Date of Award
2019
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Electrical and Computer Engineering
Committee Chair
Seong-Moo Yoo
Committee Member
B. Earl Wells
Committee Member
W. David Pan
Committee Member
Dongsheng Wu
Committee Member
Murat M. Tanik
Subject(s)
Vehicular ad hoc networks (Computer networks), Wireless communication systems, Routing protocols (Computer network protocols), Machine learning
Abstract
Vehicular Ad Hoc Networks (VANET) have a great potential to become the next technological paradigm shift to enable Intelligent Transportation Systems (ITS). Over the years, significant research progress has been made in VANETs to develop standards, protocols and applications to improve driver/passenger safety, traffic efficiency, and general cooperative awareness. Broadcast communications are the main critical information dissemination method in VANETs. Such wireless broadcasts empower highly dynamic network nodes in VANETs to quickly share pertinent information (emergency accident alert, road conditions, etc.) with each other. The highly dynamic nature of moving nodes and geographical constraints make the VANET topology a complex environment to operate such broadcast protocols. To this day, no single universal VANET broadcast routing protocol has been created, but rather a wide range of various protocols that solve specific challenges have been proposed. One of the main challenges that those broadcast protocols aim to solve is the issue of emergency information dissemination in VANETs. This dissertation proposes a fail-safe misbehavior detection and mitigation framework for the broadcast routing protocols in VANETs. The proposed framework will include a novel unintentional broadcast protocol misbehavior technique using entropy and machine learning classification. The fail-safe framework’s architecture consists of three major parts: local threshold monitoring, flow sampling and entropy-based detection, and finally the global verification using machine learning classification. The first part is implemented and configured at each node, where threshold monitoring applies to physical, MAC and other relevant network layer parameters. The second part is triggered based on the monitoring results and involves selective flow sampling with entropy analysis and optional post-detection action configurations. The final part of the framework involves Road Side Unit (RSU) based flow aggregation and efficient binary classification using the compressed machine learning model. The classification result analysis and extensive simulation results demonstrate that the framework performs well in terms of speed, overhead, accuracy, precision, and recall during the broadcast protocol misbehavior in VANETs.
Recommended Citation
Sharshembiev, Kumar, "Protocol misbehavior mitigation framework for broadcast communications in vehicular ad hoc networks" (2019). Dissertations. 186.
https://louis.uah.edu/uah-dissertations/186