cole Rheal
University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Rheal, Jesse Cole, "Volume Ray Casting for Special Effects" (2024). Honors Capstone Projects and
Theses. 911.
https://louis.uah.edu/honors-capstones/911

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/911?utm_source=louis.uah.edu%2Fhonors-capstones%2F911&utm_medium=PDF&utm_campaign=PDFCoverPages

Volume Ray Casting for Special Effects

by

Jesse Cole Rheal

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma

to

The Honors College

of

The University of Alabama in Huntsville

4/23/2024

Honors Capstone Project Director: Dr. Timothy Newman

Student (signature) Date

__

Project Director (signature) Date

Department Chair (signature) Date

Honors College Dean (signature) Date

4/23/2024

mailto:newmant@uah.edu
tnewman
Typewriter
Timothy S. Newman

tnewman
Typewriter
4/24/2024

Honors College

Frank Franz Hall

+1 (256) 824-6450 (voice)

+1 (256) 824-7339 (fax)

honors@uah.edu

Honors Thesis Copyright Permission

This form must be signed by the student and submitted with the final manuscript.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or

Certificate from The University of Alabama in Huntsville, I agree that the Library of

this University shall make it freely available for inspection. I further agree that permission

for extensive copying for scholarly purposes may be granted by my advisor or, in his/her

absence, by the Chair of the Department, Director of the Program, or the Dean of the Honors

College. It is also understood that due recognition shall be given to me and to The University of

Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

Jesse Rheal .

Student Name (printed)

Student Signature

Date

4/23/2024

Table of Contents

Dedication..4

Abstract..5

Introduction... 6

Chapter 1: Volume Rendering Approach.. 8

Data Representation..8
Gradient Algorithm...9
Image-Order Technique... 10

Chapter 2: Ray Casting Pipeline.. 11

Ray Sampling...11

Voxel Interpolation..11

Sample Point Lighting.. 12

Ray Composition..12

Chapter 3: Technology Used..14

Languages... 14
Libraries... 14
Hardware... 14

Chapter 4: Results.. 15

Chapter 5: Performance... 16

Benchmarks...17
Conclusion...19

Reference List..20

Dedication

To my father who always encouraged me to do more.

Abstract

The techniques that fall under volume rendering, such as volume ray casting, have been

widely used to visualize three-dimensional medical scan (e.g., CT scan) data. Furthermore, in

entertainment media, they've sometimes been used as part of processes that simulate

environmental effects such as clouds, fog, and sunbeams. Key findings from our project, which

explores computational efficiency issues for volume ray casting, are described here. The project

uses a framework based on OpenGL, a popular API for programming graphics processors. The

report here focuses on differences in performance between the CPU and GPU when performing

ray calculations. Results indicate that on average the GPU implementation was 7.18 times faster

than the multithreaded CPU implementation and 59.3 times faster than the best single-threaded

CPU implementation.

Introduction

Volume ray casting uses rays to render translucent, three-dimensional points in space. It is

different from rasterization which transforms vertices into–typically opaque–surfaces by lighting

pixels within the bounds of the vertices, whereas volume ray casting determines every pixel’s

value by sending rays through the scene. It is also different from ray tracing, a method of

realistically rendering surfaces of objects by simulating the movement of light though spawning

secondary rays from rays that collide with objects. Volume ray casting is concerned with

rendering volumes as transparent structures, not just their surfaces; it doesn’t simulate the

movement of light; in other words, it doesn’t spawn secondary rays.

The class CS445, Intro to Computer Graphics, was used as the basis for this project. The

class covered the history of graphics techniques that developed from the first drawing program,

Ivan Sutherland’s 1963 Sketchpad, to the modern day [1]. In the class, graphics programs were

written in C++ and OpenGL to learn techniques such as transformations, projection, lighting,

blending, et cetera. The aforementioned techniques were critical in this project’s development,

but volume rendering topics were not covered.

