Skip to main content
Log in

Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process

Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ultimate design values for a friction stir weld (FSW) are not based on the average strength, but the lowest strength or outlier. Thus, the robustness of the process could be ultimately increased by understanding and minimizing the sources of data scatter within the mechanical properties of a FSW panel. Internal voids are known to result in reduced strength, but are detectable using non-destructive evaluation (NDE). Other metallurgical discontinuities, such as internal oxides, are difficult to detect using NDE and are often blamed for random variations in the mechanical properties of FSWs. Current efforts to minimize internal oxides within a FSW nugget focus on cleaning of the workpiece surfaces prior to the FSW. This study proposes that internal oxides within FSW interiors may occur during the process and not from a redistribution of native oxides on the workpiece surfaces as commonly cited. Typical temperatures during FSWing of aluminum and its alloys are reported to be in the range of 0.7 to 0.9 the absolute melting temperature. At the upper limit of this range, the expected temperature is above 500 °C where the oxidation rate of aluminum changes from self-limiting parabolic to linear. At these temperatures, entrained air could enhance the oxidization of the freshly sheared surfaces and become trapped. In this study, a series of intentionally “hot” FSWs were made in three different thickness panels of AA2219 (0.95, 1.27, and 1.56 cm) at two different weld pitches. Microstructures from the as-welded FSW nugget showed thickened grain boundary regions. Cracks were observed in transverse sections of the FSW nugget after tensile tests. Electron microscopy found evidence of eutectic structures along grain boundaries. At the expected FSW temperatures, the eutectic temperature of 548 °C could be exceeded thereby causing localized melting. Thus in addition to oxidation of the freshly sheared surfaces, exposure of molten metal to air would also promote formation of internal oxides. Results from this study will assist in a better understanding of strength outliers in FSWs and provide methodology for minimizing their occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. B. Li, Y. Shen and W. Hu: MATLS & Design, 2011, 32, 2073–2084

    CAS  Google Scholar 

  2. H-B. Chen, K. Yan, T. Lin, S-B. Chen, C-Y. Jiang and Y. Zhao: Mat. Sci. Eng. A, 2006, vol. 433, pp. 64–69.

    Article  Google Scholar 

  3. H. K. Klages: Navy Postgraduate School, Monterey, CA, MS Thesis, December 2007.

  4. A.J. Leonard and S.A. Lockyer: Proc. 4th Int. Symp. FSW, Park City, Utah, May 14–16, 2003.

  5. H.J. Liu, Y.C. Chen and J.C. Feng: Scripta Mater., 2006, vol. 55, no. 3, pp. 231-234.

    Article  CAS  Google Scholar 

  6. A. C. Nunes, Jr.: MS&T Conf. Proc., ASM International, Cincinnati, OH. Oct. 15–19, 2006.

  7. D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877.

    Article  CAS  Google Scholar 

  8. Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hasimoto: Metall. Mater. Trans. A, 2001, vol. 32, no. 4, pp. 941-948.

    Article  Google Scholar 

  9. S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32, no. 12, pp. 3033-3042.

    Article  Google Scholar 

  10. Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C Park and H. Kokawa: Scripta Mater., 2004, vol. 50, no. 3, pp. 365–369.

    Article  CAS  Google Scholar 

  11. K.N. Krishnan: Mater. Sci. Eng. A-Struct., 2002, vol. 327 pp. 246–251.

    Article  Google Scholar 

  12. H. Larsson, L. Karlson, S. Stoltz and E.L. Bergqvist: 2nd Int. Conf. Friction Stir Welds, Gothenburg, Sweden, 2000.

  13. R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler: Sci. Technol. Weld Joining (2006) 11(6):657–665.

    Article  Google Scholar 

  14. H.J. Liu, H, Fujii, M. Maeda and K. Nogi: J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 103–105.

    Article  CAS  Google Scholar 

  15. X. Long and S.K. Khanna:Sci. Technol. Weld Joining, 2005, 10, 482–87.

    Article  CAS  Google Scholar 

  16. Y.G. Kim, H, Fujii, T. Tsumura, T. Komazaki, and K. Nakata: Mater. Sci. Eng. A-Struct., 2006, vol. 415, no. 1-2, pp. 250–254.

