Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Committee Chair

Robert Lindquist

Committee Member

John Williams

Committee Member

Emanuel Waddell

Committee Member

Richard Fork

Committee Member

Sivaguru Ravindran


Nucleotides., Microfluidics., Oligonucleotides--Synthesis.


The principle objective of this dissertation is the development of a microfluidic oligonucleotide (oligo) synthesis reactor that sequences oligos with equal quality to commercial synthesizers and with equal waste reduction to previously published microfluidic synthesizers. The microfluidic approach to oligo synthesis increases throughput due to parallelization, provides simplification by integration of multiple functions into one platform, and decreases cost due to miniaturization and waste reduction. Microfluidic oligo synthesizers demonstrate these advantages over industrial synthesizers but have error rates that are too high for commercialization. The microfluidic synthesizer design investigated in this dissertation incorporates several innovations to reduce the error rates of previous microfluidic synthesizers. The design eliminates the need for microvalves by utilization of electroosmotic flow (EOF). The device is fabricated in photosensitive glass which is compatible with standard oligo chemistry, and facilities pmol scale reactors and embedded optics. The surface properties of a photosensitive glass are characterized to inform device design. A special coating is developed that supports EOF and prevents side reactions from occurring on channels etched into the glass. Unique microlenses are fabricated to enhance the performance of embedded optics. Custom electronics are built to control EOF and monitor electric current in the device for flow rate determination. Finally, the device is modeled in COMSOL multiphysics. The electroosmotic microfluidic oligo synthesizer has been fabricated and is currently being evaluated for oligo synthesis. Future work will expand the design for parallel synthesis of 16 unique oligos on one device.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.