Therefore, research outside of the classroom on volume rendering techniques was

imperative. Volume ray casting works by sampling, interpolating, and lighting points along rays

that move through the scene and somehow compositing those points into final pixel values. The

techniques to achieve volume ray casting include gradient calculation, image-order and

object-order, composition, and transfer functions. Firstly, the gradient is a vector that indicates

the magnitude and direction of change in a dataset [2]; it is used in place of a normal vector in

traditional raster rendering. Image-order means that the rays propagate out of the screen towards

the scene, and object-order means rays start from the scene and move towards the screen [3].

Compositing is the method of collapsing the ray into a final value [2]. Finally, transfer functions

map dataset values to color values [3], however they were not used in this project. That covers

all the volume ray casting techniques that were used in this project.

Chapter 1: Volume Rendering Approach

The natural complexity of volume rendering has led to many techniques being developed

over the years. There are more decisions to be made on how to represent a volume on a

two-dimensional surface as opposed to representing solid primitives. This chapter outlines three

key decisions made for this project which include data representation, gradient algorithm, and

image-order technique.

Data Representation

In volume rendering, the underlying data being rendered can represent many things. A

popular use case for volume rendering is for visualizing medical data [3]. Different medical

imaging machines–such as MRI, CT, and PET–output three, or even four, dimensional data. The

data represents properties of the imaged object. Those properties can be anything such as density,

heat, color, or pressure.

The data’s underlying property in this project is ambiguous as it is not real data. For all

intents and purposes, the property can be thought of as brightness. Indeed, the scalar property

represents the red, green, blue, and alpha values of the voxels equally. Therefore, lower values

are darker and more transparent than lighter values.

Furthermore, the data in this project is said to be isotropic; each data point is equally

spaced along three orthogonal axes [3]. This simplification provides many benefits. For one, the

positional part of the data is not explicitly stored in memory. Instead, the position of the voxel is

derived from its position in the buffer. Each voxel is mapped to an integer position in three

dimensional cartesian coordinates. Another benefit is that it’s quite simple to find the nearest

voxels given an arbitrary floating point position in three dimensional space. A single rounding

operation and a couple of integer additions are all that are needed. Interpolation of voxel values

also becomes much simpler which is discussed in Chapter Four.

Gradient Algorithm

Lighting a surface in graphics must take into consideration which way the surface is

facing. This is normally done with the normal, a unit vector that is orthogonal to the planar

surface. However, in my implementation of volume rendering, there are no surfaces. Instead,

there are single points in space. The gradient represents how a point is oriented given

information about its neighbors. More specifically, it is the change in the property value along

each orthogonal axis represented as a unit vector.

The algorithm for the gradient used in this work is called the central difference gradient

estimator [2]. It is a cheap and simple way of calculating the gradient.

A gradient vector as defined by Lichtenbelt follows:𝑔

𝑔
𝑥

= 𝑓(𝑥 − 1, 𝑦, 𝑧) − 𝑓(𝑥 + 1, 𝑦, 𝑧)

𝑔
𝑦

= 𝑓(𝑥, 𝑦 − 1, 𝑧) − 𝑓(𝑥, 𝑦 + 1, 𝑧)

𝑔
𝑧

= 𝑓(𝑥, 𝑦, 𝑧 − 1) − 𝑓(𝑥, 𝑦, 𝑧 + 1)

“Where is the value of the voxel at position in the data set” [2]. The vector is𝑓(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧)

then normalized. The gradient vector is used in lieu of a normal vector in lighting calculations.

Image-Order Technique

For every pixel on the drawing canvas, there is a ray associated with it. The ray projects

from the screen into the scene while sampling values at regular intervals. Those values are then

summed to become the color of the ray’s associated pixel. This method is a subset of the

image-order techniques called x-ray rendering [3].

There is no global illumination. In other words, the program makes no attempt to

simulate how light moves through the volume. Instead, each sample point only takes into account

the value at the point, its gradient, and the light. Each sample point is said to be locally

illuminated. This technique results in less appealing special effects, but it is much more

performant.