    Article  Google Scholar 

  17. K. Kumar, and S.V. Kailas: Sci. Technol. Weld Joining, 2010, vol. 15, no. 4, pp. 305-311

    Article  CAS  Google Scholar 

  18. P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Intl. Mat. Review, 2009, vol. 54, pp. 49-93.

    Article  CAS  Google Scholar 

  19. U. Alfaro-Mercado and G. Biallas: Proc. 12th Int. Conf. Al. Alloys, Sept. 5–9, 2010, Yokohama, Japan.

  20. G. Cao, S. Kou: Weld. J. Supp 11, 1s-8s, 2005.

    Google Scholar 

  21. J.T. Staley, R.F. Ashton, I. Broverman, P.R. Sperry: in Chapter 5, Aluminum Properties and Physical Metallurgy, J.E. Hatch, ed., ASM Internatioanl Publication, 1984, p. 135.

  22. J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen and B.W. Webb: Welding J., 2007, vol. 86, no. 4, pp. 97s - 103s.

    Google Scholar 

  23. J.A. Querin and J.A. Schneider: Welding J., 2012, 91, 76s-82s

    Google Scholar 

  24. J.A. Schneider, R. Stromberg, P. Schilling, B. Cao, W. Zhou, J. Morfa and O. Myers: Welding J., 2013, vol. 92, no. 1, pp. 11s-19s.

    Google Scholar 

  25. R.K. Hart: Proc. R. Soc. Lond. A. Math. Phy. Sci., 1956, 236, 68-88.

    CAS  Google Scholar 

  26. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: Thin Solid Films, 2002, vol. 418, no. 2, pp. 89-101.

    Article  CAS  Google Scholar 

  27. P.E. Doherty and R.S. Davis: J. Appl. Phys., 1963, vol. 34, no. 3, pp. 619-628.

    Article  CAS  Google Scholar 

  28. K. Thomas and M.W. Roberts: J. Appl. Phys., 1961, 32, 70-75

    Article  CAS  Google Scholar 

  29. A. Steinheil: Ann. Phys., 1934, vol. 19, pp. 465–483. NASA-TT-F-11905, English translation, 1968.

  30. M.A. Trunox, M. Schoenitz, X. Zhu and E.L. Dreizin: Combustion & Flame, 2005, vol. 140, pp. 310-318.

    Article  Google Scholar 

  31. J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, and A. Fernandez: J. Mater. Res., 1998, vol. 13, no. 3, pp. 703-710.

    Article  CAS  Google Scholar 

  32. W.W. Smeltzer: J. Electrochem. Soc., 1956, 103, 209-214.

    Article  CAS  Google Scholar 

  33. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijerc: J. Appl. Phys., 2002, vol. 92, pp. 1649-1656.

    Article  CAS  Google Scholar 

  34. E. Bergsmark, C.J. Simenen and P. Kofstad: Mater. Sci. Eng. A-Struct., 1989, vol. 120, pp. 91-95.

    Article  Google Scholar 

  35. W. Thiele: Aluminum, 1962, vol. 38, pp. 707-786.

    CAS  Google Scholar 

  36. C.N. Cochran, D.L. Belitskus and D.L. Kinosz: Metall. Mater. Trans. B, 1977, vol. 8, no. 1, pp. 323-332.

    Article  CAS  Google Scholar 

  37. Y-J. Oh, J-I. Mun and J-H. Kim: Surface & Coatings Tech., 2009, vol. 204, no. 1-2, pp. 141-148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Schneider.

Additional information

Manuscript submitted June 6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, J., Chen, P. & Nunes, A.C. Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process. Metall Mater Trans A 50, 257–270 (2019). https://doi.org/10.1007/s11661-018-4974-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4974-8

Navigation