Date of Award
2022
Document Type
Thesis
Degree Name
Master of Science in Engineering (MSE)
Department
Mechanical and Aerospace Engineering
Committee Chair
Phillip Ligrani
Committee Member
Guangsheng Zhang
Committee Member
Babak Shotorban
Subject(s)
Gas turbines--Aerodynamics, Blades
Abstract
The present study investigates film cooling in the trailing edge region of a transonic turbine blade tip, employing five rectangular film cooling holes downstream of a squealer recess. Heat transfer coefficient, heat transfer coefficient ratio, and adiabatic film cooling effectiveness data are provided for two tip gaps, 0.8 mm and 1.4 mm, over a range of blowing ratios. Surface heat transfer characteristics are measured using a transient impulse-response approach with infrared thermography. Local values of adiabatic film cooling effectiveness increase with increasing blowing ratio and are consistently higher when the tip gap is 0.8 mm. Values of heat transfer coefficient ratio increase as blowing ratio increases for both tip gaps considered. Together, heat transfer coefficient ratio and adiabatic film cooling effectiveness data suggest that the thermal protection offered by the 0.8 mm tip gap is superior to that of the 1.4 mm tip gap for a range of blowing ratios.
Recommended Citation
Cox, Matthew, "Investigations of surface film cooling characteristics along the trailing edge of the tip of a transonic turbine blade" (2022). Theses. 372.
https://louis.uah.edu/uah-theses/372