Chapter 2: Ray Casting Pipeline

This chapter outlines all the steps taken to go from three-dimensional data to colors on

the screen. Those steps include ray sampling, voxel interpolation, sample point lighting, and ray

compositing.

Ray Sampling

A ray is a point that has a direction vector. Each pixel on the canvas has an associated ray.

The ray starts at the pixel’s position in world coordinates. Then, the ray moves in the direction

the viewer is looking while sampling points at a regular rate. Each ray moves parallel to each

other which results in an orthographic viewing projection.

Voxel Interpolation

When the ray samples a point, the point is a floating point vector that doesn’t have an

associated property value or gradient. Both need to be interpolated from surrounding voxels.

There are many different ways to interpolate said values. Some techniques include nearest

neighbor, bilinear interpolation, trilinear interpolation, et cetera.

The technique used in this work is known as Barycentric interpolation. In Bán’s words,

“Barycentric interpolation on an n-dimensional simplex is a linear combination of the vertices

where the weights sum to one” [4]. A simplex is a polytope with the smallest number of vertices

possible in its dimension. Simply put, a simplex in two dimensional space is a triangle, and a

simplex in three dimensional space is a tetrahedron. Therefore, doing Barycentric interpolation in

three dimensional space assumes interpolation between four vertices which make up a

tetrahedron. However, each voxel is made of eight vertices. In order to do Barycentric

interpolation, each voxel must be broken down further into six mutually exclusive tetrahedra.

The tetrahedron the sample point is inside of can be determined through inequality conditions

where x, y, and z are localized floating-point–between 0 and 1–coordinates of the sample point:

𝑥 > 𝑦, 𝑦 ≥ 𝑧, 𝑧 ≥ 𝑥

Once the tetrahedron is determined, it becomes a matter of breaking the problem down

into a system of linear equations. Once those linear equations are solved, what’s left are four

non-negative real values that add up to one. Each value is a Barycentric weight which determines

how much of each vertex of the tetrahedron to use. The weights multiply the vertex attributes to

determine the interpolated property value and gradient of the sample point.

Sample Point Lighting

Once the property value and gradient of the sample point are determined, they are used in

a Blinn-Phong lighting calculation. The Blinn-Phong lighting model is arguably the most popular

model used in computer graphics. It is a combination of lighting properties including ambient,

diffuse, and specular [1]. Ambient light is light that affects every surface evenly no matter the

direction the object is facing. Diffuse lighting is light that reflects equally in all directions which

takes into account the orientation of the object. Finally, specular lighting is light that is more

intense when the viewer is looking directly at it.

Ray Composition

After each sample point’s color has been determined via Barycentric interpolation and

Blinn-Phong lighting, each value is simply summed along the ray to become the final pixel color

value on the canvas. As stated earlier, this results in an x-ray-like model. It most closely

resembles how x-ray data is rendered [3]. For more realistic special effects, a better model would

take into consideration how light moves about the volume.

Chapter 3: Technology Used

Languages

The project utilizes C++ and GLSL for its programming languages. C++ is a systems

language known for its performance and low level capabilities. GLSL stands for OpenGL

Shading Language and is used for writing code that runs on GPUs.

Libraries

The libraries include GLEW, GLUT, GLM, and “siv::PerlinNoise.” GLEW, the OpenGL

Extension Wrangler Library, is used for OpenGL bindings. GLUT, the OpenGL Utility Toolkit, is

used for general input and output with the user’s devices. GLM, OpenGL Mathematics, is a

useful mathematics library for vector and matrix manipulation that closely follows GLSL syntax.

Finally, “siv::PerlinNoise” is a single header perlin noise generator.

Hardware

All benchmarking was done with a Radeon RX 580 8GB GPU and a Ryzen 5 2600 CPU

on Ubuntu 22.04.3 LTS.

Chapter 4: Results

The scene rendered is data points of three-dimensional Perlin noise. The cube is603

scaled up by a factor of 4 by having each ray spaced 0.25 units apart in both the x and y

directions. Different sample rates were taken to see differences in quality and performance.

