Date of Award
2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Atmospheric Science
Committee Chair
Mike J. Newchurch
Committee Member
Arastoo P. Biazar
Committee Member
Kevin Knupp
Committee Member
Xiong Liu
Committee Member
Udaysankar Nair
Subject(s)
Atmospheric chemistry, Tropospheric chemistry, Turbulent boundary layer, Boundary layer, Fluid dynamics
Abstract
We investigate the interaction between the free troposphere (FT) and planetary boundary layer (PBL) using multiple measurements and Dutch Atmospheric Large Eddy Simulation (DALES) coupled with a chemical module. A residual layer (RL) storing high ozone concentrations can significantly influence ground ozone concentration through the entrainment process whereby the RL aloft is incorporated into the growing convective boundary layer (CBL) during the morning transition. We use DALES model coupled with a chemical module to simultaneously study the dynamical and chemical impacts of a RL (200-1200 m above ground level (AGL)) on ground-level (0-200 m AGL) ozone concentrations. Four numerical experiments test these interactions: 1) a RL with high ozone (100 ppb); 2) a RL with low ozone (50 ppb); 3) no RL with high ozone above the NBL (100 ppb from 200-1200 m AGL); and 4) no RL with low ozone above the NBL (50 ppb). The results indicate that ozone stored in the RL can contribute up to 86% of the ozone concentration in the CBL during the following day in Case 1. Even in Case 2, 64% of the ozone in the developed CBL results from intrusions from the RL. Additionally, a RL also increases the enhancement rate of ozone in the CBL. Furthermore, we investigate the ozone diurnal variation on September 6, 2013 in Huntsville AL. The ozone variation in the CBL is mainly caused by local emissions due to the weather conditions being controlled by an anticyclonic system. The local chemical production contributes over 67% of the ozone enhancement in the CBL. The dynamical processes contribute the rest. The numerical experiments show good agreement with our ozone lidar observations. However, our simulation results and ozone lidar observations fail to reproduce a declining trend of surface ozone measured by an Environment Protection Agency (EPA) surface monitoring station that is 6 km south of our facilities, which is very likely due to the large ozone horizontal variation and the diurnal variation of ozone dry deposition under urban environment.
Recommended Citation
Huang, Guanyu, "Quantitative analysis of interaction between the free troposphere and planetary boundary layer using multiple measurements and large eddy simulation model" (2015). Dissertations. 59.
https://louis.uah.edu/uah-dissertations/59