Date of Award

2014

Document Type

Thesis

Degree Name

Master of Science in Engineering (MSE)

Department

Electrical and Computer Engineering

Committee Chair

Yuri Shtessel

Committee Member

Laurie L. Joiner

Committee Member

Wenzhang Huang

Subject(s)

Sliding mode control, Feedback control systems, F-16 (Jet fighter plane), Flight control, Actuators, Linear control systems

Abstract

A Twisting algorithm based second order sliding mode controller is designed for tracking of command angles for nonlinear flight dynamics of an F-16 aircraft, before and after the battle damages. The high frequency switching controller is designed in terms of control derivative so that the actual control function is continuous. The practical robustness performance margins are identified in terms of maximal additional gain (Practical Gain Margin) and phase lag (Practical Phase Margin) added to the frequency characteristic of the linear part of the open loop system that yield acceptable loss of command angle tracking performance in terms of admissible parameters of self sustained oscillations. The effects of parasitic dynamics, in terms of linear first order actuator dynamics, on the controller's performance are analyzed. The performance margins in terms of parameters of parasitic dynamics are obtained. The proposed approach is verified via simulations.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.