64 Samples Per Ray 128 Samples Per Ray

256 Samples Per Ray 512 Samples Per Ray

Figure 1: The results

Chapter 5: Performance

Per-fragment ray calculations that were being computed on the CPU were rewritten to be

computed on the GPU. Tests were performed on both implementations where both had to render

frames, or 1 second worth of video, where each frame is 400x400 pixels. As stated earlier,60

each pixel or fragment has an associated ray calculation. Therefore, each frame consists of

160,000 ray computations.

How many sample points a ray calculates depends on the sample rate. Sample rate in this

context means that for a sample rate of , a sample is taken every unit length of distance1 1

stepped along the ray. Multiple sample rates were tested including 0.5, 1, 2, and 4. For these

rates, each ray calculates 64, 128, 256, and 512 points respectively because each ray has a

constant length of 128. If each ray calculates 128 sample points, then 20,480,000 sample points

must be computed for a single frame.

What makes up a sample point computation depends. If the sample point is completely

outside the volume, it simply returns no color value. Otherwise, it must do Barycentric

interpolation and then do a Blinn-Phong lighting calculation to determine its value.

From worst to best performance: CPU without optimization, CPU with 02 optimization,

CPU with 03 optimization, CPU with multithreading, and GPU. Graph 1 shows the mean FPS of

each implementation on a logarithmic scale. As expected, the GPU outperforms all other

implementations by a wide margin. However, the multithreaded version works quite well as a

substitute if one doesn’t care about real time performance.

Graph 2 shows the speed up factor of each implementation versus the best single threaded

implementation, CPU with 03. Each implementation increases performance by roughly a

magnitude of one. At the very least, this shows that compiler optimization should be used when

possible if performing heavy computations. Of course, any computations that can be parallelized

will benefit greatly from multithreading or GPU processing.

Benchmarks

● cpu: gcc without optimization

● cpu02: gcc with -02 optimization

● cpu03: gcc with -03 optimization

● multi: gcc with multithreading, 64 threads was found to be optimal

● gpu: GLSL implementation

Graph 1: Mean FPS

Graph 2: Speedup Factor

Conclusion

Volume ray casting is a niche area of an already niche field of Computer Science. Still,

there are many implementations of volume ray casting. The combination of methods used in this

paper to produce rendered volumes is merely one approach out of a myriad of approaches.

However, this project’s approach is one of the most straightforward ones. The reason for its

simplicity is twofold. Firstly, for a glimpse into the world of ray casting, and secondly to deepen

my understanding of topics learned in class.

Furthermore, this paper shows how well GPUs perform on applications where the

computations are easily parallelizable. It just goes to show that domain specific architectures

should be utilized to their fullest potential especially in applications with heavy computations. It

only makes sense to write code for the architecture where that code will see the greatest

performance increase.

Reference List

[1] S. Guha, Computer Graphics through Opengl®: From Theory to Experiments:

Comprehensive Coverage of Shaders and the Programmable Pipeline. Boca Raton:

Taylor & Francis Group, 2019.

[2] B. Lichtenbelt, R. Crane, and S. Naqvi, Introduction to volume rendering. Upper Saddle

River, NJ: Prentice-Hall, 1998.

[3] C.D. Hansen and C.R. Johnson, “Ch. 7 Overview of Volume Rendering,” in The

Visualization Handbook, Amsterdam: Elsevier Butterworth Heinemann, 2005.

pp-127–174.

[4] R. Bán and G. Valasek, “Tetrahedral Interpolation on Regular Grids.” The Eurographics

Association, 2021. Available: https://doi.org/10.2312/egp.20211031 [Accessed April 9,

2024].

https://doi.org/10.2312/egp.20211031

	Volume Ray Casting for Special Effects
	Recommended Citation

	Rheal_Honors_Capstone

		2024-04-24T16:41:58-0500
	Sean M Lane

		2024-04-24T15:10:28-0500
	Letha Etzkorn

